
W3C_HTML 5_Reference_20090825.doc 2010 Mar page 1 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 1 from 931

Source at http://www.w3.org/TR/2009/WD-html5-20090825
 in 2010 Mar always the actual reference from W3C
 is here included but cleared from
 logical error in numeration (point 14 of table of contents)
 headlines --> reformated for structure with number of pages

Source at http://www.w3.org/TR/2009/WD-html5-20090825
 is created for online using with maximal traffic and waste of time with
 minimal performance to get quick and exactly informations for programers
 (webside with massive collection of links to connect every thing with
 every thing, but not in logical structure - all of them fine colored like
 smarties-chocolade-drops for kids).
 is like a beta ore wikipedia for every one who want take part to create
 a documentation for programers (who have wishes but no profession).

If somebody want to see, how it must be nearly done to create informations for
 programers, please visit websides of Microsoft (HMTL and JScript
 references online).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 2 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 2 from 931

HTML 5 .. 15
A vocabulary and associated APIs for HTML and XHTML .. 16
W3C Working Draft 25 August 2009 .. 17
Abstract ..17
Status of this document ...17
Stability...18
0 Table of contents ...19
1 Introduction...35
1.1 Background.. 35
1.2 Audience... 35
1.3 Scope... 35
1.4 History.. 36
1.5 Design notes ... 36
1.5.1 Serializability of script execution ...37
1.5.2 Compliance with other specifications ..37
1.6 Relationships to other specifications ... 37
1.6.1 Relationship to HTML 4.01 and DOM2 HTML...37
1.6.2 Relationship to XHTML 1.x ...38
1.7 HTML vs XHTML.. 38
1.8 Structure of this specification... 39
1.8.1 How to read this specification...39
1.8.2 Typographic conventions..40
1.9 A quick introduction to HTML.. 40
2 Common infrastructure ...44
2.1 Terminology... 44
2.1.1 Resources..44
2.1.2 XML ...45
2.1.3 DOM trees ..45
2.1.4 Scripting ...46
2.1.5 Plugins ..46
2.1.6 Character encodings..47
2.2 Conformance requirements.. 47
2.2.1 Dependencies..51
2.2.2 Extensibility ...52
2.3 Case-sensitivity and string comparison... 52
2.4 Common microsyntaxes.. 53
2.4.1 Common parser idioms...53
2.4.2 Boolean attributes..54
2.4.3 Keywords and enumerated attributes ...54
2.4.4 Numbers ...55
2.4.4.1 Non-negative integers..55
2.4.4.2 Signed integers...56
2.4.4.3 Real numbers ...57
2.4.4.4 Ratios ...59
2.4.4.5 Percentages and lengths..60
2.4.4.6 Lists of integers..61
2.4.4.7 Lists of dimensions ..63
2.4.5 Dates and times..64
2.4.5.1 Months ...65
2.4.5.2 Dates...66
2.4.5.3 Times..67
2.4.5.4 Local dates and times ..68
2.4.5.5 Global dates and times...69
2.4.5.6 Weeks ...71
2.4.5.7 Vaguer moments in time..73
2.4.6 Colors..74
2.4.7 Space-separated tokens ...77
2.4.8 Comma-separated tokens ...78

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 3 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 3 from 931

2.4.9 Reversed DNS identifiers ..79
2.4.10 References ..80
2.5 URLs... 80
2.5.1 Terminology...80
2.5.2 Dynamic changes to base URLs ...81
2.5.3 Interfaces for URL manipulation...82
2.6 Fetching resources... 85
2.6.1 Protocol concepts...86
2.6.2 Encrypted HTTP and related security concerns ..86
2.6.3 Determining the type of a resource ..87
2.7 Character encodings ... 88
2.8 Common DOM interfaces... 89
2.8.1 Reflecting content attributes in DOM attributes ..89
2.8.2 Collections ..92
2.8.2.1 HTMLCollection..92
2.8.2.2 HTMLAllCollection...93
2.8.2.3 HTMLFormControlsCollection ..95
2.8.2.4 HTMLOptionsCollection...97
2.8.2.5 HTMLPropertyCollection ...99
2.8.3 DOMTokenList..100
2.8.4 DOMSettableTokenList ..103
2.8.5 Safe passing of structured data ..103
2.8.6 DOMStringMap...105
2.8.7 DOM feature strings ...106
2.8.8 Exceptions ..106
2.8.9 Garbage collection...107
3 Semantics, structure, and APIs of HTML documents ..108
3.1 Documents.. 108
3.1.1 Documents in the DOM...108
3.1.2 Security...110
3.1.3 Resource metadata management ...111
3.1.4 DOM tree accessors...114
3.2 Elements ... 118
3.2.1 Semantics..118
3.2.2 Elements in the DOM..120
3.2.3 Global attributes..122
3.2.3.1 The id attribute...124
3.2.3.2 The title attribute ...124
3.2.3.3 The lang and xml:lang attributes..125
3.2.3.4 The xml:base attribute (XML only) ..126
3.2.3.5 The dir attribute...126
3.2.3.6 The class attribute..127
3.2.3.7 The style attribute ..128
3.2.3.8 Embedding custom non-visible data ...128
3.2.4 Element definitions..130
3.2.5 Content models ..131
3.2.5.1 Kinds of content...131
3.2.5.1.1 Metadata content ...132
3.2.5.1.2 Flow content ..133
3.2.5.1.3 Sectioning content ...134
3.2.5.1.4 Heading content...135
3.2.5.1.5 Phrasing content ..135
3.2.5.1.6 Embedded content ...136
3.2.5.1.7 Interactive content ...137
3.2.5.2 Transparent content models ..138
3.2.5.3 Paragraphs...139
3.2.6 Annotations for assistive technology products..141
3.3 APIs in HTML documents ... 146
3.4 Interactions with XPath and XSLT... 147
3.5 Dynamic markup insertion... 148

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 4 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 4 from 931

3.5.1 Controlling the input stream ..148
3.5.2 document.write()..150
3.5.3 document.writeln() ..150
3.5.4 innerHTML..151
3.5.5 outerHTML..152
3.5.6 insertAdjacentHTML()...153
4 The elements of HTML ..155
4.1 The root element.. 155
4.1.1 The html element ...155
4.2 Document metadata .. 155
4.2.1 The head element ...155
4.2.2 The title element ..155
4.2.3 The base element ...156
4.2.4 The link element ..157
4.2.5 The meta element...162
4.2.5.1 Standard metadata names ...163
4.2.5.2 Other metadata names...163
4.2.5.3 Pragma directives ..165
4.2.5.4 Other pragma directives ..168
4.2.5.5 Specifying the document's character encoding ..169
4.2.6 The style element ...170
4.2.7 Styling...172
4.3 Scripting ... 173
4.3.1 The script element...173
4.3.1.1 Scripting languages ...179
4.3.1.2 Inline documentation for external scripts...180
4.3.2 The noscript element..180
4.4 Sections... 182
4.4.1 The body element ...182
4.4.2 The section element ..184
4.4.3 The nav element...185
4.4.4 The article element ..187
4.4.5 The aside element ..187
4.4.6 The h1, h2, h3, h4, h5, and h6 elements...188
4.4.7 The hgroup element...189
4.4.8 The header element ...190
4.4.9 The footer element...191
4.4.10 The address element ..192
4.4.11 Headings and sections ...194
4.4.11.1 Creating an outline..195
4.4.11.2 Distinguishing site-wide headings from page headings ...199
4.5 Grouping content .. 199
4.5.1 The p element...200
4.5.2 The hr element ...201
4.5.3 The br element ...201
4.5.4 The pre element ...202
4.5.5 The dialog element...203
4.5.6 The blockquote element ..204
4.5.7 The ol element..205
4.5.8 The ul element..207
4.5.9 The li element...207
4.5.10 The dl element..209
4.5.11 The dt element ...211
4.5.12 The dd element...212
4.5.13 Common grouping idioms ..213
4.5.13.1 Tag clouds..213
4.6 Text-level semantics .. 213
4.6.1 The a element...213
4.6.2 The em element..216
4.6.3 The strong element ..217

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 5 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 5 from 931

4.6.4 The small element..218
4.6.5 The cite element ...219
4.6.6 The q element...220
4.6.7 The dfn element ...222
4.6.8 The abbr element...223
4.6.9 The code element ...224
4.6.10 The var element ...225
4.6.11 The samp element..226
4.6.12 The kbd element ..227
4.6.13 The sub and sup elements ...228
4.6.14 The i element..229
4.6.15 The b element...230
4.6.16 The mark element..231
4.6.17 The progress element ..233
4.6.18 The meter element ...235
4.6.19 The time element ...241
4.6.20 The ruby element...244
4.6.21 The rt element..246
4.6.22 The rp element ...246
4.6.23 The bdo element...247
4.6.24 The span element ...248
4.6.25 Usage summary..248
4.6.26 Footnotes ..249
4.7 Edits.. 251
4.7.1 The ins element..251
4.7.2 The del element..252
4.7.3 Attributes common to ins and del elements ..252
4.7.4 Edits and paragraphs..253
4.7.5 Edits and lists ...254
4.8 Embedded content... 255
4.8.1 The figure element...255
4.8.2 The img element...256
4.8.2.1 Requirements for providing text to act as an alternative for images ...263
4.8.2.1.1 A link or button containing nothing but the image..263
4.8.2.1.2 A phrase or paragraph with an alternative graphical representation: charts, diagrams, graphs, maps,
illustrations ...264
4.8.2.1.3 A short phrase or label with an alternative graphical representation: icons, logos..265
4.8.2.1.4 Text that has been rendered to a graphic for typographical effect...267
4.8.2.1.5 A graphical representation of some of the surrounding text..267
4.8.2.1.6 A purely decorative image that doesn't add any information ..268
4.8.2.1.7 A group of images that form a single larger picture with no links ..269
4.8.2.1.8 A group of images that form a single larger picture with links ...269
4.8.2.1.9 A key part of the content ...270
4.8.2.1.10 An image not intended for the user..273
4.8.2.1.11 An image in an e-mail or private document intended for a specific person who is known to be able to view
images ..273
4.8.2.1.12 General guidelines ...274
4.8.2.1.13 Guidance for markup generators ...274
4.8.2.1.14 Guidance for conformance checkers ...274
4.8.3 The iframe element...275
4.8.4 The embed element ...280
4.8.5 The object element...282
4.8.6 The param element..287
4.8.7 The video element..288
4.8.8 The audio element ...291
4.8.9 The source element..292
4.8.10 Media elements ..294
4.8.10.1 Error codes...295
4.8.10.2 Location of the media resource...296
4.8.10.3 MIME types ...296
4.8.10.4 Network states..297

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 6 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 6 from 931

4.8.10.5 Loading the media resource ..298
4.8.10.6 Offsets into the media resource...307
4.8.10.7 The ready states ...308
4.8.10.8 Playing the media resource ...310
4.8.10.9 Seeking...315
4.8.10.10 User interface...316
4.8.10.11 Time ranges ...317
4.8.10.12 Event summary ..318
4.8.10.13 Security and privacy considerations ...321
4.8.11 The canvas element...322
4.8.11.1 The 2D context...325
4.8.11.1.1 The canvas state...328
4.8.11.1.2 Transformations...329
4.8.11.1.3 Compositing ..330
4.8.11.1.4 Colors and styles ...331
4.8.11.1.5 Line styles..335
4.8.11.1.6 Shadows ..337
4.8.11.1.7 Simple shapes (rectangles) ..339
4.8.11.1.8 Complex shapes (paths)...339
4.8.11.1.9 Text..343
4.8.11.1.10 Images ...348
4.8.11.1.11 Pixel manipulation...349
4.8.11.1.12 Drawing model ..354
4.8.11.2 Color spaces and color correction...355
4.8.11.3 Security with canvas elements...355
4.8.12 The map element..356
4.8.13 The area element ...357
4.8.14 Image maps ..360
4.8.14.1 Authoring...360
4.8.14.2 Processing model ...361
4.8.15 MathML ...363
4.8.16 SVG...364
4.8.17 Dimension attributes ...364
4.9 Tabular data .. 365
4.9.1 The table element ...365
Otherwise, the method must remove the indexth element in the rows collection from its parent......374
4.9.2 The caption element ..374
4.9.3 The colgroup element ..375
4.9.4 The col element ..376
4.9.5 The tbody element ...376
4.9.6 The thead element ...378
4.9.7 The tfoot element ...378
4.9.8 The tr element..379
4.9.9 The td element ...380
4.9.10 The th element ...381
4.9.11 Attributes common to td and th elements ...383
4.9.12 Processing model ...384
4.9.12.1 Forming a table ...385
4.9.12.2 Forming relationships between data cells and header cells...389
4.10 Forms.. 392
4.10.1 The form element ...393
4.10.2 The fieldset element...397
4.10.3 The label element...398
4.10.4 The input element..400
4.10.4.1 States of the type attribute ...407
4.10.4.1.1 Hidden state...407
4.10.4.1.2 Text state and Search state...407
4.10.4.1.3 Telephone state..408
4.10.4.1.4 URL state...409
4.10.4.1.5 E-mail state..409
4.10.4.1.6 Password state ...410

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 7 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 7 from 931

4.10.4.1.7 Date and Time state ...411
4.10.4.1.8 Date state ...413
4.10.4.1.9 Month state ..414
4.10.4.1.10 Week state ...415
4.10.4.1.11 Time state ..417
4.10.4.1.12 Local Date and Time state ...418
4.10.4.1.13 Number state..419
4.10.4.1.14 Range state ..420
4.10.4.1.15 Color state..422
4.10.4.1.16 Checkbox state ..422
4.10.4.1.17 Radio Button state ...423
4.10.4.1.18 File Upload state..425
4.10.4.1.19 Submit Button state ...426
4.10.4.1.20 Image Button state...427
4.10.4.1.21 Reset Button state ..429
4.10.4.1.22 Button state..429
4.10.4.2 Common input element attributes ...430
4.10.4.2.1 THE autocomplete ATTRIBUTE..430
4.10.4.2.2 THE LIST ATTRIBUTE ..431
4.10.4.2.3 THE READONLY ATTRIBUTE..432
4.10.4.2.4 THE SIZE ATTRIBUTE ..432
4.10.4.2.5 THE REQUIRED ATTRIBUTE ...432
4.10.4.2.6 THE MULTIPLE ATTRIBUTE ...432
4.10.4.2.7 THE MAXLENGTH ATTRIBUTE ...432
4.10.4.2.8 THE PATTERN ATTRIBUTE...433
4.10.4.2.9 THE MIN AND MAX ATTRIBUTES ...433
4.10.4.2.10 THE STEP ATTRIBUTE..434
4.10.4.2.11 THE PLACEHOLDER ATTRIBUTE ..435
4.10.4.3 Common input element APIs ..435
4.10.4.4 Common event behaviors ..439
4.10.5 The button element..440
4.10.6 The select element..442
4.10.7 The datalist element ..446
4.10.8 The optgroup element ...447
4.10.9 The option element ..448
4.10.10 The textarea element ...451
4.10.11 The keygen element ...455
4.10.12 The output element..458
4.10.13 Association of controls and forms ..460
4.10.14 Attributes common to form controls..462
4.10.14.1 Naming form controls ...462
4.10.14.2 Enabling and disabling form controls ..462
4.10.14.3 A form control's value ...462
4.10.14.4 Autofocusing a form control ...462
4.10.14.5 Limiting user input length...463
4.10.14.6 Form submission ...463
4.10.15 Constraints..465
4.10.15.1 Definitions ..465
4.10.15.2 Constraint validation ...466
4.10.15.3 The constraint validation API...467
4.10.15.4 Security ..470
4.10.16 Form submission..470
4.10.16.1 Introduction ...470
4.10.16.2 Implicit submission..471
4.10.16.3 Form submission algorithm ..471
4.10.16.4 URL-encoded form data ..477
4.10.16.5 Multipart form data ...478
4.10.16.6 Plain text form data ...479
4.10.17 Resetting a form...479
4.10.18 Event dispatch..480
4.11 Interactive elements .. 480

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 8 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 8 from 931

4.11.1 The details element ..480
4.11.2 The command element ..481
4.11.3 The menu element ...483
4.11.3.1 Introduction ...484
4.11.3.2 Building menus and tool bars ...485
4.11.3.3 Context menus ...486
4.11.3.4 Tool bars ..487
4.11.4 Commands ...487
4.11.4.1 Using the a element to define a command..489
4.11.4.2 Using the button element to define a command ...490
4.11.4.3 Using the input element to define a command ...490
4.11.4.4 Using the option element to define a command..491
4.11.4.5 Using the command element to define a command..492
4.11.4.6 Using the accesskey attribute on a label element to define a command ..492
4.11.4.7 Using the accesskey attribute on a legend element to define a command ...493
4.11.4.8 Using the accesskey attribute to define a command on other elements ...493
4.12 Miscellaneous elements ... 494
4.12.1 The legend element...494
4.12.2 The div element..495
4.13 Matching HTML elements using selectors.. 496
5 Microdata ..499
5.1 Introduction ... 499
5.1.1 Overview ..499
5.1.2 The basic syntax...499
5.1.3 Typed items..501
5.1.4 Selecting names when defining vocabularies ..502
5.1.5 Predefined vocabularies..503
5.1.6 Using the microdata DOM API..503
5.2 Encoding microdata .. 505
5.2.1 The microdata model ..505
5.2.2 Items: the item attribute ...505
5.2.3 Associating names with items ...506
5.2.4 Names: the itemprop attribute ...506
5.2.5 Values ...507
5.3 Microdata DOM API .. 508
5.4 Predefined vocabularies.. 509
5.4.1 General ...510
5.4.2 vCard..510
5.4.2.1 Examples..521
5.4.3 vEvent...522
5.4.3.1 Examples..528
5.4.4 Licensing works ...529
5.4.4.1 Examples..530
5.5 Converting HTML to other formats.. 530
5.5.1 JSON...530
5.5.2 RDF...531
5.5.3 vCard..534
5.5.4 iCalendar..541
5.5.5 Atom ...543
6 Web browsers..548
6.1 Browsing contexts.. 548
6.1.1 Nested browsing contexts..549
6.1.1.1 Navigating nested browsing contexts in the DOM ...550
6.1.2 Auxiliary browsing contexts ...550
6.1.2.1 Navigating auxiliary browsing contexts in the DOM...551
6.1.3 Secondary browsing contexts ...551
6.1.4 Security...551
6.1.5 Groupings of browsing contexts...551
6.1.6 Browsing context names..552
6.2 The WindowProxy object ... 553

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 9 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 9 from 931

6.3 The Window object ... 553
6.3.1 Security...555
6.3.2 APIs for creating and navigating browsing contexts by name ..556
6.3.3 Accessing other browsing contexts...557
6.3.4 Named access on the Window object ...558
6.3.5 Garbage collection and browsing contexts ..558
6.3.6 Browser interface elements...559
6.4 Origin ... 560
6.4.1 Relaxing the same-origin restriction..564
6.5 Scripting ... 565
6.5.1 Introduction ...565
6.5.2 Enabling and disabling scripting..566
6.5.3 Processing model ...566
6.5.3.1 Definitions ...566
6.5.3.2 Calling scripts ..567
6.5.3.3 Creating scripts..568
6.5.3.4 Killing scripts ...569
6.5.4 Event loops ...569
6.5.4.1 Definitions ...569
6.5.4.2 Processing model ...570
6.5.4.3 Generic task sources..571
6.5.5 The javascript: protocol..572
6.5.6 Events ...573
6.5.6.1 Event handler attributes ..573
6.5.6.2 Event handler attributes on elements, Document objects, and Window objects..575
6.5.6.3 Event firing ..577
6.5.6.4 Events and the Window object ..578
6.5.6.5 Runtime script errors...578
6.6 Timers... 579
6.7 User prompts ... 582
6.7.1 Simple dialogs ..582
6.7.2 Printing...583
6.7.3 Dialogs implemented using separate documents ..584
6.8 System state and capabilities.. 586
6.8.1 Client identification...587
6.8.2 Custom scheme and content handlers ...588
6.8.2.1 Security and privacy ..590
6.8.2.2 Sample user interface ..591
6.8.3 Manually releasing the storage mutex ...592
6.9 Offline Web applications .. 593
6.9.1 Introduction ...593
6.9.1.1 Event summary ..594
6.9.2 Application caches...595
6.9.3 The cache manifest syntax ..596
6.9.3.1 A sample manifest..596
6.9.3.2 Writing cache manifests ..597
6.9.3.3 Parsing cache manifests..599
6.9.4 Updating an application cache ...602
6.9.5 Matching a fallback namespace ...609
6.9.6 The application cache selection algorithm ..610
6.9.7 Changes to the networking model..611
6.9.8 Expiring application caches..611
6.9.9 Application cache API...611
6.9.10 Browser state..614
6.10 Session history and navigation ... 615
6.10.1 The session history of browsing contexts...615
6.10.2 The History interface ..616
6.10.3 Activating state object entries ..618
6.10.4 The Location interface ..619
6.10.4.1 Security ..621
6.10.5 Implementation notes for session history ..622

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 10 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 10 from 931

6.11 Browsing the Web ... 622
6.11.1 Navigating across documents ...622
6.11.2 Page load processing model for HTML files ...627
6.11.3 Page load processing model for XML files ..627
6.11.4 Page load processing model for text files...628
6.11.5 Page load processing model for images ...628
6.11.6 Page load processing model for content that uses plugins ...629
6.11.7 Page load processing model for inline content that doesn't have a DOM...629
6.11.8 Navigating to a fragment identifier..629
6.11.9 History traversal..631
6.11.10 Unloading documents..632
6.11.10.1 Event definition ...632
6.12 Links... 633
6.12.1 Hyperlink elements..633
6.12.2 Following hyperlinks...634
6.12.2.1 Hyperlink auditing...635
6.12.3 Link types...636
6.12.3.1 Link type "alternate"..638
6.12.3.2 Link type "archives" ...639
6.12.3.3 Link type "author" ..639
6.12.3.4 Link type "bookmark"...639
6.12.3.5 Link type "external"..640
6.12.3.6 Link type "feed" ..640
6.12.3.7 Link type "help" ..641
6.12.3.8 Link type "icon" ..641
6.12.3.9 Link type "license"..643
6.12.3.10 Link type "nofollow"...644
6.12.3.11 Link type "noreferrer" ..644
6.12.3.12 Link type "pingback" ..644
6.12.3.13 Link type "prefetch"..644
6.12.3.14 Link type "search" ..644
6.12.3.15 Link type "stylesheet" ...645
6.12.3.16 Link type "sidebar" ...645
6.12.3.17 Link type "tag" ..645
6.12.3.18 Hierarchical link types ..646
6.12.3.18.1 Link type "index" ...646
6.12.3.18.2 Link type "up" ...646
6.12.3.19 Sequential link types..647
6.12.3.19.1 Link type "first" ...647
6.12.3.19.2 Link type "last"..647
6.12.3.19.3 Link type "next" ..648
6.12.3.19.4 Link type "prev" ..648
6.12.3.20 Other link types..648
7 User Interaction ..650
7.1 The hidden attribute... 650
7.2 Activation ... 650
7.3 Scrolling elements into view ... 651
7.4 Focus... 651
7.4.1 Sequential focus navigation ..652
7.4.2 Focus management ..653
7.4.3 Document-level focus APIs ...654
7.4.4 Element-level focus APIs ..655
7.5 The accesskey attribute ... 655
7.6 The text selection APIs.. 657
7.6.1 APIs for the browsing context selection...658
7.6.2 APIs for the text field selections ...661
7.7 The contenteditable attribute... 663
7.7.1 User editing actions ...664
7.7.2 Making entire documents editable...666
7.8 Spelling and grammar checking .. 667

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 11 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 11 from 931

7.9 Drag and drop ... 669
7.9.1 Introduction ...670
7.9.2 The DragEvent and DataTransfer interfaces..670
7.9.3 Events fired during a drag-and-drop action ...673
7.9.4 Drag-and-drop processing model...675
7.9.4.1 When the drag-and-drop operation starts or ends in another document...680
7.9.4.2 When the drag-and-drop operation starts or ends in another application ..680
7.9.5 The draggable attribute..681
7.9.6 Copy and paste...681
7.9.6.1 Copy to clipboard...682
7.9.6.2 Cut to clipboard ...682
7.9.6.3 Paste from clipboard..682
7.9.6.4 Paste from selection...682
7.9.7 Security risks in the drag-and-drop model ...682
7.10 Undo history .. 683
7.10.1 Introduction ...683
7.10.2 Definitions ..683
7.10.3 The UndoManager interface ..683
7.10.4 Undo: moving back in the undo transaction history ..686
7.10.5 Redo: moving forward in the undo transaction history ...686
7.10.6 The UndoManagerEvent interface and the undo and redo events..687
7.10.7 Implementation notes..687
7.11 Editing APIs... 687
8 Communication...694
8.1 Event definitions.. 694
8.2 Cross-document messaging .. 695
8.2.1 Introduction ...695
8.2.2 Security...696
8.2.2.1 Authors...696
8.2.2.2 User agents ..696
8.2.3 Posting messages..696
8.2.4 Posting messages with message ports...697
8.3 Channel messaging.. 698
8.3.1 Introduction ...698
8.3.2 Message channels...698
8.3.3 Message ports...699
8.3.3.1 Ports and garbage collection...702
9 The HTML syntax ..703
9.1 Writing HTML documents... 703
9.1.1 The DOCTYPE..703
9.1.2 Elements ...704
9.1.2.1 Start tags ..705
9.1.2.2 End tags ...706
9.1.2.3 Attributes..706
9.1.2.4 Optional tags..707
9.1.2.5 Restrictions on content models..709
9.1.2.6 Restrictions on the contents of raw text and RCDATA elements...710
9.1.3 Text ...710
9.1.3.1 Newlines...710
9.1.4 Character references ...710
9.1.5 CDATA sections ..711
9.1.6 Comments ..711
9.2 Parsing HTML documents ... 712
9.2.1 Overview of the parsing model...712
9.2.2 The input stream ...714
9.2.2.1 Determining the character encoding ..714
9.2.2.2 Preprocessing the input stream...718
9.2.2.3 Changing the encoding while parsing ..719
9.2.3 Parse state ..720
9.2.3.1 The insertion mode ..720

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 12 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 12 from 931

9.2.3.2 The stack of open elements ...722
9.2.3.3 The list of active formatting elements ...723
9.2.3.4 The element pointers ...724
9.2.3.5 Other parsing state flags..725
9.2.4 Tokenization ...725
9.2.4.1 Data state ...726
9.2.4.2 Character reference data state ..727
9.2.4.3 Tag open state ..727
9.2.4.4 Close tag open state ...728
9.2.4.5 Tag name state...728
9.2.4.6 Before attribute name state ...729
9.2.4.7 Attribute name state...729
9.2.4.8 After attribute name state ..730
9.2.4.9 Before attribute value state..731
9.2.4.10 Attribute value (double-quoted) state ..731
9.2.4.11 Attribute value (single-quoted) state ...731
9.2.4.12 Attribute value (unquoted) state..732
9.2.4.13 Character reference in attribute value state ...732
9.2.4.14 After attribute value (quoted) state..732
9.2.4.15 Self-closing start tag state...733
9.2.4.16 Bogus comment state ...733
9.2.4.17 Markup declaration open state..733
9.2.4.18 Comment start state ...734
9.2.4.19 Comment start dash state ..734
9.2.4.20 Comment state ...734
9.2.4.21 Comment end dash state..734
9.2.4.22 Comment end state ..735
9.2.4.23 Comment end bang state ...735
9.2.4.24 Comment end space state ..735
9.2.4.25 DOCTYPE state ...736
9.2.4.26 Before DOCTYPE name state ...736
9.2.4.27 DOCTYPE name state ...737
9.2.4.28 After DOCTYPE name state..737
9.2.4.29 Before DOCTYPE public identifier state..737
9.2.4.30 DOCTYPE public identifier (double-quoted) state...738
9.2.4.31 DOCTYPE public identifier (single-quoted) state ..738
9.2.4.32 After DOCTYPE public identifier state...739
9.2.4.33 Before DOCTYPE system identifier state ...739
9.2.4.34 DOCTYPE system identifier (double-quoted) state ..739
9.2.4.35 DOCTYPE system identifier (single-quoted) state..740
9.2.4.36 After DOCTYPE system identifier state..740
9.2.4.37 Bogus DOCTYPE state..740
9.2.4.38 CDATA section state..741
9.2.4.39 Tokenizing character references...741
9.2.5 Tree construction...744
9.2.5.1 Creating and inserting elements ...746
9.2.5.2 Closing elements that have implied end tags ..750
9.2.5.3 Foster parenting ..750
9.2.5.4 The "initial" insertion mode...750
9.2.5.5 The "before html" insertion mode..754
9.2.5.6 The "before head" insertion mode ...755
9.2.5.7 The "in head" insertion mode ..755
9.2.5.8 The "in head noscript" insertion mode ..757
9.2.5.9 The "after head" insertion mode ..758
9.2.5.10 The "in body" insertion mode...759
9.2.5.11 The "in RAWTEXT/RCDATA" insertion mode ..771
9.2.5.12 The "in table" insertion mode ..772
9.2.5.13 The "in table text" insertion mode ...774
9.2.5.14 The "in caption" insertion mode ..775
9.2.5.15 The "in column group" insertion mode ...775
9.2.5.16 The "in table body" insertion mode..776
9.2.5.17 The "in row" insertion mode ..777

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 13 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 13 from 931

9.2.5.18 The "in cell" insertion mode...778
9.2.5.19 The "in select" insertion mode ...779
9.2.5.20 The "in select in table" insertion mode ..780
9.2.5.21 The "in foreign content" insertion mode ...781
9.2.5.22 The "after body" insertion mode ..784
9.2.5.23 The "in frameset" insertion mode ..784
9.2.5.24 The "after frameset" insertion mode..785
9.2.5.25 The "after after body" insertion mode..786
9.2.5.26 The "after after frameset" insertion mode ...786
9.2.6 The end...787
9.2.7 Coercing an HTML DOM into an infoset ...788
9.2.8 An introduction to error handling and strange cases in the parser ..789
9.2.8.1 Misnested tags: <i></i>...789
9.2.8.2 Misnested tags: <p></p> ...790
9.2.8.3 Unexpected markup in tables ..791
9.2.8.4 Scripts that modify the page as it is being parsed ...794
9.3 Namespaces.. 795
9.4 Serializing HTML fragments ... 795
9.5 Parsing HTML fragments .. 797
9.6 Named character references... 799
10 The XHTML syntax ...857
10.1 Writing XHTML documents.. 857
10.2 Parsing XHTML documents .. 857
10.3 Serializing XHTML fragments .. 858
10.4 Parsing XHTML fragments ... 859
11 Rendering ..859
11.1 Introduction ... 860
11.2 The CSS user agent style sheet and presentational hints... 860
11.2.1 Introduction ...860
11.2.2 Display types ..860
11.2.3 Margins and padding ..861
11.2.4 Alignment...864
11.2.5 Fonts and colors...866
11.2.6 Punctuation and decorations ..869
11.2.7 Resetting rules for inherited properties...871
11.2.8 The hr element ...872
11.2.9 The fieldset element...872
11.3 Replaced elements ... 873
11.3.1 Embedded content...873
11.3.2 Images...874
11.3.3 Attributes for embedded content and images ...875
11.3.4 Image maps ..876
11.3.5 Tool bars...876
11.4 Bindings.. 877
11.4.1 Introduction ...877
11.4.2 The button element..877
11.4.3 The details element..877
11.4.4 The input element as a text entry widget...877
11.4.5 The input element as domain-specific widgets ..878
11.4.6 The input element as a range control...879
11.4.7 The input element as a color well ...879
11.4.8 The input element as a check box and radio button widgets ...879
11.4.9 The input element as a file upload control ..880
11.4.10 The input element as a button ..880
11.4.11 The marquee element ..880
11.4.12 The meter element ...882
11.4.13 The progress element ..883
11.4.14 The select element..883
11.4.15 The textarea element ...884
11.4.16 The keygen element ...885

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 14 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 14 from 931

11.4.17 The time element ...885
11.5 Frames and framesets ... 885
11.6 Interactive media... 888
11.6.1 Links, forms, and navigation..888
11.6.2 The mark element..889
11.6.3 The title attribute...889
11.6.4 Editing hosts...889
11.7 Print media .. 889
11.8 Interaction with CSS... 889
11.8.1 Selectors..889
12 Obsolete features...891
12.1 Obsolete but conforming features.. 891
12.1.1 Warnings for obsolete but conforming features ...891
12.2 Non-conforming features.. 892
12.3 Requirements for implementations ... 895
12.3.1 The applet element ..895
12.3.2 The marquee element ..896
12.3.3 Frames ..899
12.3.4 Other elements, attributes and APIs..901
13 Things that you can't do with this specification because they are better handled using
other technologies that are further described herein ...913
13.1 Localization.. 913
13.2 Declarative 3D scenes.. 913
14 IANA considerations ..914
14.1 text/html ... 914
14.2 application/xhtml+xml.. 915
14.3 text/cache-manifest.. 916
14.4 text/ping.. 917
14.5 application/microdata+json.. 918
15 Index...920
16 References..922
17 Acknowledgements ...929

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 15 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 15 from 931

HTML 5

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 16 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 16 from 931

A vocabulary and associated APIs for HTML and XHTML

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 17 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 17 from 931

W3C Working Draft 25 August 2009
This Version:

http://www.w3.org/TR/2009/WD-html5-20090825/
Latest Published Version:

http://www.w3.org/TR/html5/
Latest Editor's Draft:

http://www.w3.org/html/wg/html5/
Previous Versions:

http://www.w3.org/TR/2009/WD-html5-20090423/
http://www.w3.org/TR/2009/WD-html5-20090212/
http://www.w3.org/TR/2008/WD-html5-20080610/
http://www.w3.org/TR/2008/WD-html5-20080122/

Editors:
Ian Hickson, Google, Inc.
David Hyatt, Apple, Inc.

This specification is available in the following formats: single page HTML, multipage
HTML. This is revision 1.2852.
Copyright © 2009 W3C® (MIT, ERCIM, Keio), All Rights Reserved. W3C liability,
trademark and document use rules apply.

Abstract

This specification defines the 5th major revision of the core language of the World Wide
Web: the Hypertext Markup Language (HTML). In this version, new features are
introduced to help Web application authors, new elements are introduced based on
research into prevailing authoring practices, and special attention has been given to
defining clear conformance criteria for user agents in an effort to improve interoperability.

Status of this document

This section describes the status of this document at the time of its publication. Other
documents may supersede this document. A list of current W3C publications and the most
recently formally published revision of this technical report can be found in the W3C
technical reports index at http://www.w3.org/TR/.

The WHATWG version of this specification is available under a license that permits reuse
of the specification text.

If you wish to make comments regarding this document, please send them to public-html-
comments@w3.org (subscribe, archives) or whatwg@whatwg.org (subscribe, archives),
or submit them using our public bug database. All feedback is welcome.

We maintain a list of all e-mails that have not yet been considered and a list of all bug
reports that have not yet been resolved.

Implementors should be aware that this specification is not stable. Implementors who
are not taking part in the discussions are likely to find the specification changing
out from under them in incompatible ways. Vendors interested in implementing this

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 18 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 18 from 931

specification before it eventually reaches the Candidate Recommendation stage should
join the aforementioned mailing lists and take part in the discussions.

The publication of this document by the W3C as a W3C Working Draft does not imply that
all of the participants in the W3C HTML working group endorse the contents of the
specification. Indeed, for any section of the specification, one can usually find many
members of the working group or of the W3C as a whole who object strongly to the
current text, the existence of the section at all, or the idea that the working group should
even spend time discussing the concept of that section.

The latest stable version of the editor's draft of this specification is always available on the
W3C CVS server and in the WHATWG Subversion repository. The latest editor's working
copy (which may contain unfinished text in the process of being prepared) is also
available.

There are various ways to follow the change history for the specification:

E-mail notifications of changes
HTML-Diffs mailing list (diff-marked HTML versions for each change):
http://lists.w3.org/Archives/Public/public-html-diffs/latest
Commit-Watchers mailing list (complete source diffs):
http://lists.whatwg.org/listinfo.cgi/commit-watchers-whatwg.org

Real-time notifications of changes:
Generated diff-marked HTML versions for each change: http://twitter.com/HTML5
All (non-editorial) changes to the spec source: http://twitter.com/WHATWG

Browsable version-control record of all changes:
CVSWeb interface with side-by-side diffs:
http://dev.w3.org/cvsweb/html5/spec/Overview.html
Annotated summary with unified diffs: http://html5.org/tools/web-apps-tracker
Raw Subversion interface: svn checkout http://svn.whatwg.org/webapps/

The W3C HTML Working Group is the W3C working group responsible for this
specification's progress along the W3C Recommendation track. This specification is the
25 August 2009 Working Draft.

This specification is also being produced by the WHATWG. The two specifications are
identical from the table of contents onwards.

This specification is intended to replace (be a new version of) what was previously the
HTML4, XHTML 1.0, and DOM2 HTML specifications.

This document was produced by a group operating under the 5 February 2004 W3C
Patent Policy. W3C maintains a public list of any patent disclosures made in connection
with the deliverables of the group; that page also includes instructions for disclosing a
patent. An individual who has actual knowledge of a patent which the individual believes
contains Essential Claim(s) must disclose the information in accordance with section 6 of
the W3C Patent Policy.

Stability

Different parts of this specification are at different levels of maturity.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 19 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 19 from 931

0 Table of contents

1. 1 Introduction
1. 1.1 Background
2. 1.2 Audience
3. 1.3 Scope
4. 1.4 History
5. 1.5 Design notes

1. 1.5.1 Serializability of script execution
2. 1.5.2 Compliance with other specifications

6. 1.6 Relationships to other specifications
1. 1.6.1 Relationship to HTML 4.01 and DOM2 HTML
2. 1.6.2 Relationship to XHTML 1.x

7. 1.7 HTML vs XHTML
8. 1.8 Structure of this specification

1. 1.8.1 How to read this specification
2. 1.8.2 Typographic conventions

9. 1.9 A quick introduction to HTML
2. 2 Common infrastructure

1. 2.1 Terminology
1. 2.1.1 Resources
2. 2.1.2 XML
3. 2.1.3 DOM trees
4. 2.1.4 Scripting
5. 2.1.5 Plugins
6. 2.1.6 Character encodings

2. 2.2 Conformance requirements
1. 2.2.1 Dependencies
2. 2.2.2 Extensibility

3. 2.3 Case-sensitivity and string comparison
4. 2.4 Common microsyntaxes

1. 2.4.1 Common parser idioms
2. 2.4.2 Boolean attributes
3. 2.4.3 Keywords and enumerated attributes
4. 2.4.4 Numbers

1. 2.4.4.1 Non-negative integers
2. 2.4.4.2 Signed integers
3. 2.4.4.3 Real numbers
4. 2.4.4.4 Ratios
5. 2.4.4.5 Percentages and lengths
6. 2.4.4.6 Lists of integers
7. 2.4.4.7 Lists of dimensions

5. 2.4.5 Dates and times
1. 2.4.5.1 Months
2. 2.4.5.2 Dates
3. 2.4.5.3 Times
4. 2.4.5.4 Local dates and times
5. 2.4.5.5 Global dates and times
6. 2.4.5.6 Weeks
7. 2.4.5.7 Vaguer moments in time

6. 2.4.6 Colors

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 20 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 20 from 931

7. 2.4.7 Space-separated tokens
8. 2.4.8 Comma-separated tokens
9. 2.4.9 Reversed DNS identifiers
10. 2.4.10 References

5. 2.5 URLs
1. 2.5.1 Terminology
2. 2.5.2 Dynamic changes to base URLs
3. 2.5.3 Interfaces for URL manipulation

6. 2.6 Fetching resources
1. 2.6.1 Protocol concepts
2. 2.6.2 Encrypted HTTP and related security concerns
3. 2.6.3 Determining the type of a resource

7. 2.7 Character encodings
8. 2.8 Common DOM interfaces

1. 2.8.1 Reflecting content attributes in DOM attributes
2. 2.8.2 Collections

1. 2.8.2.1 HTMLCollection
2. 2.8.2.2 HTMLAllCollection
3. 2.8.2.3 HTMLFormControlsCollection
4. 2.8.2.4 HTMLOptionsCollection
5. 2.8.2.5 HTMLPropertyCollection

3. 2.8.3 DOMTokenList
4. 2.8.4 DOMSettableTokenList
5. 2.8.5 Safe passing of structured data
6. 2.8.6 DOMStringMap
7. 2.8.7 DOM feature strings
8. 2.8.8 Exceptions
9. 2.8.9 Garbage collection

3. 3 Semantics, structure, and APIs of HTML documents
1. 3.1 Documents

1. 3.1.1 Documents in the DOM
2. 3.1.2 Security
3. 3.1.3 Resource metadata management
4. 3.1.4 DOM tree accessors

2. 3.2 Elements
1. 3.2.1 Semantics
2. 3.2.2 Elements in the DOM
3. 3.2.3 Global attributes

1. 3.2.3.1 The id attribute
2. 3.2.3.2 The title attribute
3. 3.2.3.3 The lang and xml:lang attributes
4. 3.2.3.4 The xml:base attribute (XML only)
5. 3.2.3.5 The dir attribute
6. 3.2.3.6 The class attribute
7. 3.2.3.7 The style attribute
8. 3.2.3.8 Embedding custom non-visible data

4. 3.2.4 Element definitions
5. 3.2.5 Content models

1. 3.2.5.1 Kinds of content
1. 3.2.5.1.1 Metadata content
2. 3.2.5.1.2 Flow content

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 21 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 21 from 931

3. 3.2.5.1.3 Sectioning content
4. 3.2.5.1.4 Heading content
5. 3.2.5.1.5 Phrasing content
6. 3.2.5.1.6 Embedded content
7. 3.2.5.1.7 Interactive content

2. 3.2.5.2 Transparent content models
3. 3.2.5.3 Paragraphs

6. 3.2.6 Annotations for assistive technology products
3. 3.3 APIs in HTML documents
4. 3.4 Interactions with XPath and XSLT
5. 3.5 Dynamic markup insertion

1. 3.5.1 Controlling the input stream
2. 3.5.2 document.write()
3. 3.5.3 document.writeln()
4. 3.5.4 innerHTML
5. 3.5.5 outerHTML
6. 3.5.6 insertAdjacentHTML()

4. 4 The elements of HTML
1. 4.1 The root element

1. 4.1.1 The html element
2. 4.2 Document metadata

1. 4.2.1 The head element
2. 4.2.2 The title element
3. 4.2.3 The base element
4. 4.2.4 The link element
5. 4.2.5 The meta element

1. 4.2.5.1 Standard metadata names
2. 4.2.5.2 Other metadata names
3. 4.2.5.3 Pragma directives
4. 4.2.5.4 Other pragma directives
5. 4.2.5.5 Specifying the document's character encoding

6. 4.2.6 The style element
7. 4.2.7 Styling

3. 4.3 Scripting
1. 4.3.1 The script element

1. 4.3.1.1 Scripting languages
2. 4.3.1.2 Inline documentation for external scripts

2. 4.3.2 The noscript element
4. 4.4 Sections

1. 4.4.1 The body element
2. 4.4.2 The section element
3. 4.4.3 The nav element
4. 4.4.4 The article element
5. 4.4.5 The aside element
6. 4.4.6 The h1, h2, h3, h4, h5, and h6 elements
7. 4.4.7 The hgroup element
8. 4.4.8 The header element
9. 4.4.9 The footer element
10. 4.4.10 The address element
11. 4.4.11 Headings and sections

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 22 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 22 from 931

1. 4.4.11.1 Creating an outline
2. 4.4.11.2 Distinguishing site-wide headings from page headings

5. 4.5 Grouping content
1. 4.5.1 The p element
2. 4.5.2 The hr element
3. 4.5.3 The br element
4. 4.5.4 The pre element
5. 4.5.5 The dialog element
6. 4.5.6 The blockquote element
7. 4.5.7 The ol element
8. 4.5.8 The ul element
9. 4.5.9 The li element
10. 4.5.10 The dl element
11. 4.5.11 The dt element
12. 4.5.12 The dd element
13. 4.5.13 Common grouping idioms

1. 4.5.13.1 Tag clouds
6. 4.6 Text-level semantics

1. 4.6.1 The a element
2. 4.6.2 The em element
3. 4.6.3 The strong element
4. 4.6.4 The small element
5. 4.6.5 The cite element
6. 4.6.6 The q element
7. 4.6.7 The dfn element
8. 4.6.8 The abbr element
9. 4.6.9 The code element
10. 4.6.10 The var element
11. 4.6.11 The samp element
12. 4.6.12 The kbd element
13. 4.6.13 The sub and sup elements
14. 4.6.14 The i element
15. 4.6.15 The b element
16. 4.6.16 The mark element
17. 4.6.17 The progress element
18. 4.6.18 The meter element
19. 4.6.19 The time element
20. 4.6.20 The ruby element
21. 4.6.21 The rt element
22. 4.6.22 The rp element
23. 4.6.23 The bdo element
24. 4.6.24 The span element
25. 4.6.25 Usage summary
26. 4.6.26 Footnotes

7. 4.7 Edits
1. 4.7.1 The ins element
2. 4.7.2 The del element
3. 4.7.3 Attributes common to ins and del elements
4. 4.7.4 Edits and paragraphs
5. 4.7.5 Edits and lists

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 23 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 23 from 931

8. 4.8 Embedded content
1. 4.8.1 The figure element
2. 4.8.2 The img element

1. 4.8.2.1 Requirements for providing text to act as an alternative
for images

1. 4.8.2.1.1 A link or button containing nothing but the
image

2. 4.8.2.1.2 A phrase or paragraph with an alternative
graphical representation: charts, diagrams, graphs,
maps, illustrations

3. 4.8.2.1.3 A short phrase or label with an alternative
graphical representation: icons, logos

4. 4.8.2.1.4 Text that has been rendered to a graphic for
typographical effect

5. 4.8.2.1.5 A graphical representation of some of the
surrounding text

6. 4.8.2.1.6 A purely decorative image that doesn't add any
information

7. 4.8.2.1.7 A group of images that form a single larger
picture with no links

8. 4.8.2.1.8 A group of images that form a single larger
picture with links

9. 4.8.2.1.9 A key part of the content
10. 4.8.2.1.10 An image not intended for the user
11. 4.8.2.1.11 An image in an e-mail or private document

intended for a specific person who is known to be able
to view images

12. 4.8.2.1.12 General guidelines
13. 4.8.2.1.13 Guidance for markup generators
14. 4.8.2.1.14 Guidance for conformance checkers

3. 4.8.3 The iframe element
4. 4.8.4 The embed element
5. 4.8.5 The object element
6. 4.8.6 The param element
7. 4.8.7 The video element
8. 4.8.8 The audio element
9. 4.8.9 The source element
10. 4.8.10 Media elements

1. 4.8.10.1 Error codes
2. 4.8.10.2 Location of the media resource
3. 4.8.10.3 MIME types
4. 4.8.10.4 Network states
5. 4.8.10.5 Loading the media resource
6. 4.8.10.6 Offsets into the media resource
7. 4.8.10.7 The ready states
8. 4.8.10.8 Playing the media resource
9. 4.8.10.9 Seeking
10. 4.8.10.10 User interface
11. 4.8.10.11 Time ranges
12. 4.8.10.12 Event summary
13. 4.8.10.13 Security and privacy considerations

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 24 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 24 from 931

11. 4.8.11 The canvas element
1. 4.8.11.1 The 2D context

1. 4.8.11.1.1 The canvas state
2. 4.8.11.1.2 Transformations
3. 4.8.11.1.3 Compositing
4. 4.8.11.1.4 Colors and styles
5. 4.8.11.1.5 Line styles
6. 4.8.11.1.6 Shadows
7. 4.8.11.1.7 Simple shapes (rectangles)
8. 4.8.11.1.8 Complex shapes (paths)
9. 4.8.11.1.9 Text
10. 4.8.11.1.10 Images
11. 4.8.11.1.11 Pixel manipulation
12. 4.8.11.1.12 Drawing model

2. 4.8.11.2 Color spaces and color correction
3. 4.8.11.3 Security with canvas elements

12. 4.8.12 The map element
13. 4.8.13 The area element
14. 4.8.14 Image maps

1. 4.8.14.1 Authoring
2. 4.8.14.2 Processing model

15. 4.8.15 MathML
16. 4.8.16 SVG
17. 4.8.17 Dimension attributes

9. 4.9 Tabular data
1. 4.9.1 The table element
2. 4.9.2 The caption element
3. 4.9.3 The colgroup element
4. 4.9.4 The col element
5. 4.9.5 The tbody element
6. 4.9.6 The thead element
7. 4.9.7 The tfoot element
8. 4.9.8 The tr element
9. 4.9.9 The td element
10. 4.9.10 The th element
11. 4.9.11 Attributes common to td and th elements
12. 4.9.12 Processing model

1. 4.9.12.1 Forming a table
2. 4.9.12.2 Forming relationships between data cells and header

cells
10. 4.10 Forms

1. 4.10.1 The form element
2. 4.10.2 The fieldset element
3. 4.10.3 The label element
4. 4.10.4 The input element

1. 4.10.4.1 States of the type attribute
1. 4.10.4.1.1 Hidden state
2. 4.10.4.1.2 Text state and Search state
3. 4.10.4.1.3 Telephone state
4. 4.10.4.1.4 URL state
5. 4.10.4.1.5 E-mail state

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 25 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 25 from 931

6. 4.10.4.1.6 Password state
7. 4.10.4.1.7 Date and Time state
8. 4.10.4.1.8 Date state
9. 4.10.4.1.9 Month state
10. 4.10.4.1.10 Week state
11. 4.10.4.1.11 Time state
12. 4.10.4.1.12 Local Date and Time state
13. 4.10.4.1.13 Number state
14. 4.10.4.1.14 Range state
15. 4.10.4.1.15 Color state
16. 4.10.4.1.16 Checkbox state
17. 4.10.4.1.17 Radio Button state
18. 4.10.4.1.18 File Upload state
19. 4.10.4.1.19 Submit Button state
20. 4.10.4.1.20 Image Button state
21. 4.10.4.1.21 Reset Button state
22. 4.10.4.1.22 Button state

2. 4.10.4.2 Common input element attributes
1. 4.10.4.2.1 The autocomplete attribute
2. 4.10.4.2.2 The list attribute
3. 4.10.4.2.3 The readonly attribute
4. 4.10.4.2.4 The size attribute
5. 4.10.4.2.5 The required attribute
6. 4.10.4.2.6 The multiple attribute
7. 4.10.4.2.7 The maxlength attribute
8. 4.10.4.2.8 The pattern attribute
9. 4.10.4.2.9 The min and max attributes
10. 4.10.4.2.10 The step attribute
11. 4.10.4.2.11 The placeholder attribute

3. 4.10.4.3 Common input element APIs
4. 4.10.4.4 Common event behaviors

5. 4.10.5 The button element
6. 4.10.6 The select element
7. 4.10.7 The datalist element
8. 4.10.8 The optgroup element
9. 4.10.9 The option element
10. 4.10.10 The textarea element
11. 4.10.11 The keygen element
12. 4.10.12 The output element
13. 4.10.13 Association of controls and forms
14. 4.10.14 Attributes common to form controls

1. 4.10.14.1 Naming form controls
2. 4.10.14.2 Enabling and disabling form controls
3. 4.10.14.3 A form control's value
4. 4.10.14.4 Autofocusing a form control
5. 4.10.14.5 Limiting user input length
6. 4.10.14.6 Form submission

15. 4.10.15 Constraints
1. 4.10.15.1 Definitions
2. 4.10.15.2 Constraint validation
3. 4.10.15.3 The constraint validation API

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 26 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 26 from 931

4. 4.10.15.4 Security
16. 4.10.16 Form submission

1. 4.10.16.1 Introduction
2. 4.10.16.2 Implicit submission
3. 4.10.16.3 Form submission algorithm
4. 4.10.16.4 URL-encoded form data
5. 4.10.16.5 Multipart form data
6. 4.10.16.6 Plain text form data

17. 4.10.17 Resetting a form
18. 4.10.18 Event dispatch

11. 4.11 Interactive elements
1. 4.11.1 The details element
2. 4.11.2 The command element
3. 4.11.3 The menu element

1. 4.11.3.1 Introduction
2. 4.11.3.2 Building menus and tool bars
3. 4.11.3.3 Context menus
4. 4.11.3.4 Tool bars

4. 4.11.4 Commands
1. 4.11.4.1 Using the a element to define a command
2. 4.11.4.2 Using the button element to define a command
3. 4.11.4.3 Using the input element to define a command
4. 4.11.4.4 Using the option element to define a command
5. 4.11.4.5 Using the command element to define a command
6. 4.11.4.6 Using the accesskey attribute on a label element to

define a command
7. 4.11.4.7 Using the accesskey attribute on a legend element to

define a command
8. 4.11.4.8 Using the accesskey attribute to define a command on

other elements
12. 4.12 Miscellaneous elements

1. 4.12.1 The legend element
2. 4.12.2 The div element

13. 4.13 Matching HTML elements using selectors
5. 5 Microdata

1. 5.1 Introduction
1. 5.1.1 Overview
2. 5.1.2 The basic syntax
3. 5.1.3 Typed items
4. 5.1.4 Selecting names when defining vocabularies
5. 5.1.5 Predefined vocabularies
6. 5.1.6 Using the microdata DOM API

2. 5.2 Encoding microdata
1. 5.2.1 The microdata model
2. 5.2.2 Items: the item attribute
3. 5.2.3 Associating names with items
4. 5.2.4 Names: the itemprop attribute
5. 5.2.5 Values

3. 5.3 Microdata DOM API
4. 5.4 Predefined vocabularies

1. 5.4.1 General

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 27 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 27 from 931

2. 5.4.2 vCard
1. 5.4.2.1 Examples

3. 5.4.3 vEvent
1. 5.4.3.1 Examples

4. 5.4.4 Licensing works
1. 5.4.4.1 Examples

5. 5.5 Converting HTML to other formats
1. 5.5.1 JSON
2. 5.5.2 RDF
3. 5.5.3 vCard
4. 5.5.4 iCalendar
5. 5.5.5 Atom

6. 6 Web browsers
1. 6.1 Browsing contexts

1. 6.1.1 Nested browsing contexts
1. 6.1.1.1 Navigating nested browsing contexts in the DOM

2. 6.1.2 Auxiliary browsing contexts
1. 6.1.2.1 Navigating auxiliary browsing contexts in the DOM

3. 6.1.3 Secondary browsing contexts
4. 6.1.4 Security
5. 6.1.5 Groupings of browsing contexts
6. 6.1.6 Browsing context names

2. 6.2 The WindowProxy object
3. 6.3 The Window object

1. 6.3.1 Security
2. 6.3.2 APIs for creating and navigating browsing contexts by name
3. 6.3.3 Accessing other browsing contexts
4. 6.3.4 Named access on the Window object
5. 6.3.5 Garbage collection and browsing contexts
6. 6.3.6 Browser interface elements

4. 6.4 Origin
1. 6.4.1 Relaxing the same-origin restriction

5. 6.5 Scripting
1. 6.5.1 Introduction
2. 6.5.2 Enabling and disabling scripting
3. 6.5.3 Processing model

1. 6.5.3.1 Definitions
2. 6.5.3.2 Calling scripts
3. 6.5.3.3 Creating scripts
4. 6.5.3.4 Killing scripts

4. 6.5.4 Event loops
1. 6.5.4.1 Definitions
2. 6.5.4.2 Processing model
3. 6.5.4.3 Generic task sources

5. 6.5.5 The javascript: protocol
6. 6.5.6 Events

1. 6.5.6.1 Event handler attributes
2. 6.5.6.2 Event handler attributes on elements, Document objects,

and Window objects
3. 6.5.6.3 Event firing
4. 6.5.6.4 Events and the Window object

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 28 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 28 from 931

5. 6.5.6.5 Runtime script errors
6. 6.6 Timers
7. 6.7 User prompts

1. 6.7.1 Simple dialogs
2. 6.7.2 Printing
3. 6.7.3 Dialogs implemented using separate documents

8. 6.8 System state and capabilities
1. 6.8.1 Client identification
2. 6.8.2 Custom scheme and content handlers

1. 6.8.2.1 Security and privacy
2. 6.8.2.2 Sample user interface

3. 6.8.3 Manually releasing the storage mutex
9. 6.9 Offline Web applications

1. 6.9.1 Introduction
1. 6.9.1.1 Event summary

2. 6.9.2 Application caches
3. 6.9.3 The cache manifest syntax

1. 6.9.3.1 A sample manifest
2. 6.9.3.2 Writing cache manifests
3. 6.9.3.3 Parsing cache manifests

4. 6.9.4 Updating an application cache
5. 6.9.5 Matching a fallback namespace
6. 6.9.6 The application cache selection algorithm
7. 6.9.7 Changes to the networking model
8. 6.9.8 Expiring application caches
9. 6.9.9 Application cache API
10. 6.9.10 Browser state

10. 6.10 Session history and navigation
1. 6.10.1 The session history of browsing contexts
2. 6.10.2 The History interface
3. 6.10.3 Activating state object entries
4. 6.10.4 The Location interface

1. 6.10.4.1 Security
5. 6.10.5 Implementation notes for session history

11. 6.11 Browsing the Web
1. 6.11.1 Navigating across documents
2. 6.11.2 Page load processing model for HTML files
3. 6.11.3 Page load processing model for XML files
4. 6.11.4 Page load processing model for text files
5. 6.11.5 Page load processing model for images
6. 6.11.6 Page load processing model for content that uses plugins
7. 6.11.7 Page load processing model for inline content that doesn't

have a DOM
8. 6.11.8 Navigating to a fragment identifier
9. 6.11.9 History traversal
10. 6.11.10 Unloading documents

1. 6.11.10.1 Event definition
12. 6.12 Links

1. 6.12.1 Hyperlink elements
2. 6.12.2 Following hyperlinks

1. 6.12.2.1 Hyperlink auditing

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 29 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 29 from 931

3. 6.12.3 Link types
1. 6.12.3.1 Link type "alternate"
2. 6.12.3.2 Link type "archives"
3. 6.12.3.3 Link type "author"
4. 6.12.3.4 Link type "bookmark"
5. 6.12.3.5 Link type "external"
6. 6.12.3.6 Link type "feed"
7. 6.12.3.7 Link type "help"
8. 6.12.3.8 Link type "icon"
9. 6.12.3.9 Link type "license"
10. 6.12.3.10 Link type "nofollow"
11. 6.12.3.11 Link type "noreferrer"
12. 6.12.3.12 Link type "pingback"
13. 6.12.3.13 Link type "prefetch"
14. 6.12.3.14 Link type "search"
15. 6.12.3.15 Link type "stylesheet"
16. 6.12.3.16 Link type "sidebar"
17. 6.12.3.17 Link type "tag"
18. 6.12.3.18 Hierarchical link types

1. 6.12.3.18.1 Link type "index"
2. 6.12.3.18.2 Link type "up"

19. 6.12.3.19 Sequential link types
1. 6.12.3.19.1 Link type "first"
2. 6.12.3.19.2 Link type "last"
3. 6.12.3.19.3 Link type "next"
4. 6.12.3.19.4 Link type "prev"

20. 6.12.3.20 Other link types
7. 7 User Interaction

1. 7.1 The hidden attribute
2. 7.2 Activation
3. 7.3 Scrolling elements into view
4. 7.4 Focus

1. 7.4.1 Sequential focus navigation
2. 7.4.2 Focus management
3. 7.4.3 Document-level focus APIs
4. 7.4.4 Element-level focus APIs

5. 7.5 The accesskey attribute
6. 7.6 The text selection APIs

1. 7.6.1 APIs for the browsing context selection
2. 7.6.2 APIs for the text field selections

7. 7.7 The contenteditable attribute
1. 7.7.1 User editing actions
2. 7.7.2 Making entire documents editable

8. 7.8 Spelling and grammar checking
9. 7.9 Drag and drop

1. 7.9.1 Introduction
2. 7.9.2 The DragEvent and DataTransfer interfaces
3. 7.9.3 Events fired during a drag-and-drop action
4. 7.9.4 Drag-and-drop processing model

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 30 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 30 from 931

1. 7.9.4.1 When the drag-and-drop operation starts or ends in
another document

2. 7.9.4.2 When the drag-and-drop operation starts or ends in
another application

5. 7.9.5 The draggable attribute
6. 7.9.6 Copy and paste

1. 7.9.6.1 Copy to clipboard
2. 7.9.6.2 Cut to clipboard
3. 7.9.6.3 Paste from clipboard
4. 7.9.6.4 Paste from selection

7. 7.9.7 Security risks in the drag-and-drop model
10. 7.10 Undo history

1. 7.10.1 Introduction
2. 7.10.2 Definitions
3. 7.10.3 The UndoManager interface
4. 7.10.4 Undo: moving back in the undo transaction history
5. 7.10.5 Redo: moving forward in the undo transaction history
6. 7.10.6 The UndoManagerEvent interface and the undo and redo events
7. 7.10.7 Implementation notes

11. 7.11 Editing APIs
8. 8 Communication

1. 8.1 Event definitions
2. 8.2 Cross-document messaging

1. 8.2.1 Introduction
2. 8.2.2 Security

1. 8.2.2.1 Authors
2. 8.2.2.2 User agents

3. 8.2.3 Posting messages
4. 8.2.4 Posting messages with message ports

3. 8.3 Channel messaging
1. 8.3.1 Introduction
2. 8.3.2 Message channels
3. 8.3.3 Message ports

1. 8.3.3.1 Ports and garbage collection
9. 9 The HTML syntax

1. 9.1 Writing HTML documents
1. 9.1.1 The DOCTYPE
2. 9.1.2 Elements

1. 9.1.2.1 Start tags
2. 9.1.2.2 End tags
3. 9.1.2.3 Attributes
4. 9.1.2.4 Optional tags
5. 9.1.2.5 Restrictions on content models
6. 9.1.2.6 Restrictions on the contents of raw text and RCDATA

elements
3. 9.1.3 Text

1. 9.1.3.1 Newlines
4. 9.1.4 Character references
5. 9.1.5 CDATA sections
6. 9.1.6 Comments

2. 9.2 Parsing HTML documents

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 31 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 31 from 931

1. 9.2.1 Overview of the parsing model
2. 9.2.2 The input stream

1. 9.2.2.1 Determining the character encoding
2. 9.2.2.2 Preprocessing the input stream
3. 9.2.2.3 Changing the encoding while parsing

3. 9.2.3 Parse state
1. 9.2.3.1 The insertion mode
2. 9.2.3.2 The stack of open elements
3. 9.2.3.3 The list of active formatting elements
4. 9.2.3.4 The element pointers
5. 9.2.3.5 Other parsing state flags

4. 9.2.4 Tokenization
1. 9.2.4.1 Data state
2. 9.2.4.2 Character reference data state
3. 9.2.4.3 Tag open state
4. 9.2.4.4 Close tag open state
5. 9.2.4.5 Tag name state
6. 9.2.4.6 Before attribute name state
7. 9.2.4.7 Attribute name state
8. 9.2.4.8 After attribute name state
9. 9.2.4.9 Before attribute value state
10. 9.2.4.10 Attribute value (double-quoted) state
11. 9.2.4.11 Attribute value (single-quoted) state
12. 9.2.4.12 Attribute value (unquoted) state
13. 9.2.4.13 Character reference in attribute value state
14. 9.2.4.14 After attribute value (quoted) state
15. 9.2.4.15 Self-closing start tag state
16. 9.2.4.16 Bogus comment state
17. 9.2.4.17 Markup declaration open state
18. 9.2.4.18 Comment start state
19. 9.2.4.19 Comment start dash state
20. 9.2.4.20 Comment state
21. 9.2.4.21 Comment end dash state
22. 9.2.4.22 Comment end state
23. 9.2.4.23 Comment end bang state
24. 9.2.4.24 Comment end space state
25. 9.2.4.25 DOCTYPE state
26. 9.2.4.26 Before DOCTYPE name state
27. 9.2.4.27 DOCTYPE name state
28. 9.2.4.28 After DOCTYPE name state
29. 9.2.4.29 Before DOCTYPE public identifier state
30. 9.2.4.30 DOCTYPE public identifier (double-quoted) state
31. 9.2.4.31 DOCTYPE public identifier (single-quoted) state
32. 9.2.4.32 After DOCTYPE public identifier state
33. 9.2.4.33 Before DOCTYPE system identifier state
34. 9.2.4.34 DOCTYPE system identifier (double-quoted) state
35. 9.2.4.35 DOCTYPE system identifier (single-quoted) state
36. 9.2.4.36 After DOCTYPE system identifier state
37. 9.2.4.37 Bogus DOCTYPE state
38. 9.2.4.38 CDATA section state
39. 9.2.4.39 Tokenizing character references

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 32 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 32 from 931

5. 9.2.5 Tree construction
1. 9.2.5.1 Creating and inserting elements
2. 9.2.5.2 Closing elements that have implied end tags
3. 9.2.5.3 Foster parenting
4. 9.2.5.4 The "initial" insertion mode
5. 9.2.5.5 The "before html" insertion mode
6. 9.2.5.6 The "before head" insertion mode
7. 9.2.5.7 The "in head" insertion mode
8. 9.2.5.8 The "in head noscript" insertion mode
9. 9.2.5.9 The "after head" insertion mode
10. 9.2.5.10 The "in body" insertion mode
11. 9.2.5.11 The "in RAWTEXT/RCDATA" insertion mode
12. 9.2.5.12 The "in table" insertion mode
13. 9.2.5.13 The "in table text" insertion mode
14. 9.2.5.14 The "in caption" insertion mode
15. 9.2.5.15 The "in column group" insertion mode
16. 9.2.5.16 The "in table body" insertion mode
17. 9.2.5.17 The "in row" insertion mode
18. 9.2.5.18 The "in cell" insertion mode
19. 9.2.5.19 The "in select" insertion mode
20. 9.2.5.20 The "in select in table" insertion mode
21. 9.2.5.21 The "in foreign content" insertion mode
22. 9.2.5.22 The "after body" insertion mode
23. 9.2.5.23 The "in frameset" insertion mode
24. 9.2.5.24 The "after frameset" insertion mode
25. 9.2.5.25 The "after after body" insertion mode
26. 9.2.5.26 The "after after frameset" insertion mode

6. 9.2.6 The end
7. 9.2.7 Coercing an HTML DOM into an infoset
8. 9.2.8 An introduction to error handling and strange cases in the

parser
1. 9.2.8.1 Misnested tags: <i></i>
2. 9.2.8.2 Misnested tags: <p></p>
3. 9.2.8.3 Unexpected markup in tables
4. 9.2.8.4 Scripts that modify the page as it is being parsed

3. 9.3 Namespaces
4. 9.4 Serializing HTML fragments
5. 9.5 Parsing HTML fragments
6. 9.6 Named character references

10. 10 The XHTML syntax
1. 10.1 Writing XHTML documents
2. 10.2 Parsing XHTML documents
3. 10.3 Serializing XHTML fragments
4. 10.4 Parsing XHTML fragments

11. 11 Rendering
1. 11.1 Introduction
2. 11.2 The CSS user agent style sheet and presentational hints

1. 11.2.1 Introduction
2. 11.2.2 Display types
3. 11.2.3 Margins and padding
4. 11.2.4 Alignment

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 33 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 33 from 931

5. 11.2.5 Fonts and colors
6. 11.2.6 Punctuation and decorations
7. 11.2.7 Resetting rules for inherited properties
8. 11.2.8 The hr element
9. 11.2.9 The fieldset element

3. 11.3 Replaced elements
1. 11.3.1 Embedded content
2. 11.3.2 Images
3. 11.3.3 Attributes for embedded content and images
4. 11.3.4 Image maps
5. 11.3.5 Tool bars

4. 11.4 Bindings
1. 11.4.1 Introduction
2. 11.4.2 The button element
3. 11.4.3 The details element
4. 11.4.4 The input element as a text entry widget
5. 11.4.5 The input element as domain-specific widgets
6. 11.4.6 The input element as a range control
7. 11.4.7 The input element as a color well
8. 11.4.8 The input element as a check box and radio button widgets
9. 11.4.9 The input element as a file upload control
10. 11.4.10 The input element as a button
11. 11.4.11 The marquee element
12. 11.4.12 The meter element
13. 11.4.13 The progress element
14. 11.4.14 The select element
15. 11.4.15 The textarea element
16. 11.4.16 The keygen element
17. 11.4.17 The time element

5. 11.5 Frames and framesets
6. 11.6 Interactive media

1. 11.6.1 Links, forms, and navigation
2. 11.6.2 The mark element
3. 11.6.3 The title attribute
4. 11.6.4 Editing hosts

7. 11.7 Print media
8. 11.8 Interaction with CSS

1. 11.8.1 Selectors
12. 12 Obsolete features

1. 12.1 Obsolete but conforming features
1. 12.1.1 Warnings for obsolete but conforming features

2. 12.2 Non-conforming features
3. 12.3 Requirements for implementations

1. 12.3.1 The applet element
2. 12.3.2 The marquee element
3. 12.3.3 Frames
4. 12.3.4 Other elements, attributes and APIs

13. 13 Things that you can't do with this specification because they are better handled
using other technologies that are further described herein

1. 13.1 Localization
2. 13.2 Declarative 3D scenes

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 34 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 34 from 931

14. IANA considerations
1. 14.1 text/html
2. 14.2 application/xhtml+xml
3. 14.3 text/cache-manifest
4. 14.4 text/ping
5. 14.5 application/microdata+json

15. Index
16. References
17. Acknowledgements

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 35 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 35 from 931

1 Introduction

Status: Working draft

1.1 Background

This section is non-normative.

The World Wide Web's markup language has always been HTML. HTML was primarily
designed as a language for semantically describing scientific documents, although its
general design and adaptations over the years have enabled it to be used to describe a
number of other types of documents.

The main area that has not been adequately addressed by HTML is a vague subject
referred to as Web Applications. This specification attempts to rectify this, while at the
same time updating the HTML specifications to address issues raised in the past few
years.

1.2 Audience

Status: Working draft

This section is non-normative.

This specification is intended for authors of documents and scripts that use the features
defined in this specification, implementors of tools that operate on pages that use the
features defined in this specification, and individuals wishing to establish the correctness
of documents or implementations with respect to the requirements of this specification.

This document is probably not suited to readers who do not already have at least a
passing familiarity with Web technologies, as in places it sacrifices clarity for precision,
and brevity for completeness. More approachable tutorials and authoring guides can
provide a gentler introduction to the topic.

In particular, familiarity with the basics of DOM Core and DOM Events is necessary for a
complete understanding of some of the more technical parts of this specification. An
understanding of Web IDL, HTTP, XML, Unicode, character encodings, JavaScript, and
CSS will also be helpful in places but is not essential.

1.3 Scope

This section is non-normative.

This specification is limited to providing a semantic-level markup language and associated
semantic-level scripting APIs for authoring accessible pages on the Web ranging from
static documents to dynamic applications.

The scope of this specification does not include providing mechanisms for media-specific
customization of presentation (although default rendering rules for Web browsers are
included at the end of this specification, and several mechanisms for hooking into CSS are
provided as part of the language).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 36 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 36 from 931

The scope of this specification does not include documenting every HTML or DOM feature
supported by Web browsers. Browsers support many features that are considered to be
very bad for accessibility or that are otherwise inappropriate. For example, the blink
element is clearly presentational and authors wishing to cause text to blink should instead
use CSS.

The scope of this specification is not to describe an entire operating system. In particular,
hardware configuration software, image manipulation tools, and applications that users
would be expected to use with high-end workstations on a daily basis are out of scope. In
terms of applications, this specification is targeted specifically at applications that would
be expected to be used by users on an occasional basis, or regularly but from disparate
locations, with low CPU requirements. For instance online purchasing systems, searching
systems, games (especially multiplayer online games), public telephone books or address
books, communications software (e-mail clients, instant messaging clients, discussion
software), document editing software, etc.

1.4 History

This section is non-normative.

Work on HTML 5 originally started in late 2003, as a proof of concept to show that it was
possible to extend HTML 4's forms to provide many of the features that XForms 1.0
introduced, without requiring browsers to implement rendering engines that were
incompatible with existing HTML Web pages. At this early stage, while the draft was
already publicly available, and input was already being solicited from all sources, the
specification was only under Opera Software's copyright.

In early 2004, some of the principles that underlie this effort, as well as an early draft
proposal covering just forms-related features, were presented to the W3C jointly by
Mozilla and Opera at a workshop discussing the future of Web Applications on the Web.
The proposal was rejected on the grounds that the proposal conflicted with the previously
chosen direction for the Web's evolution.

Shortly thereafter, Apple, Mozilla, and Opera jointly announced their intent to continue
working on the effort. A public mailing list was created, and the drafts were moved to the
WHATWG site. The copyright was subsequently amended to be jointly owned by all three
vendors, and to allow reuse of the specifications.

In 2006, the W3C expressed interest in the specification, and created a working group
chartered to work with the WHATWG on the development of the HTML 5 specifications.
The working group opened in 2007. Apple, Mozilla, and Opera allowed the W3C to publish
the specifications under the W3C copyright, while keeping versions with the less restrictive
license on the WHATWG site.

Since then, both groups have been working together.

1.5 Design notes

This section is non-normative.

It must be admitted that many aspects of HTML appear at first glance to be nonsensical
and inconsistent.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 37 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 37 from 931

HTML, its supporting DOM APIs, as well as many of its supporting technologies, have
been developed over a period of several decades by a wide array of people with different
priorities who, in many cases, did not know of each other's existence.

Features have thus arisen from many sources, and have not always been designed in
especially consistent ways. Furthermore, because of the unique characteristics of the
Web, implementation bugs have often become de-facto, and now de-jure, standards, as
content is often unintentionally written in ways that rely on them before they can be fixed.

Despite all this, efforts have been made to adhere to certain design goals. These are
described in the next few subsections.

1.5.1 Serializability of script execution

This section is non-normative.

To avoid exposing Web authors to the complexities of multithreading, the HTML and DOM
APIs are designed such that no script can ever detect the simultaneous execution of other
scripts. Even with workers, the intent is that the behavior of implementations can be
thought of as completely serializing the execution of all scripts in all browsing contexts.

The navigator.getStorageUpdates() method, in this model, is equivalent to allowing
other scripts to run while the calling script is blocked.

1.5.2 Compliance with other specifications

This section is non-normative.

This specification interacts with and relies on a wide variety of other specifications. In
certain circumstances, unfortunately, the desire to be compatible with legacy content has
led to this specification violating the requirements of these other specifications. Whenever
this has occurred, the transgressions have been noted as "willful violations".

1.6 Relationships to other specifications

1.6.1 Relationship to HTML 4.01 and DOM2 HTML

Status: Working draft

This section is non-normative.

This specification describes a new revision of the HTML language and its associated DOM
API.

The requirements in this specification for features that were already in HTML 4 and DOM2
HTML are based primarily on the implementation and deployment experience collected
over the past ten years. Some features have been removed from the language, based on
best current practices; implementation requirements for some of these, as well as for non-
standard features that have nonetheless garnered wide use, are still included in this
specification to allow implementations to continue supporting legacy content. [HTML4]
[DOM2HTML]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 38 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 38 from 931

A separate document has been published by the W3C HTML working group to provide a
more detailed reference of the differences between this specification and the language
described in the HTML 4 specification. [HTMLDIFF]

1.6.2 Relationship to XHTML 1.x

Status: Working draft

This section is non-normative.

This specification is intended to replace XHTML 1.0 as the normative definition of the XML
serialization of the HTML vocabulary. [XHTML10]

While this specification updates the semantics and requirements of the vocabulary defined
by XHTML Modularization 1.1 and used by XHTML 1.1, it does not attempt to provide a
replacement for the modularization scheme defined and used by those (and other)
specifications, and therefore cannot be considered a complete replacement for them.
[XHTMLMOD] [XHTML11]

Thus, authors and implementors who do not need such a modularization scheme can
consider this specification a replacement for XHTML 1.x, but those who do need such a
mechanism are encouraged to continue using the XHTML 1.1 line of specifications.

1.7 HTML vs XHTML

Status: Controversial Working Draft

This section is non-normative.

This specification defines an abstract language for describing documents and
applications, and some APIs for interacting with in-memory representations of resources
that use this language.

The in-memory representation is known as "DOM5 HTML", or "the DOM" for short.

There are various concrete syntaxes that can be used to transmit resources that use this
abstract language, two of which are defined in this specification.

The first such concrete syntax is "HTML5". This is the format recommended for most
authors. It is compatible with most legacy Web browsers. If a document is transmitted with
the MIME type text/html, then it will be processed as an "HTML5" document by Web
browsers.

The second concrete syntax uses XML, and is known as "XHTML5". When a document is
transmitted with an XML MIME type, such as application/xhtml+xml, then it is treated as
an "XHTML5" document by Web browsers, which means that it will be handled by an XML
processor. Authors are reminded that the processing for XML and HTML differs; in
particular, even minor syntax errors will prevent an XML document from being rendered
fully, whereas they would be ignored in the "HTML5" syntax.

The "DOM5 HTML", "HTML5", and "XHTML5" representations cannot all represent the
same content. For example, namespaces cannot be represented using "HTML5", but they
are supported in "DOM5 HTML" and "XHTML5". Similarly, documents that use the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 39 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 39 from 931

noscript feature can be represented using "HTML5", but cannot be represented with
"XHTML5" and "DOM5 HTML". Comments that contain the string "-->" can be
represented in "DOM5 HTML" but not in "HTML5" and "XHTML5". And so forth.

1.8 Structure of this specification

This section is non-normative.

This specification is divided into the following major sections:

Common Infrastructure
The conformance classes, algorithms, definitions, and the common underpinnings
of the rest of the specification.

Semantics, structure, and APIs of HTML documents
Documents are built from elements. These elements form a tree using the DOM.
This section defines the features of this DOM, as well as introducing the features
common to all elements, and the concepts used in defining elements.

Elements
Each element has a predefined meaning, which is explained in this section. Rules
for authors on how to use the element, along with user agent requirements for how
to handle each element, are also given.

Microdata
This specification introduces a mechanism for adding machine-readable
annotations to documents, so that tools can extract trees of name/value pairs from
the document. This section describes this mechanism and some algorithms that
can be used to convert HTML documents into other formats.

Web Browsers
HTML documents do not exist in a vacuum — this section defines many of the
features that affect environments that deal with multiple pages, links between
pages, and running scripts.

User Interaction
HTML documents can provide a number of mechanisms for users to interact with
and modify content, which are described in this section.

The Communication APIs
This section describes some mechanisms that applications written in HTML can
use to communicate with other applications from different domains running on the
same client.

The HTML Syntax
The XHTML Syntax

All of these features would be for naught if they couldn't be represented in a
serialized form and sent to other people, and so these sections define the syntaxes
of HTML, along with rules for how to parse content using those syntaxes.

There are also a couple of appendices, defining rendering rules for Web browsers and
listing obsolete features and areas that are out of scope for this specification.

1.8.1 How to read this specification

This specification should be read like all other specifications. First, it should be read cover-
to-cover, multiple times. Then, it should be read backwards at least once. Then it should
be read by picking random sections from the contents list and following all the cross-
references.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 40 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 40 from 931

1.8.2 Typographic conventions

Status: Implemented and widely deployed

This is a definition, requirement, or explanation.

This is a note.

This is an example.

This is an open issue.

This is a warning.

interface Example {
 // this is an IDL definition
};

variable = object . method([optionalArgument])
This is a note to authors describing the usage of an interface.

/* this is a CSS fragment */

The defining instance of a term is marked up like this. Uses of that term are marked up
like this or like this.

The defining instance of an element, attribute, or API is marked up like this. References
to that element, attribute, or API are marked up like this.

Other code fragments are marked up like this.

Variables are marked up like this.

This is an implementation requirement.

1.9 A quick introduction to HTML

Status: Last call for comments

This section is non-normative.

A basic HTML document looks like this:

<!DOCTYPE html>
<html>
 <head>
 <title>Sample page</title>
 </head>
 <body>
 <h1>Sample page</h1>
 <p>This is a simple sample.</p>
 <!-- this is a comment -->
 </body>
</html>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 41 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 41 from 931

HTML documents consist of a tree of elements and text. Each element is denoted in the
source by a start tag, such as "<body>", and an end tag, such as "</body>". (Certain start
tags and end tags can in certain cases be omitted and are implied by other tags.)

Tags have to be nested such that elements are all completely within each other, without
overlapping:

<p>This is very wrong!</p>
<p>This is correct.</p>

This specification defines a set of elements that can be used in HTML, along with rules
about the ways in which the elements can be nested.

Elements can have attributes, which control how the elements work. In the example
above, there is a hyperlink, formed using the a element and its href attribute:

simple

Attributes are placed inside the start tag, and consist of a name and a value, separated by
an "=" character. The attribute value can be left unquoted if it doesn't contain any special
characters. Otherwise, it has to be quoted using either single or double quotes. The value,
along with the "=" character, can be omitted altogether if the value is the empty string.

<!-- empty attributes -->
<input name=address disabled>
<input name=address disabled="">

<!-- attributes with a value -->
<input name=address maxlength=200>
<input name=address maxlength='200'>
<input name=address maxlength="200">

HTML user agents (e.g. Web browsers) then parse this markup, turning it into a DOM
(Document Object Model) tree. A DOM tree is an in-memory representation of a
document.

DOM trees contain several kinds of nodes, in particular a DOCTYPE node, elements, text
nodes, and comment nodes.

The markup snippet at the top of this section would be turned into the following DOM tree:

• DOCTYPE: html
• html
o head
 #text: ⏎␣␣
 title
 #text: Sample page
 #text: ⏎␣
o #text: ⏎␣
o body
 #text: ⏎␣␣
 h1
 #text: Sample page

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 42 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 42 from 931

 #text: ⏎␣␣
 p
 #text: This is a
 a href="demo.html"
 #text: simple
 #text: sample.
 #text: ⏎␣␣
 #comment: this is a comment
 #text: ⏎␣⏎

The root element of this tree is the html element, which is the element always found at the
root of HTML documents. It contains two elements, head and body, as well as a text node
between them.

There are many more text nodes in the DOM tree than one would initially expect, because
the source contains a number of spaces (presented by "␣") and line breaks ("⏎") that all
end up as text nodes in the DOM.

The head element contains a title element, which itself contains a text node with the text
"Sample page". Similarly, the body element contains an h1 element, a p element, and a
comment.

This DOM tree can be manipulated from scripts in the page. Scripts (typically in
JavaScript) are small programs that can be embedded using the script element or using
event handler content attributes. For example, here is a form with a script that sets the
value of the form's output element to say "Hello World":

<form name="main">
 Result: <output name="result"></output>
 <script>
 document.forms.main.elements.result.value = 'Hello World';
 </script>
</form>

Each element in the DOM tree is represented by an object, and these objects have APIs
so that they can be manipulated. For instance, a link (e.g. the a element in the tree above)
can have its "href" attribute changed in several ways:

var a = document.links[0]; // obtain the first link in the document
a.href = 'sample.html'; // change the destination URL of the link
a.protocol = 'https'; // change just the scheme part of the URL
a.setAttribute('href', 'http://example.com/'); // change the content
attribute directly

Since DOM trees are used as the way to represent HTML documents when they are
processed and presented by implementations (especially interactive implementations like
Web browsers), this specification is mostly phrased in terms of DOM trees, instead of the
markup described above.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 43 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 43 from 931

HTML documents represent a media-independent description of interactive content. HTML
documents might be rendered to a screen, or through a speech synthesizer, or on a braille
display. To influence exactly how such rendering takes place, authors can use a styling
language such as CSS.

In the following example, the page has been made yellow-on-blue using CSS.

<!DOCTYPE html>
<html>
 <head>
 <title>Sample styled page</title>
 <style>
 body { background: navy; color: yellow; }
 </style>
 </head>
 <body>
 <h1>Sample styled page</h1>
 <p>This page is just a demo.</p>
 </body>
</html>

For more details on how to use HTML, authors are encouraged to consult tutorials and
guides. Some of the examples included in this specification might also be of use, but the
novice author is cautioned that this specification, by necessity, defines the language with a
level of detail that may be difficult to understand at first.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 44 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 44 from 931

2 Common infrastructure

2.1 Terminology

Status: Working draft

This specification refers to both HTML and XML attributes and DOM attributes, often in the
same context. When it is not clear which is being referred to, they are referred to as
content attributes for HTML and XML attributes, and DOM attributes for those from the
DOM. Similarly, the term "properties" is used for both JavaScript object properties and
CSS properties. When these are ambiguous they are qualified as object properties and
CSS properties respectively.

Generally, when the specification states that a feature applies to the HTML syntax or the
XHTML syntax, it also includes the other. When a feature specifically only applies to one
of the two languages, it is called out by explicitly stating that it does not apply to the other
format, as in "for HTML, ... (this does not apply to XHTML)".

This specification uses the term document to refer to any use of HTML, ranging from
short static documents to long essays or reports with rich multimedia, as well as to fully-
fledged interactive applications.

For simplicity, terms such as shown, displayed, and visible might sometimes be used
when referring to the way a document is rendered to the user. These terms are not meant
to imply a visual medium; they must be considered to apply to other media in equivalent
ways.

When an algorithm B says to return to another algorithm A, it implies that A called B. Upon
returning to A, the implementation must continue from where it left off in calling B.

2.1.1 Resources

The specification uses the term supported when referring to whether a user agent has an
implementation capable of decoding the semantics of an external resource. A format or
type is said to be supported if the implementation can process an external resource of that
format or type without critical aspects of the resource being ignored. Whether a specific
resource is supported can depend on what features of the resource's format are in use.

For example, a PNG image would be considered to be in a supported format if its
pixel data could be decoded and rendered, even if, unbeknownst to the
implementation, the image also contained animation data.

A MPEG4 video file would not be considered to be in a supported format if the
compression format used was not supported, even if the implementation could
determine the dimensions of the movie from the file's metadata.

The term MIME type is used to refer to what is sometimes called an Internet media type in
protocol literature. The term media type in this specification is used to refer to the type of
media intended for presentation, as used by the CSS specifications. [RFC2046] [MQ]

A string is a valid MIME type if it matches the media-type token defined in section 3.7
"Media Types" of RFC 2616. [HTTP]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 45 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 45 from 931

2.1.2 XML

Status: Working draft

To ease migration from HTML to XHTML, UAs conforming to this specification will place
elements in HTML in the http://www.w3.org/1999/xhtml namespace, at least for the
purposes of the DOM and CSS. The term "elements in the HTML namespace", or
"HTML elements" for short, when used in this specification, thus refers to both HTML and
XHTML elements.

Unless otherwise stated, all elements defined or mentioned in this specification are in the
http://www.w3.org/1999/xhtml namespace, and all attributes defined or mentioned in this
specification have no namespace.

When an XML name, such as an attribute or element name, is referred to in the form
prefix:localName, as in xml:id or svg:rect, it refers to a name with the local name
localName and the namespace given by the prefix, as defined by the following table:

xml
http://www.w3.org/XML/1998/namespace

html
http://www.w3.org/1999/xhtml

svg
http://www.w3.org/2000/svg

Attribute names are said to be XML-compatible if they match the Name production defined
in XML, they contain no U+003A COLON (:) characters, and their first three characters are
not an ASCII case-insensitive match for the string "xml". [XML]

The term XML MIME type is used to refer to the MIME types text/xml, application/xml,
and any MIME type ending with the four characters "+xml". [RFC3023]

2.1.3 DOM trees

The term root element, when not explicitly qualified as referring to the document's root
element, means the furthest ancestor element node of whatever node is being discussed,
or the node itself if it has no ancestors. When the node is a part of the document, then that
is indeed the document's root element; however, if the node is not currently part of the
document tree, the root element will be an orphaned node.

A node's home subtree is the subtree rooted at that node's root element.

The Document of a Node (such as an element) is the Document that the Node's
ownerDocument DOM attribute returns.

When an element's root element is the root element of a Document, it is said to be in a
Document. An element is said to have been inserted into a document when its root
element changes and is now the document's root element. Analogously, an element is
said to have been removed from a document when its root element changes from being
the document's root element to being another element.

If a Node is in a Document then that Document is always the Node's Document, and the Node's
ownerDocument DOM attribute thus always returns that Document.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 46 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 46 from 931

The term tree order means a pre-order, depth-first traversal of DOM nodes involved
(through the parentNode/childNodes relationship).

When it is stated that some element or attribute is ignored, or treated as some other
value, or handled as if it was something else, this refers only to the processing of the node
after it is in the DOM. A user agent must not mutate the DOM in such situations.

The term text node refers to any Text node, including CDATASection nodes; specifically,
any Node with node type TEXT_NODE (3) or CDATA_SECTION_NODE (4). [DOMCORE]

A content attribute is said to change value only if its new value is different than its
previous value; setting an attribute to a value it already has does not change it.

2.1.4 Scripting

The construction "a Foo object", where Foo is actually an interface, is sometimes used
instead of the more accurate "an object implementing the interface Foo".

A DOM attribute is said to be getting when its value is being retrieved (e.g. by author
script), and is said to be setting when a new value is assigned to it.

If a DOM object is said to be live, then that means that any attributes returning that object
must always return the same object (not a new object each time), and the attributes and
methods on that object must operate on the actual underlying data, not a snapshot of the
data.

The terms fire and dispatch are used interchangeably in the context of events, as in the
DOM Events specifications. [DOMEVENTS]

2.1.5 Plugins

The term plugin is used to mean any content handler for Web content types that are
either not supported by the user agent natively or that do not expose a DOM, which
supports rendering the content as part of the user agent's interface.

Typically such content handlers are provided by third parties.

One example of a plugin would be a PDF viewer that is instantiated in a browsing
context when the user navigates to a PDF file. This would count as a plugin
regardless of whether the party that implemented the PDF viewer component was the
same as that which implemented the user agent itself. However, a PDF viewer
application that launches separate from the user agent (as opposed to using the
same interface) is not a plugin by this definition.

This specification does not define a mechanism for interacting with plugins, as it is
expected to be user-agent- and platform-specific. Some UAs might opt to support a
plugin mechanism such as the Netscape Plugin API; others might use remote
content converters or have built-in support for certain types. [NPAPI]

Browsers should take extreme care when interacting with external content intended
for plugins. When third-party software is run with the same privileges as the user
agent itself, vulnerabilities in the third-party software become as dangerous as
those in the user agent.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 47 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 47 from 931

2.1.6 Character encodings

An ASCII-compatible character encoding is a single-byte or variable-length encoding in
which the bytes 0x09, 0x0A, 0x0C, 0x0D, 0x20 - 0x22, 0x26, 0x27, 0x2C - 0x3F, 0x41 -
0x5A, and 0x61 - 0x7A, ignoring bytes that are the second and later bytes of multibyte
sequences, all correspond to single-byte sequences that map to the same Unicode
characters as those bytes in ANSI_X3.4-1968 (US-ASCII). [RFC1345]

This includes such encodings as Shift_JIS and variants of ISO-2022, even though it
is possible in these encodings for bytes like 0x70 to be part of longer sequences
that are unrelated to their interpretation as ASCII. It excludes such encodings as
UTF-7, UTF-16, HZ-GB-2312, GSM03.38, and EBCDIC variants.

2.2 Conformance requirements

Status: Working draft

All diagrams, examples, and notes in this specification are non-normative, as are all
sections explicitly marked non-normative. Everything else in this specification is
normative.

The key words "MUST", "MUST NOT", "REQUIRED", "SHOULD", "SHOULD NOT",
"RECOMMENDED", "MAY", and "OPTIONAL" in the normative parts of this document are
to be interpreted as described in RFC2119. For readability, these words do not appear in
all uppercase letters in this specification. [RFC2119]

Requirements phrased in the imperative as part of algorithms (such as "strip any leading
space characters" or "return false and abort these steps") are to be interpreted with the
meaning of the key word ("must", "should", "may", etc) used in introducing the algorithm.

This specification describes the conformance criteria for user agents (relevant to
implementors) and documents (relevant to authors and authoring tool implementors).

There is no implied relationship between document conformance requirements and
implementation conformance requirements. User agents are not free to handle non-
conformant documents as they please; the processing model described in this
specification applies to implementations regardless of the conformity of the input
documents.

User agents fall into several (overlapping) categories with different conformance
requirements.

Web browsers and other interactive user agents
Web browsers that support the XHTML syntax must process elements and
attributes from the HTML namespace found in XML documents as described in this
specification, so that users can interact with them, unless the semantics of those
elements have been overridden by other specifications.

A conforming XHTML processor would, upon finding an XHTML script
element in an XML document, execute the script contained in that element.
However, if the element is found within a transformation expressed in XSLT
(assuming the user agent also supports XSLT), then the processor would

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 48 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 48 from 931

instead treat the script element as an opaque element that forms part of the
transform.

Web browsers that support the HTML syntax must process documents labeled as
text/html as described in this specification, so that users can interact with them.

User agents that support scripting must also be conforming implementations of the
IDL fragments in this specification, as described in the Web IDL specification.
[WEBIDL]

Non-interactive presentation user agents
User agents that process HTML and XHTML documents purely to render non-
interactive versions of them must comply to the same conformance criteria as Web
browsers, except that they are exempt from requirements regarding user
interaction.

Typical examples of non-interactive presentation user agents are printers
(static UAs) and overhead displays (dynamic UAs). It is expected that most
static non-interactive presentation user agents will also opt to lack scripting
support.

A non-interactive but dynamic presentation UA would still execute scripts,
allowing forms to be dynamically submitted, and so forth. However, since the
concept of "focus" is irrelevant when the user cannot interact with the
document, the UA would not need to support any of the focus-related DOM
APIs.

User agents with no scripting support
Implementations that do not support scripting (or which have their scripting features
disabled entirely) are exempt from supporting the events and DOM interfaces
mentioned in this specification. For the parts of this specification that are defined in
terms of an events model or in terms of the DOM, such user agents must still act as
if events and the DOM were supported.

Scripting can form an integral part of an application. Web browsers that do
not support scripting, or that have scripting disabled, might be unable to fully
convey the author's intent.

Conformance checkers
Conformance checkers must verify that a document conforms to the applicable
conformance criteria described in this specification. Automated conformance
checkers are exempt from detecting errors that require interpretation of the author's
intent (for example, while a document is non-conforming if the content of a
blockquote element is not a quote, conformance checkers running without the input
of human judgement do not have to check that blockquote elements only contain
quoted material).

Conformance checkers must check that the input document conforms when parsed
without a browsing context (meaning that no scripts are run, and that the parser's
scripting flag is disabled), and should also check that the input document conforms
when parsed with a browsing context in which scripts execute, and that the scripts
never cause non-conforming states to occur other than transiently during script

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 49 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 49 from 931

execution itself. (This is only a "SHOULD" and not a "MUST" requirement because
it has been proven to be impossible. [COMPUTABLE])

The term "HTML5 validator" can be used to refer to a conformance checker that
itself conforms to the applicable requirements of this specification.

XML DTDs cannot express all the conformance requirements of this
specification. Therefore, a validating XML processor and a DTD cannot
constitute a conformance checker. Also, since neither of the two authoring
formats defined in this specification are applications of SGML, a validating
SGML system cannot constitute a conformance checker either.

To put it another way, there are three types of conformance criteria:

1. Criteria that can be expressed in a DTD.
2. Criteria that cannot be expressed by a DTD, but can still be checked by

a machine.
3. Criteria that can only be checked by a human.

A conformance checker must check for the first two. A simple DTD-based
validator only checks for the first class of errors and is therefore not a
conforming conformance checker according to this specification.

Data mining tools
Applications and tools that process HTML and XHTML documents for reasons
other than to either render the documents or check them for conformance should
act in accordance with the semantics of the documents that they process.

A tool that generates document outlines but increases the nesting level for
each paragraph and does not increase the nesting level for each section would
not be conforming.

Authoring tools and markup generators
Authoring tools and markup generators must generate conforming documents.
Conformance criteria that apply to authors also apply to authoring tools, where
appropriate.

Authoring tools are exempt from the strict requirements of using elements only for
their specified purpose, but only to the extent that authoring tools are not yet able to
determine author intent.

For example, it is not conforming to use an address element for arbitrary
contact information; that element can only be used for marking up contact
information for the author of the document or section. However, since an
authoring tool is likely unable to determine the difference, an authoring tool is
exempt from that requirement.

In terms of conformance checking, an editor is therefore required to output
documents that conform to the same extent that a conformance checker will
verify.

When an authoring tool is used to edit a non-conforming document, it may preserve
the conformance errors in sections of the document that were not edited during the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 50 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 50 from 931

editing session (i.e. an editing tool is allowed to round-trip erroneous content).
However, an authoring tool must not claim that the output is conformant if errors
have been so preserved.

Authoring tools are expected to come in two broad varieties: tools that work from
structure or semantic data, and tools that work on a What-You-See-Is-What-You-
Get media-specific editing basis (WYSIWYG).

The former is the preferred mechanism for tools that author HTML, since the
structure in the source information can be used to make informed choices
regarding which HTML elements and attributes are most appropriate.

However, WYSIWYG tools are legitimate. WYSIWYG tools should use elements
they know are appropriate, and should not use elements that they do not know to
be appropriate. This might in certain extreme cases mean limiting the use of flow
elements to just a few elements, like div, b, i, and span and making liberal use of
the style attribute.

All authoring tools, whether WYSIWYG or not, should make a best effort attempt at
enabling users to create well-structured, semantically rich, media-independent
content.

Some conformance requirements are phrased as requirements on elements, attributes,
methods or objects. Such requirements fall into two categories: those describing content
model restrictions, and those describing implementation behavior. Those in the former
category are requirements on documents and authoring tools. Those in the second
category are requirements on user agents.

Conformance requirements phrased as algorithms or specific steps may be implemented
in any manner, so long as the end result is equivalent. (In particular, the algorithms
defined in this specification are intended to be easy to follow, and not intended to be
performant.)

User agents may impose implementation-specific limits on otherwise unconstrained
inputs, e.g. to prevent denial of service attacks, to guard against running out of memory,
or to work around platform-specific limitations.

For compatibility with existing content and prior specifications, this specification describes
two authoring formats: one based on XML (referred to as the XHTML syntax), and one
using a custom format inspired by SGML (referred to as the HTML syntax).
Implementations may support only one of these two formats, although supporting both is
encouraged.

XML documents that use elements or attributes from the HTML namespace and that are
served over the wire (e.g. by HTTP) must be sent using an XML MIME type such as
application/xml or application/xhtml+xml and must not be served as text/html.
[RFC3023]

Documents that use the HTML syntax, if they are served over the wire (e.g. by HTTP)
must be labeled with the text/html MIME type.

The language in this specification assumes that the user agent expands all entity
references, and therefore does not include entity reference nodes in the DOM. If user

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 51 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 51 from 931

agents do include entity reference nodes in the DOM, then user agents must handle them
as if they were fully expanded when implementing this specification. For example, if a
requirement talks about an element's child text nodes, then any text nodes that are
children of an entity reference that is a child of that element would be used as well. Entity
references to unknown entities must be treated as if they contained just an empty text
node for the purposes of the algorithms defined in this specification.

2.2.1 Dependencies

Status: Last call for comments

This specification relies on several other underlying specifications.

XML
Implementations that support the XHTML syntax must support some version of
XML, as well as its corresponding namespaces specification, because that syntax
uses an XML serialization with namespaces. [XML] [XMLNS]

DOM
The Document Object Model (DOM) is a representation — a model — of a
document and its content. The DOM is not just an API; the conformance criteria of
HTML implementations are defined, in this specification, in terms of operations on
the DOM. [DOMCORE]

Implementations must support some version of DOM Core and DOM Events,
because this specification is defined in terms of the DOM, and some of the features
are defined as extensions to the DOM Core interfaces. [DOMCORE]
[DOMEVENTS]

Web IDL
The IDL fragments in this specification must be interpreted as required for
conforming IDL fragments, as described in the Web IDL specification. [WEBIDL]

Unless otherwise specified, if a DOM attribute that is a floating point number type
(float) is assigned an Infinity or Not-a-Number (NaN) value, a NOT_SUPPORTED_ERR
exception must be raised.

Unless otherwise specified, if a method with an argument that is a floating point
number type (float) is passed an Infinity or Not-a-Number (NaN) value, a
NOT_SUPPORTED_ERR exception must be raised.

JavaScript
Some parts of the language described by this specification only support JavaScript
as the underlying scripting language. [ECMA262]

The term "JavaScript" is used to refer to ECMA262, rather than the official
term ECMAScript, since the term JavaScript is more widely known. Similarly,
the MIME type used to refer to JavaScript in this specification is
text/javascript, since that is the most commonly used type, despite it being
an officially obsoleted type according to RFC 4329. [RFC4329]

Media Queries
Implementations must support some version of the Media Queries language. [MQ]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 52 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 52 from 931

This specification does not require support of any particular network transport protocols,
style sheet language, scripting language, or any of the DOM and WebAPI specifications
beyond those described above. However, the language described by this specification is
biased towards CSS as the styling language, JavaScript as the scripting language, and
HTTP as the network protocol, and several features assume that those languages and
protocols are in use.

This specification might have certain additional requirements on character
encodings, image formats, audio formats, and video formats in the respective
sections.

2.2.2 Extensibility

ISSUE-41 (Decentralized-extensibility) blocks progress to Last Call

Vendor-specific proprietary extensions to this specification are strongly discouraged.
Documents must not use such extensions, as doing so reduces interoperability and
fragments the user base, allowing only users of specific user agents to access the content
in question.

If markup extensions are needed, they should be done using XML, with elements or
attributes from custom namespaces. If DOM extensions are needed, the members should
be prefixed by vendor-specific strings to prevent clashes with future versions of this
specification. Extensions must be defined so that the use of extensions neither contradicts
nor causes the non-conformance of functionality defined in the specification.

For example, while strongly discouraged from doing so, an implementation "Foo Browser"
could add a new DOM attribute "fooTypeTime" to a control's DOM interface that returned
the time it took the user to select the current value of a control (say). On the other hand,
defining a new control that appears in a form's elements array would be in violation of the
above requirement, as it would violate the definition of elements given in this specification.

User agents must treat elements and attributes that they do not understand as
semantically neutral; leaving them in the DOM (for DOM processors), and styling them
according to CSS (for CSS processors), but not inferring any meaning from them.

2.3 Case-sensitivity and string comparison

Status: Working draft

Comparing two strings in a case-sensitive manner means comparing them exactly, code
point for code point.

Comparing two strings in an ASCII case-insensitive manner means comparing them
exactly, code point for code point, except that the characters in the range U+0041 ..
U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z) and the
corresponding characters in the range U+0061 .. U+007A (i.e. LATIN SMALL LETTER A
to LATIN SMALL LETTER Z) are considered to also match.

Comparing two strings in a compatibility caseless manner means using the Unicode
compatibility caseless match operation to compare the two strings. [UNICODE]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 53 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 53 from 931

Converting a string to ASCII uppercase means replacing all characters in the range
U+0061 .. U+007A (i.e. LATIN SMALL LETTER A to LATIN SMALL LETTER Z) with the
corresponding characters in the range U+0041 .. U+005A (i.e. LATIN CAPITAL LETTER A
to LATIN CAPITAL LETTER Z).

Converting a string to ASCII lowercase means replacing all characters in the range
U+0041 .. U+005A (i.e. LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER Z) with
the corresponding characters in the range U+0061 .. U+007A (i.e. LATIN SMALL LETTER
A to LATIN SMALL LETTER Z).

A string pattern is a prefix match for a string s when pattern is not longer than s and
truncating s to pattern's length leaves the two strings as matches of each other.

2.4 Common microsyntaxes

Status: Working draft

There are various places in HTML that accept particular data types, such as dates or
numbers. This section describes what the conformance criteria for content in those
formats is, and how to parse them.

Implementors are strongly urged to carefully examine any third-party libraries they
might consider using to implement the parsing of syntaxes described below. For
example, date libraries are likely to implement error handling behavior that differs
from what is required in this specification, since error-handling behavior is often
not defined in specifications that describe date syntaxes similar to those used in
this specification, and thus implementations tend to vary greatly in how they handle
errors.

2.4.1 Common parser idioms

The space characters, for the purposes of this specification, are U+0020 SPACE,
U+0009 CHARACTER TABULATION (tab), U+000A LINE FEED (LF), U+000C FORM
FEED (FF), and U+000D CARRIAGE RETURN (CR).

The White_Space characters are those that have the Unicode property "White_Space".
[UNICODE]

The alphanumeric ASCII characters are those in the ranges U+0030 DIGIT ZERO ..
U+0039 DIGIT NINE, U+0041 LATIN CAPITAL LETTER A .. U+005A LATIN CAPITAL
LETTER Z, U+0061 LATIN SMALL LETTER A .. U+007A LATIN SMALL LETTER Z.

Some of the micro-parsers described below follow the pattern of having an input variable
that holds the string being parsed, and having a position variable pointing at the next
character to parse in input.

For parsers based on this pattern, a step that requires the user agent to collect a
sequence of characters means that the following algorithm must be run, with characters
being the set of characters that can be collected:

1. Let input and position be the same variables as those of the same name in the
algorithm that invoked these steps.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 54 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 54 from 931

2. Let result be the empty string.

3. While position doesn't point past the end of input and the character at position is
one of the characters, append that character to the end of result and advance
position to the next character in input.

4. Return result.

The step skip whitespace means that the user agent must collect a sequence of
characters that are space characters. The step skip White_Space characters means
that the user agent must collect a sequence of characters that are White_Space
characters. In both cases, the collected characters are not used. [UNICODE]

When a user agent is to strip line breaks from a string, the user agent must remove any
U+000A LINE FEED (LF) and U+000D CARRIAGE RETURN (CR) characters from that
string.

The code-point length of a string is the number of Unicode code points in that string.

2.4.2 Boolean attributes

A number of attributes are boolean attributes. The presence of a boolean attribute on an
element represents the true value, and the absence of the attribute represents the false
value.

If the attribute is present, its value must either be the empty string or a value that is an
ASCII case-insensitive match for the attribute's canonical name, with no leading or trailing
whitespace.

The values "true" and "false" are not allowed on boolean attributes. To represent a
false value, the attribute has to be omitted altogether.

2.4.3 Keywords and enumerated attributes

Some attributes are defined as taking one of a finite set of keywords. Such attributes are
called enumerated attributes. The keywords are each defined to map to a particular
state (several keywords might map to the same state, in which case some of the keywords
are synonyms of each other; additionally, some of the keywords can be said to be non-
conforming, and are only in the specification for historical reasons). In addition, two default
states can be given. The first is the invalid value default, the second is the missing value
default.

If an enumerated attribute is specified, the attribute's value must be an ASCII case-
insensitive match for one of the given keywords that are not said to be non-conforming,
with no leading or trailing whitespace.

When the attribute is specified, if its value is an ASCII case-insensitive match for one of
the given keywords then that keyword's state is the state that the attribute represents. If
the attribute value matches none of the given keywords, but the attribute has an invalid
value default, then the attribute represents that state. Otherwise, if the attribute value
matches none of the keywords but there is a missing value default state defined, then that
is the state represented by the attribute. Otherwise, there is no default, and invalid values
must be ignored.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 55 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 55 from 931

When the attribute is not specified, if there is a missing value default state defined, then
that is the state represented by the (missing) attribute. Otherwise, the absence of the
attribute means that there is no state represented.

The empty string can be a valid keyword.

2.4.4 Numbers

Status: First draft

2.4.4.1 Non-negative integers

A string is a valid non-negative integer if it consists of one or more characters in the
range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9).

A valid non-negative integer represents the number that is represented in base ten by that
string of digits.

The rules for parsing non-negative integers are as given in the following algorithm.
When invoked, the steps must be followed in the order given, aborting at the first step that
returns a value. This algorithm will either return zero, a positive integer, or an error.
Leading spaces are ignored. Trailing spaces and any trailing garbage characters are
ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 0.

4. Skip whitespace.

5. If position is past the end of input, return an error.

6. If the next character is a U+002B PLUS SIGN character (+), advance position to
the next character.

7. If position is past the end of input, return an error.

8. If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE
(9), then return an error.

9. Loop: If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT
NINE (9):

1. Multiply value by ten.
2. Add the value of the current character (0..9) to value.
3. Advance position to the next character.
4. If position is not past the end of input, return to the top of the step labeled

loop in the overall algorithm (that's the step within which these substeps find
themselves).

10. Return value.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 56 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 56 from 931

2.4.4.2 Signed integers

A string is a valid integer if it consists of one or more characters in the range U+0030
DIGIT ZERO (0) to U+0039 DIGIT NINE (9), optionally prefixed with a U+002D HYPHEN-
MINUS ("-") character.

A valid integer without a U+002D HYPHEN-MINUS ("-") prefix represents the number that
is represented in base ten by that string of digits. A valid integer with a U+002D HYPHEN-
MINUS ("-") prefix represents the number represented in base ten by the string of digits
that follows the U+002D HYPHEN-MINUS, subtracted from zero.

The rules for parsing integers are similar to the rules for non-negative integers, and are
as given in the following algorithm. When invoked, the steps must be followed in the order
given, aborting at the first step that returns a value. This algorithm will either return an
integer or an error. Leading spaces are ignored. Trailing spaces and trailing garbage
characters are ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 0.

4. Let sign have the value "positive".

5. Skip whitespace.

6. If position is past the end of input, return an error.

7. If the character indicated by position (the first character) is a U+002D HYPHEN-
MINUS ("-") character:

1. Let sign be "negative".
2. Advance position to the next character.
3. If position is past the end of input, return an error.

Otherwise, if the character indicated by position (the first character) is a U+002B
PLUS SIGN character (+), then advance position to the next character. (The "+" is
ignored, but it is not conforming.)

8. If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE
(9), then return an error.

9. If the next character is one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9):

1. Multiply value by ten.
2. Add the value of the current character (0..9) to value.
3. Advance position to the next character.
4. If position is not past the end of input, return to the top of step 9 in the overall

algorithm (that's the step within which these substeps find themselves).

10. If sign is "positive", return value, otherwise return the result of subtracting value
from zero.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 57 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 57 from 931

2.4.4.3 Real numbers

A string is a valid floating point number if it consists of:

1. Optionally, a U+002D HYPHEN-MINUS ("-") character.
2. A series of one or more characters in the range U+0030 DIGIT ZERO (0) to

U+0039 DIGIT NINE (9).
3. Optionally:

1. A single U+002E FULL STOP (".") character.
2. A series of one or more characters in the range U+0030 DIGIT ZERO (0) to

U+0039 DIGIT NINE (9).
4. Optionally:

1. Either a U+0065 LATIN SMALL LETTER E character or a U+0045 LATIN
CAPITAL LETTER E character.

2. Optionally, a U+002D HYPHEN-MINUS ("-") character or U+002B PLUS
SIGN ("+") character.

3. A series of one or more characters in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9).

A valid floating point number represents the number obtained by multiplying the
significand by ten raised to the power of the exponent, where the significand is the first
number, interpreted as base ten (including the decimal point and the number after the
decimal point, if any, and interpreting the significand as a negative number if the whole
string starts with a U+002D HYPHEN-MINUS ("-") character and the number is not zero),
and where the exponent is the number after the E, if any (interpreted as a negative
number if there is a U+002D HYPHEN-MINUS ("-") character between the E and the
number and the number is not zero, or else ignoring a U+002B PLUS SIGN ("+") character
between the E and the number if there is one). If there is no E, then the exponent is
treated as zero.

The Infinity and Not-a-Number (NaN) values are not valid floating point numbers.

The best representation of the floating point number n is the string obtained from
applying the JavaScript operator ToString to n.

The rules for parsing floating point number values are as given in the following
algorithm. This algorithm must be aborted at the first step that returns something. This
algorithm will either return a number or an error. Leading spaces are ignored. Trailing
spaces and garbage characters are ignored.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value have the value 1.

4. Let divisor have the value 1.

5. Let exponent have the value 1.

6. Skip whitespace.

7. If position is past the end of input, return an error.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 58 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 58 from 931

8. If the character indicated by position is a U+002D HYPHEN-MINUS ("-") character:

1. Change value and divisor to −1.
2. Advance position to the next character.
3. If position is past the end of input, return an error.

9. If the character indicated by position is not one of U+0030 DIGIT ZERO (0) ..
U+0039 DIGIT NINE (9), then return an error.

10. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9), and interpret the resulting sequence as a base-ten integer. Multiply
value by that integer.

11. If position is past the end of input, return value.

12. If the character indicated by position is a U+002E FULL STOP ("."), run these
substeps:

1. Advance position to the next character.

2. If position is past the end of input, or if the character indicated by position is
not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), then return
value.

3. Fraction loop: Multiply divisor by ten.

4. Add the value of the current character interpreted as a base-ten digit (0..9)
divided by divisor, to value.

5. Advance position to the next character.

6. If position is past the end of input, then return value.

7. If the character indicated by position is one of U+0030 DIGIT ZERO (0) ..
U+0039 DIGIT NINE (9), return to the step labeled fraction loop in these
substeps.

13. If the character indicated by position is a U+0065 LATIN SMALL LETTER E
character or a U+0045 LATIN CAPITAL LETTER E character, run these substeps:

1. Advance position to the next character.

2. If position is past the end of input, then return value.

3. If the character indicated by position is a U+002D HYPHEN-MINUS ("-")
character:

1. Change exponent to −1.
2. Advance position to the next character.

3. If position is past the end of input, then return value.

Otherwise, if the character indicated by position is a U+002B PLUS SIGN
("+") character:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 59 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 59 from 931

4. Advance position to the next character.

5. If position is past the end of input, then return value.

4. If the character indicated by position is not one of U+0030 DIGIT ZERO (0) ..
U+0039 DIGIT NINE (9), then return value.

5. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9), and interpret the resulting sequence as a base-ten
integer. Multiply exponent by that integer.

6. Multiply value by ten raised to the exponentth power.

14. Return value.

2.4.4.4 Ratios

The algorithms described in this section are used by the progress and meter
elements.

A valid denominator punctuation character is one of the characters from the table
below. There is a value associated with each denominator punctuation character, as
shown in the table below.

Denominator Punctuation Character Value
U+0025 PERCENT SIGN % 100
U+066A ARABIC PERCENT SIGN ٪ 100
U+FE6A SMALL PERCENT SIGN � 100
U+FF05 FULLWIDTH PERCENT SIGN � 100
U+2030 PER MILLE SIGN ‰ 1000
U+2031 PER TEN THOUSAND SIGN ‱ 10000

The steps for finding one or two numbers of a ratio in a string are as follows:

1. If the string is empty, then return nothing and abort these steps.
2. Find a number in the string according to the algorithm below, starting at the start of

the string.
3. If the sub-algorithm in step 2 returned nothing or returned an error condition, return

nothing and abort these steps.
4. Set number1 to the number returned by the sub-algorithm in step 2.
5. Starting with the character immediately after the last one examined by the sub-

algorithm in step 2, skip all White_Space characters in the string (this might match
zero characters).

6. If there are still further characters in the string, and the next character in the string
is a valid denominator punctuation character, set denominator to that character.

7. If the string contains any other characters in the range U+0030 DIGIT ZERO to
U+0039 DIGIT NINE, but denominator was given a value in the step 6, return
nothing and abort these steps.

8. Otherwise, if denominator was given a value in step 6, return number1 and
denominator and abort these steps.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 60 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 60 from 931

9. Find a number in the string again, starting immediately after the last character that
was examined by the sub-algorithm in step 2.

10. If the sub-algorithm in step 9 returned nothing or an error condition, return number1
and abort these steps.

11. Set number2 to the number returned by the sub-algorithm in step 9.
12. Starting with the character immediately after the last one examined by the sub-

algorithm in step 9, skip all White_Space characters in the string (this might match
zero characters).

13. If there are still further characters in the string, and the next character in the string
is a valid denominator punctuation character, return nothing and abort these steps.

14. If the string contains any other characters in the range U+0030 DIGIT ZERO to
U+0039 DIGIT NINE, return nothing and abort these steps.

15. Otherwise, return number1 and number2.

The algorithm to find a number is as follows. It is given a string and a starting position,
and returns either nothing, a number, or an error condition.

1. Starting at the given starting position, ignore all characters in the given string until
the first character that is either a U+002E FULL STOP or one of the ten characters
in the range U+0030 DIGIT ZERO to U+0039 DIGIT NINE.

2. If there are no such characters, return nothing and abort these steps.
3. Starting with the character matched in step 1, collect all the consecutive characters

that are either a U+002E FULL STOP or one of the ten characters in the range
U+0030 DIGIT ZERO to U+0039 DIGIT NINE, and assign this string of one or more
characters to string.

4. If string consists of just a single U+002E FULL STOP character or if it contains
more than one U+002E FULL STOP character then return an error condition and
abort these steps.

5. Parse string according to the rules for parsing floating point number values, to
obtain number. This step cannot fail (string is guaranteed to be a valid floating point
number).

6. Return number.

2.4.4.5 Percentages and lengths

The rules for parsing dimension values are as given in the following algorithm. When
invoked, the steps must be followed in the order given, aborting at the first step that
returns a value. This algorithm will either return a number greater than or equal to 1.0, or
an error; if a number is returned, then it is further categorized as either a percentage or a
length.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Skip whitespace.

4. If position is past the end of input, return an error.

5. If the next character is a U+002B PLUS SIGN character (+), advance position to
the next character.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 61 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 61 from 931

6. Collect a sequence of characters that are U+0030 DIGIT ZERO (0) characters, and
discard them.

7. If position is past the end of input, return an error.

8. If the next character is not one of U+0031 DIGIT ONE (1) .. U+0039 DIGIT NINE
(9), then return an error.

9. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9), and interpret the resulting sequence as a base-ten integer. Let
value be that number.

10. If position is past the end of input, return value as an integer.

11. If the next character is a U+002E FULL STOP character (.):

1. Advance position to the next character.

2. If the next character is not one of U+0030 DIGIT ZERO (0) .. U+0039 DIGIT
NINE (9), then return value as an integer.

3. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). Let length be the number of characters collected.
Let fraction be the result of interpreting the collected characters as a base-
ten integer, and then dividing that number by 10length.

4. Increment value by fraction.

12. If position is past the end of input, return value as a length.

13. If the next character is a U+0025 PERCENT SIGN character (%), return value as a
percentage.

14. Return value as a length.

2.4.4.6 Lists of integers

A valid list of integers is a number of valid integers separated by U+002C COMMA
characters, with no other characters (e.g. no space characters). In addition, there might be
restrictions on the number of integers that can be given, or on the range of values allowed.

The rules for parsing a list of integers are as follows:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let numbers be an initially empty list of integers. This list will be the result of this
algorithm.

4. If there is a character in the string input at position position, and it is either a
U+0020 SPACE, U+002C COMMA, or U+003B SEMICOLON character, then
advance position to the next character in input, or to beyond the end of the string if
there are no more characters.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 62 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 62 from 931

5. If position points to beyond the end of input, return numbers and abort.

6. If the character in the string input at position position is a U+0020 SPACE, U+002C
COMMA, or U+003B SEMICOLON character, then return to step 4.

7. Let negated be false.

8. Let value be 0.

9. Let started be false. This variable is set to true when the parser sees a number or a
U+002D HYPHEN-MINUS ("-") character.

10. Let got number be false. This variable is set to true when the parser sees a
number.

11. Let finished be false. This variable is set to true to switch parser into a mode where
it ignores characters until the next separator.

12. Let bogus be false.

13. Parser: If the character in the string input at position position is:

A U+002D HYPHEN-MINUS character
Follow these substeps:

1. If got number is true, let finished be true.
2. If finished is true, skip to the next step in the overall set of steps.
3. If started is true, let negated be false.
4. Otherwise, if started is false and if bogus is false, let negated be true.
5. Let started be true.

A character in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE
Follow these substeps:

6. If finished is true, skip to the next step in the overall set of steps.
7. Multiply value by ten.
8. Add the value of the digit, interpreted in base ten, to value.
9. Let started be true.
10. Let got number be true.

A U+0020 SPACE character
A U+002C COMMA character
A U+003B SEMICOLON character
Follow these substeps:

11. If got number is false, return the numbers list and abort. This happens if an
entry in the list has no digits, as in "1,2,x,4".

12. If negated is true, then negate value.
13. Append value to the numbers list.
14. Jump to step 4 in the overall set of steps.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 63 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 63 from 931

A character in the range U+0001 .. U+001F, U+0021 .. U+002B, U+002D ..
U+002F, U+003A, U+003C .. U+0040, U+005B .. U+0060, U+007b .. U+007F (i.e.
any other non-alphabetic ASCII character)
Follow these substeps:

15. If got number is true, let finished be true.
16. If finished is true, skip to the next step in the overall set of steps.
17. Let negated be false.

Any other character
Follow these substeps:

18. If finished is true, skip to the next step in the overall set of steps.
19. Let negated be false.
20. Let bogus be true.
21. If started is true, then return the numbers list, and abort. (The value in value

is not appended to the list first; it is dropped.)

14. Advance position to the next character in input, or to beyond the end of the string if
there are no more characters.

15. If position points to a character (and not to beyond the end of input), jump to the big
Parser step above.

16. If negated is true, then negate value.

17. If got number is true, then append value to the numbers list.

18. Return the numbers list and abort.

2.4.4.7 Lists of dimensions

The rules for parsing a list of dimensions are as follows. These rules return a list of
zero or more pairs consisting of a number and a unit, the unit being one of percentage,
relative, and absolute.

1. Let raw input be the string being parsed.

2. If the last character in raw input is a U+002C COMMA character (","), then remove
that character from raw input.

3. Split the string raw input on commas. Let raw tokens be the resulting list of tokens.

4. Let result be an empty list of number/unit pairs.

5. For each token in raw tokens, run the following substeps:

1. Let input be the token.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let value be the number 0.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 64 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 64 from 931

4. Let unit be absolute.

5. If position is past the end of input, set unit to relative and jump to the last
substep.

6. If the character at position is a character in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9), collect a sequence of characters in the range
U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), interpret the resulting
sequence as an integer in base ten, and increment value by that integer.

7. If the character at position is a U+002E FULL STOP character (.), run these
substeps:

1. Collect a sequence of characters consisting of space characters and
characters in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9). Let s be the resulting sequence.

2. Remove all space characters in s.

3. If s is not the empty string, run these subsubsteps:

1. Let length be the number of characters in s (after the spaces
were removed).

2. Let fraction be the result of interpreting s as a base-ten integer,
and then dividing that number by 10length.

3. Increment value by fraction.

8. Skip whitespace.

9. If the character at position is a U+0025 PERCENT SIGN (%) character, then
set unit to percentage.

Otherwise, if the character at position is a U+002A ASTERISK character (*),
then set unit to relative.

10. Add an entry to result consisting of the number given by value and the unit
given by unit.

6. Return the list result.

2.4.5 Dates and times

In the algorithms below, the number of days in month month of year year is: 31 if
month is 1, 3, 5, 7, 8, 10, or 12; 30 if month is 4, 6, 9, or 11; 29 if month is 2 and year is a
number divisible by 400, or if year is a number divisible by 4 but not by 100; and 28
otherwise. This takes into account leap years in the Gregorian calendar. [GREGORIAN]

The digits in the date and time syntaxes defined in this section must be characters in the
range U+0030 DIGIT ZERO to U+0039 DIGIT NINE, used to express numbers in base
ten.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 65 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 65 from 931

While the formats described here are intended to be subsets of the corresponding
ISO8601 formats, this specification defines parsing rules in much more detail than
ISO8601. Implementators are therefore encouraged to carefully examine any date
parsing libraries before using them to implement the parsing rules described below;
ISO8601 libraries might not parse dates and times exactly the same manner.
[ISO8601]

2.4.5.1 Months

A month consists of a specific proleptic Gregorian date with no time-zone information and
no date information beyond a year and a month. [GREGORIAN]

A string is a valid month string representing a year year and month month if it consists of
the following components in the given order:

1. Four or more digits, representing year, where year > 0
2. A U+002D HYPHEN-MINUS character (-)
3. Two digits, representing the month month, in the range 1 ≤ month ≤ 12

The rules to parse a month string are as follows. This will either return a year and month,
or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at
that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a month component to obtain year and month. If this returns nothing, then
fail.

4. If position is not beyond the end of input, then fail.

5. Return year and month.

The rules to parse a month component, given an input string and a position, are as
follows. This will either return a year and a month, or nothing. If at any point the algorithm
says that it "fails", this means that it is aborted at that point and returns nothing.

1. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is not at least four characters long, then
fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that
number be the year.

2. If year is not a number greater than zero, then fail.

3. If position is beyond the end of input or if the character at position is not a U+002D
HYPHEN-MINUS character, then fail. Otherwise, move position forwards one
character.

4. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is not exactly two characters long, then
fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that
number be the month.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 66 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 66 from 931

5. If month is not a number in the range 1 ≤ month ≤ 12, then fail.

6. Return year and month.

2.4.5.2 Dates

A date consists of a specific proleptic Gregorian date with no time-zone information,
consisting of a year, a month, and a day. [GREGORIAN]

A string is a valid date string representing a year year, month month, and day day if it
consists of the following components in the given order:

1. A valid month string, representing year and month
2. A U+002D HYPHEN-MINUS character (-)
3. Two digits, representing day, in the range 1 ≤ day ≤ maxday where maxday is the

number of days in the month month and year year

The rules to parse a date string are as follows. This will either return a date, or nothing. If
at any point the algorithm says that it "fails", this means that it is aborted at that point and
returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date component to obtain year, month, and day. If this returns nothing,
then fail.

4. If position is not beyond the end of input, then fail.

5. Let date be the date with year year, month month, and day day.

6. Return date.

The rules to parse a date component, given an input string and a position, are as
follows. This will either return a year, a month, and a day, or nothing. If at any point the
algorithm says that it "fails", this means that it is aborted at that point and returns nothing.

1. Parse a month component to obtain year and month. If this returns nothing, then
fail.

2. Let maxday be the number of days in month month of year year.

3. If position is beyond the end of input or if the character at position is not a U+002D
HYPHEN-MINUS character, then fail. Otherwise, move position forwards one
character.

4. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is not exactly two characters long, then
fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that
number be the day.

5. If day is not a number in the range 1 ≤ month ≤ maxday, then fail.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 67 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 67 from 931

6. Return year, month, and day.

2.4.5.3 Times

A time consists of a specific time with no time-zone information, consisting of an hour, a
minute, a second, and a fraction of a second.

A string is a valid time string representing an hour hour, a minute minute, and a second
second if it consists of the following components in the given order:

1. Two digits, representing hour, in the range 0 ≤ hour ≤ 23
2. A U+003A COLON character (:)
3. Two digits, representing minute, in the range 0 ≤ minute ≤ 59
4. Optionally (required if second is non-zero):

1. A U+003A COLON character (:)
2. Two digits, representing the integer part of second, in the range 0 ≤ s ≤ 59
3. Optionally (required if second is not an integer):

1. A 002E FULL STOP character (.)
2. One or more digits, representing the fractional part of second

The second component cannot be 60 or 61; leap seconds cannot be represented.

The rules to parse a time string are as follows. This will either return a time, or nothing. If
at any point the algorithm says that it "fails", this means that it is aborted at that point and
returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a time component to obtain hour, minute, and second. If this returns nothing,
then fail.

4. If position is not beyond the end of input, then fail.

5. Let time be the time with hour hour, minute minute, and second second.

6. Return time.

The rules to parse a time component, given an input string and a position, are as
follows. This will either return an hour, a minute, and a second, or nothing. If at any point
the algorithm says that it "fails", this means that it is aborted at that point and returns
nothing.

1. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is not exactly two characters long, then
fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that
number be the hour.

2. If hour is not a number in the range 0 ≤ hour ≤ 23, then fail.

3. If position is beyond the end of input or if the character at position is not a U+003A
COLON character, then fail. Otherwise, move position forwards one character.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 68 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 68 from 931

4. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is not exactly two characters long, then
fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that
number be the minute.

5. If minute is not a number in the range 0 ≤ minute ≤ 59, then fail.

6. Let second be a string with the value "0".

7. If position is not beyond the end of input and the character at position is a U+003A
COLON, then run these substeps:

1. Advance position to the next character in input.

2. If position is beyond the end of input, or at the last character in input, or if the
next two characters in input starting at position are not two characters both
in the range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), then fail.

3. Collect a sequence of characters that are either characters in the range
U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9) or U+002E FULL STOP
characters. If the collected sequence has more than one U+002E FULL
STOP characters, or if the last character in the sequence is a U+002E FULL
STOP character, then fail. Otherwise, let the collected string be second
instead of its previous value.

8. Interpret second as a base-ten number (possibly with a fractional part). Let second
be that number instead of the string version.

9. If second is not a number in the range 0 ≤ second < 60, then fail.

10. Return hour, minute, and second.

2.4.5.4 Local dates and times

A local date and time consists of a specific proleptic Gregorian date, consisting of a year,
a month, and a day, and a time, consisting of an hour, a minute, a second, and a fraction
of a second, but expressed without a time zone. [GREGORIAN]

A string is a valid local date and time string representing a date and time if it consists of
the following components in the given order:

1. A valid date string representing the date.
2. A U+0054 LATIN CAPITAL LETTER T character.
3. A valid time string representing the time.

The rules to parse a local date and time string are as follows. This will either return a
date and time, or nothing. If at any point the algorithm says that it "fails", this means that it
is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 69 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 69 from 931

3. Parse a date component to obtain year, month, and day. If this returns nothing,
then fail.

4. If position is beyond the end of input or if the character at position is not a U+0054
LATIN CAPITAL LETTER T character then fail. Otherwise, move position forwards
one character.

5. Parse a time component to obtain hour, minute, and second. If this returns nothing,
then fail.

6. If position is not beyond the end of input, then fail.

7. Let date be the date with year year, month month, and day day.

8. Let time be the time with hour hour, minute minute, and second second.

9. Return date and time.

2.4.5.5 Global dates and times

A global date and time consists of a specific proleptic Gregorian date, consisting of a
year, a month, and a day, and a time, consisting of an hour, a minute, a second, and a
fraction of a second, expressed with a time zone, consisting of a number of hours and
minutes. [GREGORIAN]

A string is a valid global date and time string representing a date, time, and a time-zone
offset if it consists of the following components in the given order:

1. A valid date string representing the date
2. A U+0054 LATIN CAPITAL LETTER T character
3. A valid time string representing the time
4. Either:

o A U+005A LATIN CAPITAL LETTER Z character, allowed only if the time
zone is UTC

o Or:
1. Either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-

MINUS (-) character, representing the sign of the time-zone offset
2. Two digits, representing the hours component hour of the time-zone

offset, in the range 0 ≤ hour ≤ 23
3. A U+003A COLON character (:)
4. Two digits, representing the minutes component minute of the time-

zone offset, in the range 0 ≤ minute ≤ 59

This format allows for time zone offsets from -23:59 to +23:59. In practice, however,
the range of actual time zones is -12:00 to +14:00, and the minutes component of
actual time zones is always either 00, 30, or 45.

The following are some examples of dates written as valid global date and time strings.

"0037-12-13T00:00Z"
Midnight UTC on the birthday of Nero (the Roman Emperor).

"1979-10-14T12:00:00.001-04:00"

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 70 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 70 from 931

One millisecond after noon on October 14th 1979, in the time zone in use on
the east coast of North America during daylight saving time.

"8592-01-01T02:09+02:09"
Midnight UTC on the 1st of January, 8592. The time zone associated with that
time is two hours and nine minutes ahead of UTC, which is not a real time
zone currently, but is nonetheless allowed.

Several things are notable about these dates:

• Years with fewer than four digits have to be zero-padded. The date "37-12-13"
would not be a valid date.

• To unambiguously identify a moment in time prior to the introduction of the
Gregorian calendar, the date has to be first converted to the Gregorian
calendar from the calendar in use at the time (e.g. from the Julian calendar).
The date of Nero's birth is the 15th of December 37, in the Julian Calendar,
which is the 13th of December 37 in the proleptic Gregorian Calendar.

• The time and time-zone components are not optional.
• Dates before the year zero can't be represented as a datetime in this version of

HTML.
• Time zones differ based on daylight savings time.

The rules to parse a global date and time string are as follows. This will either return a
time in UTC, with associated time-zone information for round tripping or display purposes,
or nothing. If at any point the algorithm says that it "fails", this means that it is aborted at
that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Parse a date component to obtain year, month, and day. If this returns nothing,
then fail.

4. If position is beyond the end of input or if the character at position is not a U+0054
LATIN CAPITAL LETTER T character then fail. Otherwise, move position forwards
one character.

5. Parse a time component to obtain hour, minute, and second. If this returns nothing,
then fail.

6. If position is beyond the end of input, then fail.

7. Parse a time-zone component to obtain timezonehours and timezoneminutes. If this
returns nothing, then fail.

8. If position is not beyond the end of input, then fail.

9. Let time be the moment in time at year year, month month, day day, hours hour,
minute minute, second second, subtracting timezonehours hours and timezoneminutes
minutes. That moment in time is a moment in the UTC time zone.

10. Let timezone be timezonehours hours and timezoneminutes minutes from UTC.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 71 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 71 from 931

11. Return time and timezone.

The rules to parse a time-zone component, given an input string and a position, are as
follows. This will either return time-zone hours and time-zone minutes, or nothing. If at any
point the algorithm says that it "fails", this means that it is aborted at that point and returns
nothing.

1. If the character at position is a U+005A LATIN CAPITAL LETTER Z, then:

1. Let timezonehours be 0.

2. Let timezoneminutes be 0.

3. Advance position to the next character in input.

Otherwise, if the character at position is either a U+002B PLUS SIGN ("+") or a
U+002D HYPHEN-MINUS ("-"), then:

4. If the character at position is a U+002B PLUS SIGN ("+"), let sign be
"positive". Otherwise, it's a U+002D HYPHEN-MINUS ("-"); let sign be
"negative".

5. Advance position to the next character in input.

6. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a
base-ten integer. Let that number be the timezonehours.

7. If timezonehours is not a number in the range 0 ≤ timezonehours ≤ 23, then fail.
8. If sign is "negative", then negate timezonehours.

9. If position is beyond the end of input or if the character at position is not a
U+003A COLON character, then fail. Otherwise, move position forwards one
character.

10. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to
U+0039 DIGIT NINE (9). If the collected sequence is not exactly two
characters long, then fail. Otherwise, interpret the resulting sequence as a
base-ten integer. Let that number be the timezoneminutes.

11. If timezoneminutes is not a number in the range 0 ≤ timezoneminutes ≤ 59, then fail.
12. If sign is "negative", then negate timezoneminutes.

2. Return timezonehours and timezoneminutes.

2.4.5.6 Weeks

A week consists of a week-year number and a week number representing a seven day
period. Each week-year in this calendaring system has either 52 weeks or 53 weeks, as
defined below. A week is a seven-day period. The week starting on the Gregorian date
Monday December 29th 1969 (1969-12-29) is defined as week number 1 in week-year
1970. Consecutive weeks are numbered sequentially. The week before the number 1

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 72 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 72 from 931

week in a week-year is the last week in the previous week-year, and vice versa.
[GREGORIAN]

A week-year with a number year has 53 weeks if it corresponds to either a year year in the
proleptic Gregorian calendar that has a Thursday as its first day (January 1st), or a year
year in the proleptic Gregorian calendar that has a Wednesday as its first day (January
1st) and where year is a number divisible by 400, or a number divisible by 4 but not by
100. All other week-years have 52 weeks.

The week number of the last day of a week-year with 53 weeks is 53; the week number
of the last day of a week-year with 52 weeks is 52.

The week-year number of a particular day can be different than the number of the
year that contains that day in the proleptic Gregorian calendar. The first week in a
week-year y is the week that contains the first Thursday of the Gregorian year y.

A string is a valid week string representing a week-year year and week week if it consists
of the following components in the given order:

1. Four or more digits, representing year, where year > 0
2. A U+002D HYPHEN-MINUS character (-)
3. A U+0057 LATIN CAPITAL LETTER W character
4. Two digits, representing the week week, in the range 1 ≤ week ≤ maxweek, where

maxweek is the week number of the last day of week-year year

The rules to parse a week string are as follows. This will either return a week-year
number and week number, or nothing. If at any point the algorithm says that it "fails", this
means that it is aborted at that point and returns nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is not at least four characters long, then
fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that
number be the year.

4. If year is not a number greater than zero, then fail.

5. If position is beyond the end of input or if the character at position is not a U+002D
HYPHEN-MINUS character, then fail. Otherwise, move position forwards one
character.

6. If position is beyond the end of input or if the character at position is not a U+0057
LATIN CAPITAL LETTER W character, then fail. Otherwise, move position forwards
one character.

7. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9). If the collected sequence is not exactly two characters long, then
fail. Otherwise, interpret the resulting sequence as a base-ten integer. Let that
number be the week.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 73 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 73 from 931

8. Let maxweek be the week number of the last day of year year.

9. If week is not a number in the range 1 ≤ week ≤ maxweek, then fail.

10. If position is not beyond the end of input, then fail.

11. Return the week-year number year and the week number week.

2.4.5.7 Vaguer moments in time

A date or time string consists of either a date, a time, or a global date and time.

A string is a valid date or time string if it is also one of the following:

• A valid date string.
• A valid time string.
• A valid global date and time string.

A string is a valid date or time string in content if it consists of zero or more
White_Space characters, followed by a valid date or time string, followed by zero or more
further White_Space characters.

The rules to parse a date or time string are as follows. The algorithm is invoked with a
flag indicating if the in attribute variant or the in content variant is to be used. The
algorithm will either return a date, a time, a global date and time, or nothing. If at any point
the algorithm says that it "fails", this means that it is aborted at that point and returns
nothing.

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. For the in content variant: skip White_Space characters.

4. Set start position to the same position as position.

5. Set the date present and time present flags to true.

6. Parse a date component to obtain year, month, and day. If this fails, then set the
date present flag to false.

7. If date present is true, and position is not beyond the end of input, and the
character at position is a U+0054 LATIN CAPITAL LETTER T character, then
advance position to the next character in input.

Otherwise, if date present is true, and either position is beyond the end of input or
the character at position is not a U+0054 LATIN CAPITAL LETTER T character,
then set time present to false.

Otherwise, if date present is false, set position back to the same position as start
position.

8. If the time present flag is true, then parse a time component to obtain hour, minute,
and second. If this returns nothing, then set the time present flag to false.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 74 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 74 from 931

9. If both the date present and time present flags are false, then fail.

10. If the date present and time present flags are both true, but position is beyond the
end of input, then fail.

11. If the date present and time present flags are both true, parse a time-zone
component to obtain timezonehours and timezoneminutes. If this returns nothing, then
fail.

12. For the in content variant: skip White_Space characters.

13. If position is not beyond the end of input, then fail.

14. If the date present flag is true and the time present flag is false, then let date be the
date with year year, month month, and day day, and return date.

Otherwise, if the time present flag is true and the date present flag is false, then let
time be the time with hour hour, minute minute, and second second, and return
time.

Otherwise, let time be the moment in time at year year, month month, day day,
hours hour, minute minute, second second, subtracting timezonehours hours and
timezoneminutes minutes, that moment in time being a moment in the UTC time zone;
let timezone be timezonehours hours and timezoneminutes minutes from UTC; and return
time and timezone.

2.4.6 Colors

Status: First draft

A simple color consists of three 8-bit numbers in the range 0..255, representing the red,
green, and blue components of the color respectively, in the sRGB color space. [SRGB]

A string is a valid simple color if it is exactly seven characters long, and the first
character is a U+0023 NUMBER SIGN (#) character, and the remaining six characters are
all in the range U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), U+0041 LATIN
CAPITAL LETTER A .. U+0046 LATIN CAPITAL LETTER F, U+0061 LATIN SMALL
LETTER A .. U+0066 LATIN SMALL LETTER F, with the first two digits representing the
red component, the middle two digits representing the green component, and the last two
digits representing the blue component, in hexadecimal.

A string is a valid lowercase simple color if it is a valid simple color and doesn't use any
characters in the range U+0041 LATIN CAPITAL LETTER A .. U+0046 LATIN CAPITAL
LETTER F.

The rules for parsing simple color values are as given in the following algorithm. When
invoked, the steps must be followed in the order given, aborting at the first step that
returns a value. This algorithm will either return a simple color or an error.

1. Let input be the string being parsed.

2. If input is not exactly seven characters long, then return an error.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 75 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 75 from 931

3. If the first character in input is not a U+0023 NUMBER SIGN (#) character, then
return an error.

4. If the last six characters of input are not all in the range U+0030 DIGIT ZERO (0) ..
U+0039 DIGIT NINE (9), U+0041 LATIN CAPITAL LETTER A .. U+0046 LATIN
CAPITAL LETTER F, U+0061 LATIN SMALL LETTER A .. U+0066 LATIN SMALL
LETTER F, then return an error.

5. Let result be a simple color.

6. Interpret the second and third characters as a hexadecimal number and let the
result be the red component of result.

7. Interpret the fourth and fifth characters as a hexadecimal number and let the result
be the green component of result.

8. Interpret the sixth and seventh characters as a hexadecimal number and let the
result be the blue component of result.

9. Return result.

The rules for serializing simple color values given a simple color are as given in the
following algorithm:

1. Let result be a string consisting of a single U+0023 NUMBER SIGN (#) character.

2. Convert the red, green, and blue components in turn to two-digit hexadecimal
numbers using the digits U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9) and
U+0061 LATIN SMALL LETTER A .. U+0066 LATIN SMALL LETTER F, zero-
padding if necessary, and append these numbers to result, in the order red, green,
blue.

3. Return result, which will be a valid lowercase simple color.

Some obsolete legacy attributes parse colors in a more complicated manner, using the
rules for parsing a legacy color value, which are given in the following algorithm. When
invoked, the steps must be followed in the order given, aborting at the first step that
returns a value. This algorithm will either return a simple color or an error.

1. Let input be the string being parsed.

2. If input is the empty string, then return an error.

3. If input is an ASCII case-insensitive match for the string "transparent", then return
an error.

4. If input is an ASCII case-insensitive match for one of the keywords listed in the
SVG color keywords or CSS2 System Colors sections of the CSS3 Color
specification, then return the simple color corresponding to that keyword.
[CSSCOLOR]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 76 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 76 from 931

5. If input is four characters long, and the first character in input is a U+0023
NUMBER SIGN (#) character, and the last three characters of input are all in the
range U+0030 DIGIT ZERO (0) .. U+0039 DIGIT NINE (9), U+0041 LATIN
CAPITAL LETTER A .. U+0046 LATIN CAPITAL LETTER F, and U+0061 LATIN
SMALL LETTER A .. U+0066 LATIN SMALL LETTER F, then run these substeps:

1. Let result be a simple color.

2. Interpret the second character of input as a hexadecimal digit; let the red
component of result be the resulting number multiplied by 17.

3. Interpret the third character of input as a hexadecimal digit; let the green
component of result be the resulting number multiplied by 17.

4. Interpret the fourth character of input as a hexadecimal digit; let the blue
component of result be the resulting number multiplied by 17.

5. Return result.

6. Replace any characters in input that have a Unicode code point greater than
U+FFFF (i.e. any characters that are not in the basic multilingual plane) with the
two-character string "00".

7. If input is longer than 128 characters, truncate input, leaving only the first 128
characters.

8. If the first character in input is a U+0023 NUMBER SIGN character (#), remove it.

9. Replace any character in input that is not in the range U+0030 DIGIT ZERO (0) ..
U+0039 DIGIT NINE (9), U+0041 LATIN CAPITAL LETTER A .. U+0046 LATIN
CAPITAL LETTER F, and U+0061 LATIN SMALL LETTER A .. U+0066 LATIN
SMALL LETTER F with the character U+0030 DIGIT ZERO (0).

10. While input's length is zero or not a multiple of three, append a U+0030 DIGIT
ZERO (0) character to input.

11. Split input into three strings of equal length, to obtain three components. Let length
be the length of those components (one third the length of input).

12. If length is greater than 8, then remove the leading length-8 characters in each
component, and let length be 8.

13. While length is greater than two and the first character in each component is a
U+0030 DIGIT ZERO (0) character, remove that character and reduce length by
one.

14. If length is still greater than two, truncate each component, leaving only the first two
characters in each.

15. Let result be a simple color.

16. Interpret the first component as a hexadecimal number; let the red component of
result be the resulting number.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 77 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 77 from 931

17. Interpret the second component as a hexadecimal number; let the green
component of result be the resulting number.

18. Interpret the third component as a hexadecimal number; let the blue component of
result be the resulting number.

19. Return result.

The 2D graphics context has a separate color syntax that also handles opacity.

2.4.7 Space-separated tokens

A set of space-separated tokens is a set of zero or more words separated by one or
more space characters, where words consist of any string of one or more characters,
none of which are space characters.

A string containing a set of space-separated tokens may have leading or trailing space
characters.

An unordered set of unique space-separated tokens is a set of space-separated
tokens where none of the words are duplicated.

An ordered set of unique space-separated tokens is a set of space-separated tokens
where none of the words are duplicated but where the order of the tokens is meaningful.

Sets of space-separated tokens sometimes have a defined set of allowed values. When a
set of allowed values is defined, the tokens must all be from that list of allowed values;
other values are non-conforming. If no such set of allowed values is provided, then all
values are conforming.

When a user agent has to split a string on spaces, it must use the following algorithm:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let tokens be a list of tokens, initially empty.

4. Skip whitespace

5. While position is not past the end of input:

1. Collect a sequence of characters that are not space characters.

2. Add the string collected in the previous step to tokens.

3. Skip whitespace

6. Return tokens.

When a user agent has to remove a token from a string, it must use the following
algorithm:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 78 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 78 from 931

1. Let input be the string being modified.

2. Let token be the token being removed. It will not contain any space characters.

3. Let output be the output string, initially empty.

4. Let position be a pointer into input, initially pointing at the start of the string.

5. If position is beyond the end of input, set the string being modified to output, and
abort these steps.

6. If the character at position is a space character:

1. Append the character at position to the end of output.

2. Increment position so it points at the next character in input.

3. Return to step 5 in the overall set of steps.

7. Otherwise, the character at position is the first character of a token. Collect a
sequence of characters that are not space characters, and let that be s.

8. If s is exactly equal to token, then:

1. Skip whitespace (in input).

2. Remove any space characters currently at the end of output.

3. If position is not past the end of input, and output is not the empty string,
append a single U+0020 SPACE character at the end of output.

9. Otherwise, append s to the end of output.

10. Return to step 6 in the overall set of steps.

This causes any occurrences of the token to be removed from the string, and any
spaces that were surrounding the token to be collapsed to a single space, except at
the start and end of the string, where such spaces are removed.

2.4.8 Comma-separated tokens

A set of comma-separated tokens is a set of zero or more tokens each separated from
the next by a single U+002C COMMA character (,), where tokens consist of any string of
zero or more characters, neither beginning nor ending with space characters, nor
containing any U+002C COMMA characters (,), and optionally surrounded by space
characters.

For instance, the string " a ,b,,d d " consists of four tokens: "a", "b", the empty
string, and "d d". Leading and trailing whitespace around each token doesn't count as
part of the token, and the empty string can be a token.

Sets of comma-separated tokens sometimes have further restrictions on what consists a
valid token. When such restrictions are defined, the tokens must all fit within those

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 79 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 79 from 931

restrictions; other values are non-conforming. If no such restrictions are specified, then all
values are conforming.

When a user agent has to split a string on commas, it must use the following algorithm:

1. Let input be the string being parsed.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Let tokens be a list of tokens, initially empty.

4. Token: If position is past the end of input, jump to the last step.

5. Collect a sequence of characters that are not U+002C COMMA characters (,). Let
s be the resulting sequence (which might be the empty string).

6. Remove any leading or trailing sequence of space characters from s.

7. Add s to tokens.

8. If position is not past the end of input, then the character at position is a U+002C
COMMA character (,); advance position past that character.

9. Jump back to the step labeled token.

10. Return tokens.

2.4.9 Reversed DNS identifiers

A valid reversed DNS identifier is a string that consists of a series of IDNA labels in
reverse order (i.e. starting with the top-level domain), the prefix of which, when reversed
and converted to ASCII, corresponds to a registered domain.

For instance, the string "com.example.xn--74h" is a valid reversed DNS identifier
because the string "example.com" is a registered domain.

To check if a string is a valid reversed DNS identifier, conformance checkers must run the
following algorithm:

1. Apply the IDNA ToASCII algorithm to the string, with both the AllowUnassigned and
UseSTD3ASCIIRules flags set, but between steps 2 and 3 of the general
ToASCII/ToUnicode algorithm (i.e. after splitting the domain name into individual
labels), reverse the order of the labels.

If ToASCII fails to convert one of the components of the string, e.g. because it is
too long or because it contains invalid characters, then the string is not valid; abort
these steps. [RFC3490]

2. Check that the end of the resulting string matches a suffix in the Public Suffix List,
and that there is at least one domain label before the matching substring. If it does
not, or if there is not, then the string is not valid; abort these steps. [PSL]

3. Check that the domain name up to the label before the prefix that was matched in
the previous string is a registered domain name.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 80 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 80 from 931

2.4.10 References

A valid hash-name reference to an element of type type is a string consisting of a
U+0023 NUMBER SIGN (#) character followed by a string which exactly matches the
value of the name attribute of an element in the document with type type.

The rules for parsing a hash-name reference to an element of type type are as follows:

1. If the string being parsed does not contain a U+0023 NUMBER SIGN character, or
if the first such character in the string is the last character in the string, then return
null and abort these steps.

2. Let s be the string from the character immediately after the first U+0023 NUMBER
SIGN character in the string being parsed up to the end of that string.

3. Return the first element of type type that has an id attribute whose value is a case-
sensitive match for s or a name attribute whose value is a compatibility caseless
match for s.

2.5 URLs

Status: Working draft. ISSUE-56 (urls-webarch) blocks progress to Last Call

2.5.1 Terminology

Status: Working draft

A URL is a string used to identify a resource.

A URL is a valid URL if it is a valid Web address as defined by the Web addresses
specification. [WEBADDRESSES]

A URL is an absolute URL if it is an absolute Web address as defined by the Web
addresses specification. [WEBADDRESSES]

To parse a URL url into its component parts, the user agent must use the parse a Web
address algorithm defined by the Web addresses specification. [WEBADDRESSES]

Parsing a URL results in the following components, again as defined by the Web
addresses specification:

• <scheme>
• <host>
• <port>
• <hostport>
• <path>
• <query>
• <fragment>
• <host-specific>

To resolve a URL to an absolute URL relative to either another absolute URL or an
element, the user agent must use the resolve a Web address algorithm defined by the
Web addresses specification. [WEBADDRESSES]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 81 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 81 from 931

The document base URL of a Document object is the document base Web address as
defined by the Web addresses specification. [WEBADDRESSES]

The term "URL" in this specification is used in a manner distinct from the precise
technical meaning it is given in RFC 3986. Readers familiar with that RFC will find it
easier to read this specification if they pretend the term "URL" as used herein is
really called something else altogether. This is a willful violation of RFC 3986.
[RFC3986]

2.5.2 Dynamic changes to base URLs

Status: Awaiting implementation feedback

When an xml:base attribute changes, the attribute's element, and all descendant
elements, are affected by a base URL change.

When a document's document base URL changes, all elements in that document are
affected by a base URL change.

When an element is moved from one document to another, if the two documents have
different base URLs, then that element and all its descendants are affected by a base
URL change.

When an element is affected by a base URL change, it must act as described in the
following list:

If the element is a hyperlink element
If the absolute URL identified by the hyperlink is being shown to the user, or if any
data derived from that URL is affecting the display, then the href attribute should
be re-resolved relative to the element and the UI updated appropriately.

For example, the CSS :link/:visited pseudo-classes might have been
affected.

If the hyperlink has a ping attribute and its absolute URL(s) are being shown to the
user, then the ping attribute's tokens should be re-resolved relative to the element
and the UI updated appropriately.

If the element is a q, blockquote, section, article, ins, or del element with a cite
attribute

If the absolute URL identified by the cite attribute is being shown to the user, or if
any data derived from that URL is affecting the display, then the URL should be re-
resolved relative to the element and the UI updated appropriately.

Otherwise
The element is not directly affected.

Changing the base URL doesn't affect the image displayed by img elements,
although subsequent accesses of the src DOM attribute from script will return
a new absolute URL that might no longer correspond to the image being
shown.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 82 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 82 from 931

2.5.3 Interfaces for URL manipulation

Status: Last call for comments

An interface that has a complement of URL decomposition attributes will have seven
attributes with the following definitions:

 attribute DOMString protocol;
 attribute DOMString host;
 attribute DOMString hostname;
 attribute DOMString port;
 attribute DOMString pathname;
 attribute DOMString search;
 attribute DOMString hash;

o . protocol [= value]
Returns the current scheme of the underlying URL.
Can be set, to change the underlying URL's scheme.

o . host [= value]
Returns the current host and port (if it's not the default port) in the underlying URL.
Can be set, to change the underlying URL's host and port.
The host and the port are separated by a colon. The port part, if omitted, will be
assumed to be the current scheme's default port.

o . hostname [= value]
Returns the current host in the underlying URL.
Can be set, to change the underlying URL's host.

o . port [= value]
Returns the current port in the underlying URL.
Can be set, to change the underlying URL's port.

o . pathname [= value]
Returns the current path in the underlying URL.
Can be set, to change the underlying URL's path.

o . search [= value]
Returns the current query component in the underlying URL.
Can be set, to change the underlying URL's query component.

o . hash [= value]
Returns the current fragment identifier in the underlying URL.
Can be set, to change the underlying URL's fragment identifier.

The attributes defined to be URL decomposition attributes must act as described for the
attributes with the same corresponding names in this section.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 83 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 83 from 931

In addition, an interface with a complement of URL decomposition attributes will define an
input, which is a URL that the attributes act on, and a common setter action, which is a
set of steps invoked when any of the attributes' setters are invoked.

The seven URL decomposition attributes have similar requirements.

On getting, if the input is an absolute URL that fulfills the condition given in the "getter
condition" column corresponding to the attribute in the table below, the user agent must
return the part of the input URL given in the "component" column, with any prefixes
specified in the "prefix" column appropriately added to the start of the string and any
suffixes specified in the "suffix" column appropriately added to the end of the string.
Otherwise, the attribute must return the empty string.

On setting, the new value must first be mutated as described by the "setter preprocessor"
column, then mutated by %-escaping any characters in the new value that are not valid in
the relevant component as given by the "component" column. Then, if the input is an
absolute URL and the resulting new value fulfills the condition given in the "setter
condition" column, the user agent must make a new string output by replacing the
component of the URL given by the "component" column in the input URL with the new
value; otherwise, the user agent must let output be equal to the input. Finally, the user
agent must invoke the common setter action with the value of output.

When replacing a component in the URL, if the component is part of an optional group in
the URL syntax consisting of a character followed by the component, the component
(including its prefix character) must be included even if the new value is the empty string.

The previous paragraph applies in particular to the ":" before a <port> component,
the "?" before a <query> component, and the "#" before a <fragment> component.

For the purposes of the above definitions, URLs must be parsed using the URL parsing
rules defined in this specification.

Attribute Component Getter
Condition

Prefix Suffix Setter
Preprocessor

Setter
Condition

protocol <scheme> — — U+003A
COLON
(":")

Remove all
trailing U+003A
COLON (":")
characters

The new
value is not
the empty
string

host <hostport> input is
hierarchical
and uses a
server-based
naming
authority

— — — The new
value is not
the empty
string and
input is
hierarchical
and uses a
server-
based
naming
authority

hostname <host> input is
hierarchical

— — Remove all
leading U+002F

The new
value is not

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 84 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 84 from 931

Attribute Component Getter
Condition

Prefix Suffix Setter
Preprocessor

Setter
Condition

and uses a
server-based
naming
authority

SOLIDUS ("/")
characters

the empty
string and
input is
hierarchical
and uses a
server-
based
naming
authority

port <port> input is
hierarchical,
uses a
server-based
naming
authority,
and
contained a
<port>
component
(possibly an
empty one)

— — Remove any
characters in
the new value
that are not in
the range
U+0030 DIGIT
ZERO ..
U+0039 DIGIT
NINE. If the
resulting string
is empty, set it
to a single
U+0030 DIGIT
ZERO character
('0').

input is
hierarchical
and uses a
server-
based
naming
authority

pathname <path> input is
hierarchical

— — If it has no
leading U+002F
SOLIDUS ("/")
character,
prepend a
U+002F
SOLIDUS ("/")
character to the
new value

—

search <query> input is
hierarchical,
and
contained a
<query>
component
(possibly an
empty one)

U+003F
QUESTION
MARK ("?")

— Remove one
leading U+003F
QUESTION
MARK ("?")
character, if any

—

hash <fragment> input
contained a
<fragment>
component
(possibly an
empty one)

U+0023
NUMBER
SIGN ("#")

— Remove one
leading U+0023
NUMBER SIGN
("#") character,
if any

—

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 85 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 85 from 931

The table below demonstrates how the getter condition for search results in different
results depending on the exact original syntax of the URL:

Input URL search
value

Explanation

http://example.com/ empty
string

No <query> component in input URL.

http://example.com/? ? There is a <query> component, but it is empty.
The question mark in the resulting value is the
prefix.

http://example.com/?test ?test The <query> component has the value "test".
http://example.com/?test# ?test The (empty) <fragment> component is not part of

the <query> component.

2.6 Fetching resources

Status: Working draft

When a user agent is to fetch a resource, the following steps must be run:

1. If the resource is identified by the URL about:blank, then return the empty string
and abort these steps.

2. Perform the remaining steps asynchronously.

3. If the resource is identified by an absolute URL, and the resource is to be obtained
using a idempotent action (such as an HTTP GET or equivalent), and it is already
being downloaded for other reasons (e.g. another invocation of this algorithm), and
the user agent is configured such that it is to reuse the data from the existing
download instead of initiating a new one, then use the results of the existing
download instead of starting a new one.

Otherwise, at a time convenient to the user and the user agent, download (or
otherwise obtain) the resource, applying the semantics of the relevant
specifications (e.g. performing an HTTP GET or POST operation, or reading the file
from disk, following redirects, dereferencing javascript: URLs, etc).

For purposes of generating the address of the resource from which Request-URIs
are obtained as required by HTTP for the Referer (sic) header, the user agent must
use the document's current address of the appropriate Document as given by this
list. [HTTP]

When navigating
The active document of the source browsing context.
When fetching resources for an element
The element's Document.
When fetching resources in response to a call to an API
The active document of the browsing context of the first script.

4. If there are cookies to be set, then the user agent must run the following substeps:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 86 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 86 from 931

1. Wait until ownership of the storage mutex can be taken by this instance of
the fetching algorithm.

2. Take ownership of the storage mutex.

3. Update the cookies. [RFC2109] [COOKIES]

4. Release the storage mutex so that it is once again free.

5. When the resource is available, or if there is an error of some description, queue a
task that uses the resource as appropriate. If the resource can be processed
incrementally, as, for instance, with a progressively interlaced JPEG or an HTML
file, additional tasks may be queued to process the data as it is downloaded. The
task source for these tasks is the networking task source.

If the user agent can determine the actual length of the file being fetched for an instance
of this algorithm, and if that length is finite, then that length is the file's size. Otherwise, the
subject of the algorithm (that is, the file being fetched) has no known size. (For example,
the HTTP Content-Length header might provide this information.)

The user agent must also keep track of the number of bytes downloaded for each
instance of this algorithm. This number must exclude any out-of-band metadata, such as
HTTP headers.

The application cache processing model introduces some changes to the
networking model to handle the returning of cached resources.

The navigation processing model handles redirects itself, overriding the redirection
handling that would be done by the fetching algorithm.

Whether the type sniffing rules apply to the fetched resource depends on the
algorithm that invokes the rules — they are not always applicable.

2.6.1 Protocol concepts

Status: Working draft

User agents can implement a variety of transfer protocols, but this specification mostly
defines behavior in terms of HTTP. [HTTP]

The HTTP GET method is equivalent to the default retrieval action of the protocol. For
example, RETR in FTP. Such actions are idempotent and safe, in HTTP terms.

The HTTP response codes are equivalent to statuses in other protocols that have the
same basic meanings. For example, a "file not found" error is equivalent to a 404 code, a
server error is equivalent to a 5xx code, and so on.

The HTTP headers are equivalent to fields in other protocols that have the same basic
meaning. For example, the HTTP authentication headers are equivalent to the
authentication aspects of the FTP protocol.

2.6.2 Encrypted HTTP and related security concerns

Status: Working draft

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 87 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 87 from 931

Anything in this specification that refers to HTTP also applies to HTTP-over-TLS, as
represented by URLs representing the https scheme.

User agents should report certificate errors to the user and must either refuse to
download resources sent with erroneous certificates or must act as if such
resources were in fact served with no encryption.

User agents should warn the user that there is a potential problem whenever the user
visits a page that the user has previously visited, if the page uses less secure encryption
on the second visit.

Not doing so can result in users not noticing man-in-the-middle attacks.

If a user connects to a server with a self-signed certificate, the user agent could allow the
connection but just act as if there had been no encryption. If the user agent instead
allowed the user to override the problem and then displayed the page as if it was fully and
safely encrypted, the user could be easily tricked into accepting man-in-the-middle
connections.

If a user connects to a server with full encryption, but the page then refers to an external
resource that has an expired certificate, then the user agent will act as if the resource was
unavailable, possibly also reporting the problem to the user. If the user agent instead
allowed the resource to be used, then an attacker could just look for "secure" sites that
used resources from a different host and only apply man-in-the-middle attacks to that
host, for example taking over scripts in the page.

If a user bookmarks a site that uses a CA-signed certificate, and then later revisits that site
directly but the site has started using a self-signed certificate, the user agent could warn
the user that a man-in-the-middle attack is likely underway, instead of simply acting as if
the page was not encrypted.

2.6.3 Determining the type of a resource

Status: Working draft

The Content-Type metadata of a resource must be obtained and interpreted in a manner
consistent with the requirements of the Content-Type Processing Model specification.
[MIMESNIFF]

The algorithm for extracting an encoding from a Content-Type, given a string s, is
given in the Content-Type Processing Model specification. It either returns an encoding or
nothing. [MIMESNIFF]

The sniffed type of a resource must be found in a manner consistent with the
requirements given in the Content-Type Processing Model specification for finding that
sniffed type. [MIMESNIFF]

The rules for sniffing images specifically are also defined in the Content-Type
Processing Model specification. [MIMESNIFF]

It is imperative that the rules in the Content-Type Processing Model specification be
followed exactly. When a user agent uses different heuristics for content type

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 88 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 88 from 931

detection than the server expects, security problems can occur. For more details,
see the Content-Type Processing Model specification. [MIMESNIFF]

2.7 Character encodings

Status: Working draft

User agents must at a minimum support the UTF-8 and Windows-1252 encodings, but
may support more.

It is not unusual for Web browsers to support dozens if not upwards of a hundred
distinct character encodings.

User agents must support the preferred MIME name of every character encoding they
support that has a preferred MIME name, and should support all the IANA-registered
aliases. [IANACHARSET]

When comparing a string specifying a character encoding with the name or alias of a
character encoding to determine if they are equal, user agents must use the Charset Alias
Matching rules defined in Unicode Technical Standard #22. [UTS22]

For instance, "GB_2312-80" and "g.b.2312(80)" are considered equivalent names.

In addition, user agents must support the aliases given in the following table, so that labels
from the first column are treated as equivalent to the labels given in the corresponding cell
from the second column on the same row.

Additional character encoding aliases
Alias Corresponding encoding References

x-sjis windows-31J [SHIFTJIS] [WIN31J]
windows-932 windows-31J [WIN31J]
x-x-big5 Big5 [BIG5]

When a user agent would otherwise use an encoding given in the first column of the
following table to either convert content to Unicode characters or convert Unicode
characters to bytes, it must instead use the encoding given in the cell in the second
column of the same row. When a byte or sequence of bytes is treated differently due to
this encoding aliasing, it is said to have been misinterpreted for compatibility.

Character encoding overrides
Input encoding Replacement encoding References

EUC-KR windows-949 [EUCKR] [WIN949]
GB2312 GBK [RFC1345] [GBK]
GB_2312-80 GBK [RFC1345] [GBK]
ISO-8859-1 windows-1252 [RFC1345] [WIN1252]
ISO-8859-9 windows-1254 [RFC1345] [WIN1254]
ISO-8859-11 windows-874 [ISO885911] [WIN874]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 89 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 89 from 931

Character encoding overrides
Input encoding Replacement encoding References

KS_C_5601-1987 windows-949 [RFC1345] [WIN949]
Shift_JIS windows-31J [SHIFTJIS] [WIN31J]
TIS-620 windows-874 [TIS620] [WIN874]
US-ASCII windows-1252 [RFC1345] [WIN1252]

The requirement to treat certain encodings as other encodings according to the
table above is a willful violation of the W3C Character Model specification,
motivated by a desire for compatibility with legacy content. [CHARMOD]

When a user agent is to use the UTF-16 encoding but no BOM has been found, user
agents must default to UTF-16LE.

The requirement to default UTF-16 to LE rather than BE is a willful violation of RFC
2781, motivated by a desire for compatibility with legacy content. [CHARMOD]

User agents must not support the CESU-8, UTF-7, BOCU-1 and SCSU encodings.
[CESU8] [UTF7] [BOCU1] [SCSU]

Support for encodings based on EBCDIC is not recommended. This encoding is rarely
used for publicly-facing Web content.

Support for UTF-32 is not recommended. This encoding is rarely used, and frequently
implemented incorrectly.

This specification does not make any attempt to support EBCDIC-based encodings
and UTF-32 in its algorithms; support and use of these encodings can thus lead to
unexpected behavior in implementations of this specification.

2.8 Common DOM interfaces

Status: Working draft

2.8.1 Reflecting content attributes in DOM attributes

Some DOM attributes are defined to reflect a particular content attribute. This means that
on getting, the DOM attribute returns the current value of the content attribute, and on
setting, the DOM attribute changes the value of the content attribute to the given value.

A list of reflecting DOM attributes and their corresponding content attributes is
given in the index.

In general, on getting, if the content attribute is not present, the DOM attribute must act as
if the content attribute's value is the empty string; and on setting, if the content attribute is
not present, it must first be added.

If a reflecting DOM attribute is a DOMString attribute whose content attribute is defined to
contain a URL, then on getting, the DOM attribute must resolve the value of the content

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 90 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 90 from 931

attribute relative to the element and return the resulting absolute URL if that was
successful, or the empty string otherwise; and on setting, must set the content attribute to
the specified literal value. If the content attribute is absent, the DOM attribute must return
the default value, if the content attribute has one, or else the empty string.

If a reflecting DOM attribute is a DOMString attribute whose content attribute is defined to
contain one or more URLs, then on getting, the DOM attribute must split the content
attribute on spaces and return the concatenation of resolving each token URL to an
absolute URL relative to the element, with a single U+0020 SPACE character between
each URL, ignoring any tokens that did not resolve successfully. If the content attribute is
absent, the DOM attribute must return the default value, if the content attribute has one, or
else the empty string. On setting, the DOM attribute must set the content attribute to the
specified literal value.

If a reflecting DOM attribute is a DOMString whose content attribute is an enumerated
attribute, and the DOM attribute is limited to only known values, then, on getting, the
DOM attribute must return the conforming value associated with the state the attribute is in
(in its canonical case), or the empty string if the attribute is in a state that has no
associated keyword value; and on setting, if the new value is an ASCII case-insensitive
match for one of the keywords given for that attribute, then the content attribute must be
set to the conforming value associated with the state that the attribute would be in if set to
the given new value, otherwise, if the new value is the empty string, then the content
attribute must be removed, otherwise, the setter must raise a SYNTAX_ERR exception.

If a reflecting DOM attribute is a DOMString but doesn't fall into any of the above
categories, then the getting and setting must be done in a transparent, case-preserving
manner.

If a reflecting DOM attribute is a boolean attribute, then on getting the DOM attribute must
return true if the attribute is set, and false if it is absent. On setting, the content attribute
must be removed if the DOM attribute is set to false, and must be set to have the same
value as its name if the DOM attribute is set to true. (This corresponds to the rules for
boolean content attributes.)

If a reflecting DOM attribute is a signed integer type (long) then, on getting, the content
attribute must be parsed according to the rules for parsing signed integers, and if that is
successful, and the value is in the range of the DOM attribute's type, the resulting value
must be returned. If, on the other hand, it fails or returns an out of range value, or if the
attribute is absent, then the default value must be returned instead, or 0 if there is no
default value. On setting, the given value must be converted to the shortest possible string
representing the number as a valid integer and then that string must be used as the new
content attribute value.

If a reflecting DOM attribute is an unsigned integer type (unsigned long) then, on getting,
the content attribute must be parsed according to the rules for parsing non-negative
integers, and if that is successful, and the value is in the range of the DOM attribute's type,
the resulting value must be returned. If, on the other hand, it fails or returns an out of
range value, or if the attribute is absent, the default value must be returned instead, or 0 if
there is no default value. On setting, the given value must be converted to the shortest
possible string representing the number as a valid non-negative integer and then that
string must be used as the new content attribute value.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 91 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 91 from 931

If a reflecting DOM attribute is an unsigned integer type (unsigned long) that is limited to
only positive non-zero numbers, then the behavior is similar to the previous case, but
zero is not allowed. On getting, the content attribute must first be parsed according to the
rules for parsing non-negative integers, and if that is successful, and the value is in the
range of the DOM attribute's type, the resulting value must be returned. If, on the other
hand, it fails or returns an out of range value, or if the attribute is absent, the default value
must be returned instead, or 1 if there is no default value. On setting, if the value is zero,
the user agent must fire an INDEX_SIZE_ERR exception. Otherwise, the given value must be
converted to the shortest possible string representing the number as a valid non-negative
integer and then that string must be used as the new content attribute value.

If a reflecting DOM attribute is a floating point number type (float) and it doesn't fall into
one of the earlier categories, then, on getting, the content attribute must be parsed
according to the rules for parsing floating point number values, and if that is successful,
and the value is in the range of the DOM attribute's type, the resulting value must be
returned. If, on the other hand, it fails or returns an out of range value, or if the attribute is
absent, the default value must be returned instead, or 0.0 if there is no default value. On
setting, the given value must be converted to the best representation of the floating point
number and then that string must be used as the new content attribute value.

The values Infinity and Not-a-Number (NaN) values throw an exception on setting,
as defined earlier.

If a reflecting DOM attribute is of the type DOMTokenList or DOMSettableTokenList, then on
getting it must return a DOMTokenList or DOMSettableTokenList object (as appropriate)
whose underlying string is the element's corresponding content attribute. When the object
mutates its underlying string, the content attribute must itself be immediately mutated.
When the attribute is absent, then the string represented by the object is the empty string;
when the object mutates this empty string, the user agent must add the corresponding
content attribute, with its value set to the value it would have been set to after mutating the
empty string. The same DOMTokenList object must be returned every time for each
attribute.

If an element with no attributes has its element.classList.remove() method invoked, the
underlying string won't be changed, since the result of removing any token from the empty
string is still the empty string. However, if the element.classList.add() method is then
invoked, a class attribute will be added to the element with the value of the token to be
added.

If a reflecting DOM attribute has the type HTMLElement, or an interface that descends from
HTMLElement, then, on getting, it must run the following algorithm (stopping at the first point
where a value is returned):

1. If the corresponding content attribute is absent, then the DOM attribute must return
null.

2. Let candidate be the element that the document.getElementById() method would
find if it was passed as its argument the current value of the corresponding content
attribute.

3. If candidate is null, or if it is not type-compatible with the DOM attribute, then the
DOM attribute must return null.

4. Otherwise, it must return candidate.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 92 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 92 from 931

On setting, if the given element has an id attribute, then the content attribute must be set
to the value of that id attribute. Otherwise, the DOM attribute must be set to the empty
string.

2.8.2 Collections

The HTMLCollection, HTMLAllCollection, HTMLFormControlsCollection,
HTMLOptionsCollection, and HTMLPropertyCollection interfaces represent various lists of
DOM nodes. Collectively, objects implementing these interfaces are called collections.

When a collection is created, a filter and a root are associated with the collection.

For example, when the HTMLCollection object for the document.images attribute is
created, it is associated with a filter that selects only img elements, and rooted at the
root of the document.

The collection then represents a live view of the subtree rooted at the collection's root,
containing only nodes that match the given filter. The view is linear. In the absence of
specific requirements to the contrary, the nodes within the collection must be sorted in tree
order.

The rows list is not in tree order.

An attribute that returns a collection must return the same object every time it is retrieved.

2.8.2.1 HTMLCollection

The HTMLCollection interface represents a generic collection of elements.

interface HTMLCollection {
 readonly attribute unsigned long length;
 caller getter Element item(in unsigned long index);
 caller getter Element namedItem(in DOMString name);
 HTMLAllCollection tags(in DOMString tagName);
};

collection . length
Returns the number of elements in the collection.

element = collection . item(index)
collection[index]
collection(index)

Returns the item with index index from the collection. The items are sorted in tree
order.
Returns null if index is out of range.

element = collection . namedItem(name)
collection[name]
collection(name)

Returns the first item with ID or name name from the collection.
Returns null if no element with that ID or name could be found.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 93 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 93 from 931

Only a, applet, area, embed, form, frame, frameset, iframe, img, and object
elements can have a name for the purpose of this method; their name is given by
the value of their name attribute.

collection = collection . tags(tagName)
Returns a collection that is a filtered view of the current collection, containing only
elements with the given tag name.

The object's indices of the supported indexed properties are the numbers in the range
zero to one less than the number of nodes represented by the collection. If there are no
such elements, then there are no supported indexed properties.

The length attribute must return the number of nodes represented by the collection.

The item(index) method must return the indexth node in the collection. If there is no
indexth node in the collection, then the method must return null.

The names of the supported named properties consist of the values of the name attributes
of each a, applet, area, embed, form, frame, frameset, iframe, img, and object element
represented by the collection with a name attribute, plus the list of IDs that the elements
represented by the collection have.

The namedItem(key) method must return the first node in the collection that matches the
following requirements:

• It is an a, applet, area, embed, form, frame, frameset, iframe, img, or object
element with a name attribute equal to key, or,

• It is an element with an ID key.

If no such elements are found, then the method must return null.

The tags(tagName) method must return an HTMLAllCollection rooted at the same node
as the HTMLCollection object on which the method was invoked, whose filter matches
only HTML elements whose local name is the tagName argument and that already match
the filter of the HTMLCollection object on which the method was invoked. In HTML
documents, the argument must first be converted to ASCII lowercase.

2.8.2.2 HTMLAllCollection

The HTMLAllCollection interface represents a generic collection of elements just like
HTMLCollection, with the exception that its namedItem() method returns an
HTMLCollection object when there are multiple matching elements.

interface HTMLAllCollection {
 readonly attribute unsigned long length;
 caller getter Element item(in unsigned long index);
 caller getter object namedItem(in DOMString name);
 HTMLAllCollection tags(in DOMString tagName);
};

collection . length

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 94 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 94 from 931

Returns the number of elements in the collection.
element = collection . item(index)
collection[index]
collection(index)

Returns the item with index index from the collection. The items are sorted in tree
order.
Returns null if index is out of range.

element = collection . namedItem(name)
collection = collection . namedItem(name)
collection[name]
collection(name)

Returns the item with ID or name name from the collection.

If there are multiple matching items, then an HTMLAllCollection object containing
all those elements is returned.
Returns null if no element with that ID or name could be found.

Only a, applet, area, embed, form, frame, frameset, iframe, img, and object
elements can have a name for the purpose of this method; their name is given by
the value of their name attribute.

collection = collection . tags(tagName)
Returns a collection that is a filtered view of the current collection, containing only
elements with the given tag name.

The object's indices of the supported indexed properties are the numbers in the range
zero to one less than the number of nodes represented by the collection. If there are no
such elements, then there are no supported indexed properties.

The length attribute must return the number of nodes represented by the collection.

The item(index) method must return the indexth node in the collection. If there is no
indexth node in the collection, then the method must return null.

The names of the supported named properties consist of the values of the name attributes
of each a, applet, area, embed, form, frame, frameset, iframe, img, and object element
represented by the collection with a name attribute, plus the list of IDs that the elements
represented by the collection have.

The namedItem(key) method must act according to the following algorithm:

1. Let collection be an HTMLAllCollection object rooted at the same node as the
HTMLAllCollection object on which the method was invoked, whose filter matches
only only elements that already match the filter of the HTMLAllCollection object on
which the method was invoked and that are either:

o a, applet, area, embed, form, frame, frameset, iframe, img, or object
elements with a name attribute equal to key, or,

o elements with an ID key.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 95 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 95 from 931

2. If, at the time the method is called, there is exactly one node in collection, then
return that node and stop the algorithm.

3. Otherwise, if, at the time the method is called, collection is empty, return null and
stop the algorithm.

4. Otherwise, return collection.

The tags(tagName) method must return an HTMLAllCollection rooted at the same node
as the HTMLAllCollection object on which the method was invoked, whose filter matches
only HTML elements whose local name is the tagName argument and that already match
the filter of the HTMLAllCollection object on which the method was invoked. In HTML
documents, the argument must first be converted to ASCII lowercase.

2.8.2.3 HTMLFormControlsCollection

The HTMLFormControlsCollection interface represents a collection of listed elements in
form and fieldset elements.

interface HTMLFormControlsCollection {
 readonly attribute unsigned long length;
 caller getter HTMLElement item(in unsigned long index);
 caller getter object namedItem(in DOMString name);
};

interface RadioNodeList : NodeList {
 attribute DOMString value;
};

collection . length
Returns the number of elements in the collection.

element = collection . item(index)
collection[index]
collection(index)

Returns the item with index index from the collection. The items are sorted in tree
order.
Returns null if index is out of range.

element = collection . namedItem(name)
radioNodeList = collection . namedItem(name)
collection[name]
collection(name)

Returns the item with ID or name name from the collection.

If there are multiple matching items, then a RadioNodeList object containing all
those elements is returned.

Returns null if no element with that ID or name could be found.
radioNodeList . value [= value]

Returns the value of the first checked radio button represented by the object.
Can be set, to check the first radio button with the given value represented by the
object.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 96 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 96 from 931

The object's indices of the supported indexed properties are the numbers in the range
zero to one less than the number of nodes represented by the collection. If there are no
such elements, then there are no supported indexed properties.

The length attribute must return the number of nodes represented by the collection.

The item(index) method must return the indexth node in the collection. If there is no
indexth node in the collection, then the method must return null.

The names of the supported named properties consist of the values of all the id and name
attributes of all the elements represented by the collection.

The namedItem(name) method must act according to the following algorithm:

1. If, at the time the method is called, there is exactly one node in the collection that
has either an id attribute or a name attribute equal to name, then return that node
and stop the algorithm.

2. Otherwise, if there are no nodes in the collection that have either an id attribute or
a name attribute equal to name, then return null and stop the algorithm.

3. Otherwise, create a RadioNodeList object representing a live view of the
HTMLFormControlsCollection object, further filtered so that the only nodes in the
RadioNodeList object are those that have either an id attribute or a name attribute
equal to name. The nodes in the RadioNodeList object must be sorted in tree order.

4. Return that RadioNodeList object.

Members of the RadioNodeList interface inherited from the NodeList interface must
behave as they would on a NodeList object.

The value DOM attribute on the RadioNodeList object, on getting, must return the value
returned by running the following steps:

1. Let element be the first element in tree order represented by the RadioNodeList
object that is an input element whose type attribute is in the Radio Button state
and whose checkedness is true. Otherwise, let it be null.

2. If element is null, or if it is an element with no value attribute, return the empty
string.

3. Otherwise, return the value of element's value attribute.

On setting, the value DOM attribute must run the following steps:

1. Let element be the first element in tree order represented by the RadioNodeList
object that is an input element whose type attribute is in the Radio Button state
and whose value content attribute is present and equal to the new value, if any.
Otherwise, let it be null.

2. If element is not null, then set its checkedness to true.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 97 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 97 from 931

2.8.2.4 HTMLOptionsCollection

The HTMLOptionsCollection interface represents a list of option elements. It is always
rooted on a select element and has attributes and methods that manipulate that
element's descendants.

interface HTMLOptionsCollection {
 attribute unsigned long length;
 caller getter HTMLOptionElement item(in unsigned long index);
 caller getter object namedItem(in DOMString name);
 void add(in HTMLElement element, in optional HTMLElement before);
 void add(in HTMLElement element, in long before);
 void remove(in long index);
};

collection . length [= value]
Returns the number of elements in the collection.

When set to a smaller number, truncates the number of option elements in the
corresponding container.

When set to a greater number, adds new blank option elements to that container.

element = collection . item(index)
collection[index]
collection(index)

Returns the item with index index from the collection. The items are sorted in tree
order.
Returns null if index is out of range.

element = collection . namedItem(name)
nodeList = collection . namedItem(name)
collection[name]
collection(name)

Returns the item with ID or name name from the collection.

If there are multiple matching items, then a NodeList object containing all those
elements is returned.
Returns null if no element with that ID could be found.

collection . add(element [, before])
Inserts element before the node given by before.
The before argument can be a number, in which case element is inserted before
the item with that number, or an element from the collection, in which case element
is inserted before that element.
If before is omitted, null, or a number out of range, then element will be added at
the end of the list.

This method will throw a HIERARCHY_REQUEST_ERR exception if element is an
ancestor of the element into which it is to be inserted. If element is not an option or
optgroup element, then the method does nothing.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 98 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 98 from 931

The object's indices of the supported indexed properties are the numbers in the range
zero to one less than the number of nodes represented by the collection. If there are no
such elements, then there are no supported indexed properties.

On getting, the length attribute must return the number of nodes represented by the
collection.

On setting, the behavior depends on whether the new value is equal to, greater than, or
less than the number of nodes represented by the collection at that time. If the number is
the same, then setting the attribute must do nothing. If the new value is greater, then n
new option elements with no attributes and no child nodes must be appended to the
select element on which the HTMLOptionsCollection is rooted, where n is the difference
between the two numbers (new value minus old value). If the new value is lower, then the
last n nodes in the collection must be removed from their parent nodes, where n is the
difference between the two numbers (old value minus new value).

Setting length never removes or adds any optgroup elements, and never adds new
children to existing optgroup elements (though it can remove children from them).

The item(index) method must return the indexth node in the collection. If there is no
indexth node in the collection, then the method must return null.

The names of the supported named properties consist of the values of all the id and name
attributes of all the elements represented by the collection.

The namedItem(name) method must act according to the following algorithm:

1. If, at the time the method is called, there is exactly one node in the collection that
has either an id attribute or a name attribute equal to name, then return that node
and stop the algorithm.

2. Otherwise, if there are no nodes in the collection that have either an id attribute or
a name attribute equal to name, then return null and stop the algorithm.

3. Otherwise, create a NodeList object representing a live view of the
HTMLOptionsCollection object, further filtered so that the only nodes in the
NodeList object are those that have either an id attribute or a name attribute equal
to name. The nodes in the NodeList object must be sorted in tree order.

4. Return that NodeList object.

The add(element, before) method must act according to the following algorithm:

1. If element is not an option or optgroup element, then return and abort these steps.

2. If element is an ancestor of the select element on which the
HTMLOptionsCollection is rooted, then throw a HIERARCHY_REQUEST_ERR exception.

3. If before is an element, but that element isn't a descendant of the select element
on which the HTMLOptionsCollection is rooted, then throw a NOT_FOUND_ERR
exception.

4. If element and before are the same element, then return and abort these steps.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 99 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 99 from 931

5. If before is a node, then let reference be that node. Otherwise, if before is an
integer, and there is a beforeth node in the collection, let reference be that node.
Otherwise, let reference be null.

6. If reference is not null, let parent be the parent node of reference. Otherwise, let
parent be the select element on which the HTMLOptionsCollection is rooted.

7. Act as if the DOM Core insertBefore() method was invoked on the parent node,
with element as the first argument and reference as the second argument.

The remove(index) method must act according to the following algorithm:

1. If the number of nodes represented by the collection is zero, abort these steps.

2. If index is not a number greater than or equal to 0 and less than the number of
nodes represented by the collection, let element be the first element in the
collection. Otherwise, let element be the indexth element in the collection.

3. Remove element from its parent node.

2.8.2.5 HTMLPropertyCollection

The HTMLPropertyCollection interface represents a collection of elements that add name-
value pairs to a particular item in the microdata model.

interface HTMLPropertyCollection {
 readonly attribute unsigned long length;
 readonly attribute DOMStringList names;
 caller getter HTMLElement item(in unsigned long index);
 caller getter PropertyNodeList namedItem(in DOMString name);
};

typedef sequence<any> PropertyValueArray;

interface PropertyNodeList : NodeList {
 attribute PropertyValueArray contents;
};

collection . length
Returns the number of elements in the collection.

collection . names
Returns a DOMStringList with the property names of the elements in the collection.

element = collection . item(index)
collection[index]
collection(index)

Returns the element with index index from the collection. The items are sorted in
tree order.
Returns null if index is out of range.

propertyNodeList = collection . namedItem(name)
collection[name]
collection(name)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 100 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 100 from 931

Returns a PropertyNodeList object containing any elements that add a property
named name.

propertyNodeList . contents
Returns an array of the various values that the relevant elements have.

The object's indices of the supported indexed properties are the numbers in the range
zero to one less than the number of nodes represented by the collection. If there are no
such elements, then there are no supported indexed properties.

The length attribute must return the number of nodes represented by the collection.

The item(index) method must return the indexth node in the collection. If there is no
indexth node in the collection, then the method must return null.

The names of the supported named properties consist of the property names of all the
elements represented by the collection.

The names attribute must return a live DOMStringList object giving the property names of
all the elements represented by the collection, listed in tree order, but with duplicates
removed, leaving only the first occurrence of each name. The same object must be
returned each time.

The namedItem(name) method must return a PropertyNodeList object representing a live
view of the HTMLPropertyCollection object, further filtered so that the only nodes in the
RadioNodeList object are those that have a property name equal to name. The nodes in
the PropertyNodeList object must be sorted in tree order, and the same object must be
returned each time a particular name is queried.

Members of the PropertyNodeList interface inherited from the NodeList interface must
behave as they would on a NodeList object.

The contents DOM attribute on the PropertyNodeList object, on getting, must return a
newly constructed array whose values are the values obtained from the content DOM
property of each of the elements represented by the object, in tree order.

2.8.3 DOMTokenList

The DOMTokenList interface represents an interface to an underlying string that consists of
a set of space-separated tokens.

DOMTokenList objects are always case-sensitive, even when the underlying string
might ordinarily be treated in a case-insensitive manner.

interface DOMTokenList {
 readonly attribute unsigned long length;
 getter DOMString item(in unsigned long index);
 boolean contains(in DOMString token);
 void add(in DOMString token);
 void remove(in DOMString token);

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 101 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 101 from 931

 boolean toggle(in DOMString token);
 stringifier DOMString ();
};

tokenlist . length
Returns the number of tokens in the string.

element = tokenlist . item(index)
tokenlist[index]

Returns the token with index index. The tokens are returned in the order they are
found in the underlying string.
Returns null if index is out of range.

hastoken = tokenlist . contains(token)
Returns true if the token is present; false otherwise.

Throws a SYNTAX_ERR exception if token is empty.

Throws an INVALID_CHARACTER_ERR exception if token contains any spaces.

tokenlist . add(token)
Adds token, unless it is already present.

Throws a SYNTAX_ERR exception if token is empty.

Throws an INVALID_CHARACTER_ERR exception if token contains any spaces.

tokenlist . remove(token)
Removes token if it is present.

Throws a SYNTAX_ERR exception if token is empty.

Throws an INVALID_CHARACTER_ERR exception if token contains any spaces.

hastoken = tokenlist . toggle(token)
Adds token if it is not present, or removes it if it is.

Throws a SYNTAX_ERR exception if token is empty.

Throws an INVALID_CHARACTER_ERR exception if token contains any spaces.

The length attribute must return the number of tokens that result from splitting the
underlying string on spaces. This is the length.

The object's indices of the supported indexed properties are the numbers in the range
zero to length-1, unless the length is zero, in which case there are no supported indexed
properties.

The item(index) method must split the underlying string on spaces, preserving the order
of the tokens as found in the underlying string, and then return the indexth item in this list.
If index is equal to or greater than the number of tokens, then the method must return null.

For example, if the string is "a b a c" then there are four tokens: the token with index
0 is "a", the token with index 1 is "b", the token with index 2 is "a", and the token with
index 3 is "c".

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 102 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 102 from 931

The contains(token) method must run the following algorithm:

1. If the token argument is the empty string, then raise a SYNTAX_ERR exception and
stop the algorithm.

2. If the token argument contains any space characters, then raise an
INVALID_CHARACTER_ERR exception and stop the algorithm.

3. Otherwise, split the underlying string on spaces to get the list of tokens in the
object's underlying string.

4. If the token indicated by token is a case-sensitive match for one of the tokens in the
object's underlying string then return true and stop this algorithm.

5. Otherwise, return false.

The add(token) method must run the following algorithm:

1. If the token argument is the empty string, then raise a SYNTAX_ERR exception and
stop the algorithm.

2. If the token argument contains any space characters, then raise an
INVALID_CHARACTER_ERR exception and stop the algorithm.

3. Otherwise, split the underlying string on spaces to get the list of tokens in the
object's underlying string.

4. If the given token is a case-sensitive match for one of the tokens in the
DOMTokenList object's underlying string then stop the algorithm.

5. Otherwise, if the DOMTokenList object's underlying string is not the empty string and
the last character of that string is not a space character, then append a U+0020
SPACE character to the end of that string.

6. Append the value of token to the end of the DOMTokenList object's underlying string.

The remove(token) method must run the following algorithm:

1. If the token argument is the empty string, then raise a SYNTAX_ERR exception and
stop the algorithm.

2. If the token argument contains any space characters, then raise an
INVALID_CHARACTER_ERR exception and stop the algorithm.

3. Otherwise, remove the given token from the underlying string.

The toggle(token) method must run the following algorithm:

1. If the token argument is the empty string, then raise a SYNTAX_ERR exception and
stop the algorithm.

2. If the token argument contains any space characters, then raise an
INVALID_CHARACTER_ERR exception and stop the algorithm.

3. Otherwise, split the underlying string on spaces to get the list of tokens in the
object's underlying string.

4. If the given token is a case-sensitive match for one of the tokens in the
DOMTokenList object's underlying string then remove the given token from the
underlying string and stop the algorithm, returning false.

5. Otherwise, if the DOMTokenList object's underlying string is not the empty string and
the last character of that string is not a space character, then append a U+0020
SPACE character to the end of that string.

6. Append the value of token to the end of the DOMTokenList object's underlying string.
7. Return true.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 103 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 103 from 931

Objects implementing the DOMTokenList interface must stringify to the object's underlying
string representation.

2.8.4 DOMSettableTokenList

The DOMSettableTokenList interface is the same as the DOMTokenList interface, except
that it allows the underlying string to be directly changed.

interface DOMSettableTokenList : DOMTokenList {
 attribute DOMString value;
};

tokenlist . value
Returns the underlying string.
Can be set, to change the underlying string.

An object implementing the DOMSettableTokenList interface must act as defined for the
DOMTokenList interface, except for the value attribute defined here.

The value attribute must return the underlying string on getting, and must replace the
underlying string with the new value on setting.

2.8.5 Safe passing of structured data

When a user agent is required to obtain a structured clone of an object, it must run the
following algorithm, which either returns a separate object, or throws an exception.

1. Let input be the object being cloned.

2. Let memory be a list of objects, initially empty. (This is used to catch cycles.)

3. Let output be the object resulting from calling the internal structured cloning
algorithm with input and memory.

4. Return output.

The internal structured cloning algorithm is always called with two arguments, input
and memory, and its behavior depends on the type of input, as follows:

If input is the undefined value
Return the undefined value.

If input is the null value
Return the null value.

If input is the false value
Return the false value.

If input is the true value
Return the true value.

If input is a Number object
Return a newly constructed Number object with the same value as input.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 104 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 104 from 931

If input is a String object
Return a newly constructed String object with the same value as input.

If input is a Date object
Return a newly constructed Date object with the same value as input.

If input is a RegExp object
Return a newly constructed RegExp object with the same pattern and flags as input.

The value of the lastIndex property is not copied.

If input is a ImageData object
Return a newly constructed ImageData object with the same width and height as
input, and with a newly constructed CanvasPixelArray for its data attribute, with the
same length and pixel values as the input's.

If input is a File object
Return a newly constructed File object corresponding to the same underlying data.

If input is a FileData object
Return a newly constructed FileData object corresponding to the same underlying
data.

If input is a FileList object
Return a newly constructed FileList object containing a list of newly constructed
File objects corresponding to the same underlying data as those in input,
maintaining their relative order.

If input is a host object (e.g. a DOM node)
Return the null value.

If input is an Array object
If input is an Object object

1. If input is in memory, then throw a NOT_SUPPORTED_ERR exception and abort
the overall structured clone algorithm.

2. Otherwise, let new memory be a list consisting of the items in memory with
the addition of input.

3. Create a new object, output, of the same type as input: either an Array or an
Object.

4. For each enumerable property in input, add a corresponding property to
output having the same name, and having a value created from invoking the
internal structured cloning algorithm recursively with the value of the property
as the "input" argument and new memory as the "memory" argument. The
order of the properties in the input and output objects must be the same.

This does not walk the prototype chain.

5. Return output.

If input is another native object type (e.g. Error)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 105 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 105 from 931

Return the null value.

2.8.6 DOMStringMap

The DOMStringMap interface represents a set of name-value pairs. It exposes these using
the scripting language's native mechanisms for property access.

When a DOMStringMap object is instantiated, it is associated with three algorithms, one for
getting the list of name-value pairs, one for setting names to certain values, and one for
deleting names.

interface DOMStringMap {
 getter DOMString (in DOMString name);
 setter void (in DOMString name, in DOMString value);
 creator void (in DOMString name);
 deleter void (in DOMString name);
};

The names of the supported named properties on a DOMStringMap object at any instant are
the names of each pair returned from the algorithm for getting the list of name-value pairs
at that instant.

When a DOMStringMap object is indexed to retrieve a named property name, the value
returned must be the value component of the name-value pair whose name component is
name in the list returned by the algorithm for getting the list of name-value pairs.

When a DOMStringMap object is indexed to create or modify a named property name with
value value, the algorithm for setting names to certain values must be run, passing name
as the name and the result of converting value to a DOMString as the value.

When a DOMStringMap object is indexed to delete a named property named name, the
algorithm for deleting names must be run, passing name as the name.

The DOMStringMap interface definition here is only intended for JavaScript
environments. Other language bindings will need to define how DOMStringMap is to
be implemented for those languages.

The dataset attribute on elements exposes the data-* attributes on the element.

Given the following fragment and elements with similar constructions:

<img class="tower" id="tower5" data-x="12" data-y="5"
 data-ai="robotarget" data-hp="46" data-ability="flames"
 src="towers/rocket.png alt="Rocket Tower">

...one could imagine a function splashDamage() that takes some arguments, the first of
which is the element to process:

function splashDamage(node, x, y, damage) {
 if (node.classList.contains('tower') && // checking the 'class'
attribute
 node.dataset.x == x && // reading the 'data-x' attribute
 node.dataset.y == y) { // reading the 'data-y' attribute
 var hp = parseInt(node.dataset.hp); // reading the 'data-hp'
attribute

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 106 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 106 from 931

 hp = hp - damage;
 if (hp < 0) {
 hp = 0;
 node.dataset.ai = 'dead'; // setting the 'data-ai' attribute
 delete node.dataset.ability; // removing the 'data-ability'
attribute
 }
 node.dataset.hp = hp; // setting the 'data-hp' attribute
 }
}

2.8.7 DOM feature strings

DOM3 Core defines mechanisms for checking for interface support, and for obtaining
implementations of interfaces, using feature strings. [DOMCORE]

Authors are strongly discouraged from using these, as they are notoriously unreliable and
imprecise. Authors are encouraged to rely on explicit feature testing or the graceful
degradation behavior intrinsic to some of the features in this specification.

For historical reasons, user agents should return the true value when the
hasFeature(feature, version) method of the DOMImplementation interface is invoked
with feature set to either "HTML" or "XHTML" and version set to either "1.0" or "2.0".

2.8.8 Exceptions

The following DOMException codes are defined in DOM Core. [DOMCORE]

1. INDEX_SIZE_ERR
2. DOMSTRING_SIZE_ERR
3. HIERARCHY_REQUEST_ERR
4. WRONG_DOCUMENT_ERR
5. INVALID_CHARACTER_ERR
6. NO_DATA_ALLOWED_ERR
7. NO_MODIFICATION_ALLOWED_ERR
8. NOT_FOUND_ERR
9. NOT_SUPPORTED_ERR
10. INUSE_ATTRIBUTE_ERR
11. INVALID_STATE_ERR
12. SYNTAX_ERR
13. INVALID_MODIFICATION_ERR
14. NAMESPACE_ERR
15. INVALID_ACCESS_ERR
16. VALIDATION_ERR
17. TYPE_MISMATCH_ERR
18. SECURITY_ERR
19. NETWORK_ERR
20. ABORT_ERR
21. URL_MISMATCH_ERR
22. QUOTA_EXCEEDED_ERR
81. PARSE_ERR
82. SERIALIZE_ERR

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 107 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 107 from 931

2.8.9 Garbage collection

There is an implied strong reference from any DOM attribute that returns a pre-existing
object to that object.

For example, the document.location attribute means that there is a strong reference from
a Document object to its Location object. Similarly, there is always a strong reference from
a Document to any descendant nodes, and from any node to its owner Document.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 108 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 108 from 931

3 Semantics, structure, and APIs of HTML documents

Status: Working draft

3.1 Documents

Every XML and HTML document in an HTML UA is represented by a Document object.
[DOMCORE]

The document's address is an absolute URL that is set when the Document is created.
The document's current address is an absolute URL that can change during the lifetime
of the Document, for example when the user navigates to a fragment identifier on the page.
The document's current address must be set to the document's address when the
Document is created.

Interactive user agents typically expose the document's current address in their
user interface.

When a Document is created by a script using the createDocument() API, the document's
address is the same as the document's address of the active document of the script's
browsing context.

Document objects are assumed to be XML documents unless they are flagged as being
HTML documents when they are created. Whether a document is an HTML document or
an XML document affects the behavior of certain APIs, as well as a few CSS rendering
rules. [CSS]

A Document object created by the createDocument() API on the DOMImplementation
object is initially an XML document, but can be made into an HTML document by
calling document.open() on it.

3.1.1 Documents in the DOM

All Document objects (in user agents implementing this specification) must also implement
the HTMLDocument interface, available using binding-specific methods. (This is the case
whether or not the document in question is an HTML document or indeed whether it
contains any HTML elements at all.) Document objects must also implement the document-
level interface of any other namespaces found in the document that the UA supports.

For example, if an HTML implementation also supports SVG, then the Document
object implements both HTMLDocument and SVGDocument.

Because the HTMLDocument interface is now obtained using binding-specific casting
methods instead of simply being the primary interface of the document object, it is
no longer defined as inheriting from Document.

[OverrideBuiltins]
interface HTMLDocument {
 // resource metadata management
 [PutForwards=href] readonly attribute Location location;
 readonly attribute DOMString URL;
 attribute DOMString domain;
 readonly attribute DOMString referrer;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 109 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 109 from 931

 attribute DOMString cookie;
 readonly attribute DOMString lastModified;
 readonly attribute DOMString compatMode;
 attribute DOMString charset;
 readonly attribute DOMString characterSet;
 readonly attribute DOMString defaultCharset;
 readonly attribute DOMString readyState;

 // DOM tree accessors
 attribute DOMString title;
 attribute DOMString dir;
 attribute HTMLElement body;
 readonly attribute HTMLCollection images;
 readonly attribute HTMLCollection embeds;
 readonly attribute HTMLCollection plugins;
 readonly attribute HTMLCollection links;
 readonly attribute HTMLCollection forms;
 readonly attribute HTMLCollection scripts;
 NodeList getElementsByName(in DOMString elementName);
 NodeList getElementsByClassName(in DOMString classNames);
 NodeList getItems(optional in DOMString typeNames);
 getter any (in DOMString name);

 // dynamic markup insertion
 attribute DOMString innerHTML;
 HTMLDocument open(optional in DOMString type, optional in DOMString
replace);
 WindowProxy open(in DOMString url, in DOMString name, in DOMString
features, optional in boolean replace);
 void close();
 void write(in DOMString... text);
 void writeln(in DOMString... text);

 // user interaction
 Selection getSelection();
 readonly attribute Element activeElement;
 boolean hasFocus();
 attribute DOMString designMode;
 boolean execCommand(in DOMString commandId);
 boolean execCommand(in DOMString commandId, in boolean showUI);
 boolean execCommand(in DOMString commandId, in boolean showUI, in
DOMString value);
 boolean queryCommandEnabled(in DOMString commandId);
 boolean queryCommandIndeterm(in DOMString commandId);
 boolean queryCommandState(in DOMString commandId);
 boolean queryCommandSupported(in DOMString commandId);
 DOMString queryCommandValue(in DOMString commandId);
 readonly attribute HTMLCollection commands;

 // event handler DOM attributes
 attribute Function onabort;
 attribute Function onblur;
 attribute Function oncanplay;
 attribute Function oncanplaythrough;
 attribute Function onchange;
 attribute Function onclick;
 attribute Function oncontextmenu;
 attribute Function ondblclick;
 attribute Function ondrag;
 attribute Function ondragend;
 attribute Function ondragenter;
 attribute Function ondragleave;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 110 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 110 from 931

 attribute Function ondragover;
 attribute Function ondragstart;
 attribute Function ondrop;
 attribute Function ondurationchange;
 attribute Function onemptied;
 attribute Function onended;
 attribute Function onerror;
 attribute Function onfocus;
 attribute Function onformchange;
 attribute Function onforminput;
 attribute Function oninput;
 attribute Function oninvalid;
 attribute Function onkeydown;
 attribute Function onkeypress;
 attribute Function onkeyup;
 attribute Function onload;
 attribute Function onloadeddata;
 attribute Function onloadedmetadata;
 attribute Function onloadstart;
 attribute Function onmousedown;
 attribute Function onmousemove;
 attribute Function onmouseout;
 attribute Function onmouseover;
 attribute Function onmouseup;
 attribute Function onmousewheel;
 attribute Function onpause;
 attribute Function onplay;
 attribute Function onplaying;
 attribute Function onprogress;
 attribute Function onratechange;
 attribute Function onreadystatechange;
 attribute Function onscroll;
 attribute Function onseeked;
 attribute Function onseeking;
 attribute Function onselect;
 attribute Function onshow;
 attribute Function onstalled;
 attribute Function onsubmit;
 attribute Function onsuspend;
 attribute Function ontimeupdate;
 attribute Function onvolumechange;
 attribute Function onwaiting;
};
Document implements HTMLDocument;

Since the HTMLDocument interface holds methods and attributes related to a number of
disparate features, the members of this interface are described in various different
sections.

3.1.2 Security

User agents must raise a SECURITY_ERR exception whenever any of the members of an
HTMLDocument object are accessed by scripts whose effective script origin is not the same
as the Document's effective script origin.

3.1.3 Resource metadata management

Status: Last call for comments

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 111 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 111 from 931

document . URL
Returns the document's address.

document . referrer
Returns the address of the Document from which the user navigated to this one,
unless it was blocked or there was no such document, in which case it returns the
empty string.

The noreferrer link type can be used to block the referrer.

The URL attribute must return the document's address.

The referrer attribute must return either the current address of the active document of
the source browsing context at the time the navigation was started (that is, the page which
navigated the browsing context to the current document), or the empty string if there is no
such originating page, or if the UA has been configured not to report referrers in this case,
or if the navigation was initiated for a hyperlink with a noreferrer keyword.

In the case of HTTP, the referrer DOM attribute will match the Referer (sic) header
that was sent when fetching the current page.

Typically user agents are configured to not report referrers in the case where the
referrer uses an encrypted protocol and the current page does not (e.g. when
navigating from an https: page to an http: page).

document . cookie [= value]

Returns the HTTP cookies that apply to the Document. If there are no cookies or
cookies can't be applied to this resource, the empty string will be returned.
Can be set, to add a new cookie to the element's set of HTTP cookies.

If the Document has no browsing context an INVALID_STATE_ERR exception will be
thrown. If the contents are sandboxed into a unique origin, a SECURITY_ERR
exception will be thrown.

The cookie attribute represents the cookies of the resource.

On getting, if the document is not associated with a browsing context then the user agent
must raise an INVALID_STATE_ERR exception. Otherwise, if the sandboxed origin browsing
context flag was set on the browsing context of the Document when the Document was
created, the user agent must raise a SECURITY_ERR exception. Otherwise, if the document's
address does not use a server-based naming authority, it must return the empty string.
Otherwise, it must first obtain the storage mutex and then return the same string as the
value of the Cookie HTTP header it would include if fetching the resource indicated by the
document's address over HTTP, as per RFC 2109 section 4.3.4 or later specifications,
excluding HTTP-only cookies. [RFC2109] [COOKIES]

On setting, if the document is not associated with a browsing context then the user agent
must raise an INVALID_STATE_ERR exception. Otherwise, if the sandboxed origin browsing
context flag was set on the browsing context of the Document when the Document was
created, the user agent must raise a SECURITY_ERR exception. Otherwise, if the document's
address does not use a server-based naming authority, it must do nothing. Otherwise, the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 112 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 112 from 931

user agent must obtain the storage mutex and then act as it would when processing
cookies if it had just attempted to fetch the document's address over HTTP, and had
received a response with a Set-Cookie header whose value was the specified value, as
per RFC 2109 sections 4.3.1, 4.3.2, and 4.3.3 or later specifications, but without
overwriting the values of HTTP-only cookies. [RFC2109] [COOKIES]

This specification does not define what makes an HTTP-only cookie, and at the time
of publication the editor is not aware of any reference for HTTP-only cookies. They
are a feature supported by some Web browsers wherein an "httponly" parameter
added to the cookie string causes the cookie to be hidden from script.

Since the cookie attribute is accessible across frames, the path restrictions on
cookies are only a tool to help manage which cookies are sent to which parts of the
site, and are not in any way a security feature.

document . lastModified

Returns the date of the last modification to the document, as reported by the
server, in the form "MM/DD/YYYY hh:mm:ss".
If the last modification date is not known, the current time is returned instead.

The lastModified attribute, on getting, must return the date and time of the Document's
source file's last modification, in the user's local time zone, in the following format:

1. The month component of the date.
2. A U+002F SOLIDUS character ('/').
3. The day component of the date.
4. A U+002F SOLIDUS character ('/').
5. The year component of the date.
6. A U+0020 SPACE character.
7. The hours component of the time.
8. A U+003A COLON character (':').
9. The minutes component of the time.
10. A U+003A COLON character (':').
11. The seconds component of the time.

All the numeric components above, other than the year, must be given as two digits in the
range U+0030 DIGIT ZERO to U+0039 DIGIT NINE representing the number in base ten,
zero-padded if necessary. The year must be given as four or more digits in the range
U+0030 DIGIT ZERO to U+0039 DIGIT NINE representing the number in base ten, zero-
padded if necessary.

The Document's source file's last modification date and time must be derived from relevant
features of the networking protocols used, e.g. from the value of the HTTP Last-Modified
header of the document, or from metadata in the file system for local files. If the last
modification date and time are not known, the attribute must return the current date and
time in the above format.

document . compatMode

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 113 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 113 from 931

In a conforming document, returns the string "CSS1Compat". (In quirks mode
documents, returns the string "BackCompat", but a conforming document can never
trigger quirks mode.)

A Document is always set to one of three modes: no quirks mode, the default; quirks
mode, used typically for legacy documents; and limited quirks mode, also known as
"almost standards" mode. The mode is only ever changed from the default by the HTML
parser, based on the presence, absence, or value of the DOCTYPE string.

The compatMode DOM attribute must return the literal string "CSS1Compat" unless the
document has been set to quirks mode by the HTML parser, in which case it must instead
return the literal string "BackCompat".

document . charset [= value]

Returns the document's character encoding.
Can be set, to dynamically change the document's character encoding.
New values that are not IANA-registered aliases supported by the user agent are
ignored.

document . characterSet
Returns the document's character encoding.

document . defaultCharset
Returns what might be the user agent's default character encoding.

Documents have an associated character encoding. When a Document object is created,
the document's character encoding must be initialized to UTF-16. Various algorithms
during page loading affect this value, as does the charset setter. [IANACHARSET]

The charset DOM attribute must, on getting, return the preferred MIME name of the
document's character encoding. On setting, if the new value is an IANA-registered alias
for a character encoding supported by the user agent, the document's character encoding
must be set to that character encoding. (Otherwise, nothing happens.)

The characterSet DOM attribute must, on getting, return the preferred MIME name of the
document's character encoding.

The defaultCharset DOM attribute must, on getting, return the preferred MIME name of a
character encoding, possibly the user's default encoding, or an encoding associated with
the user's current geographical location, or any arbitrary encoding name.

document . readyState

Returns "loading" while the Document is loading, and "complete" once it has loaded.

The readystatechange event fires on the Document object when this value changes.

Each document has a current document readiness. When a Document object is created,
it must have its current document readiness set to the string "loading" if the document is
associated with an HTML parser or an XML parser, or to the string "complete" otherwise.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 114 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 114 from 931

Various algorithms during page loading affect this value. When the value is set, the user
agent must fire a simple event called readystatechange at the Document object.

A Document is said to have an active parser if it is associated with an HTML parser or an
XML parser that has not yet been stopped or aborted.

The readyState DOM attribute must, on getting, return the current document readiness.

3.1.4 DOM tree accessors

The html element of a document is the document's root element, if there is one and it's an
html element, or null otherwise.

The head element of a document is the first head element that is a child of the html
element, if there is one, or null otherwise.

document . title [= value]

Returns the document's title, as given by the title element.

Can be set, to update the document's title. If there is no head element, the new
value is ignored.

In SVG documents, the SVGDocument interface's title attribute takes precedence.

The title element of a document is the first title element in the document (in tree
order), if there is one, or null otherwise.

The title attribute must, on getting, run the following algorithm:

1. If the root element is an svg element in the "http://www.w3.org/2000/svg"
namespace, and the user agent supports SVG, then return the value that would
have been returned by the DOM attribute of the same name on the SVGDocument
interface. [SVG]

2. Otherwise, let value be a concatenation of the data of all the child text nodes of the
title element, in tree order, or the empty string if the title element is null.

3. Replace any sequence of two or more consecutive space characters in value with a
single U+0020 SPACE character.

4. Remove any leading or trailing space characters in value.

5. Return value.

On setting, the following algorithm must be run. Mutation events must be fired as
appropriate.

1. If the root element is an svg element in the "http://www.w3.org/2000/svg"
namespace, and the user agent supports SVG, then the setter must defer to the
setter for the DOM attribute of the same name on the SVGDocument interface (if it is
readonly, then this will raise an exception). Stop the algorithm here. [SVG]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 115 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 115 from 931

2. If the title element is null and the head element is null, then the attribute must do
nothing. Stop the algorithm here.

3. If the title element is null, then a new title element must be created and
appended to the head element. Let element be that element. Otherwise, let element
be the title element.

4. The children of element (if any) must all be removed.
5. A single Text node whose data is the new value being assigned must be appended

to element.

The title attribute on the HTMLDocument interface should shadow the attribute of the same
name on the SVGDocument interface when the user agent supports both HTML and SVG.
[SVG]

document . body [= value]

Returns the body element.
Can be set, to replace the body element.

If the new value is not a body or frameset element, this will throw a
HIERARCHY_REQUEST_ERR exception.

The body element of a document is the first child of the html element that is either a body
element or a frameset element. If there is no such element, it is null. If the body element is
null, then when the specification requires that events be fired at "the body element", they
must instead be fired at the Document object.

The body attribute, on getting, must return the body element of the document (either a
body element, a frameset element, or null). On setting, the following algorithm must be
run:

1. If the new value is not a body or frameset element, then raise a
HIERARCHY_REQUEST_ERR exception and abort these steps.

2. Otherwise, if the new value is the same as the body element, do nothing. Abort
these steps.

3. Otherwise, if the body element is not null, then replace that element with the new
value in the DOM, as if the root element's replaceChild() method had been called
with the new value and the incumbent body element as its two arguments
respectively, then abort these steps.

4. Otherwise, the the body element is null. Append the new value to the root element.

document . images

Returns an HTMLCollection of the img elements in the Document.

document . embeds
document . plugins

Return an HTMLCollection of the embed elements in the Document.

document . links

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 116 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 116 from 931

Returns an HTMLCollection of the a and area elements in the Document that have
href attributes.

document . forms
Return an HTMLCollection of the form elements in the Document.

document . scripts
Return an HTMLCollection of the script elements in the Document.

The images attribute must return an HTMLCollection rooted at the Document node, whose
filter matches only img elements.

The embeds attribute must return an HTMLCollection rooted at the Document node, whose
filter matches only embed elements.

The plugins attribute must return the same object as that returned by the embeds attribute.

The links attribute must return an HTMLCollection rooted at the Document node, whose
filter matches only a elements with href attributes and area elements with href attributes.

The forms attribute must return an HTMLCollection rooted at the Document node, whose
filter matches only form elements.

The scripts attribute must return an HTMLCollection rooted at the Document node, whose
filter matches only script elements.

collection = document . getElementsByName(name)

Returns a NodeList of elements in the Document that have a name attribute with the
value name.

collection = document . getElementsByClassName(classes)
collection = element . getElementsByClassName(classes)

Returns a NodeList of the elements in the object on which the method was invoked
(a Document or an Element) that have all the classes given by classes.
The classes argument is interpreted as a space-separated list of classes.

The getElementsByName(name) method takes a string name, and must return a live
NodeList containing all the HTML elements in that document that have a name attribute
whose value is equal to the name argument (in a case-sensitive manner), in tree order.

The getElementsByClassName(classNames) method takes a string that contains an
unordered set of unique space-separated tokens representing classes. When called, the
method must return a live NodeList object containing all the elements in the document, in
tree order, that have all the classes specified in that argument, having obtained the
classes by splitting a string on spaces. If there are no tokens specified in the argument,
then the method must return an empty NodeList. If the document is in quirks mode, then
the comparisons for the classes must be done in an ASCII case-insensitive manner,
otherwise, the comparisons must be done in a case-sensitive manner.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 117 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 117 from 931

The getElementsByClassName(classNames) method on the HTMLElement interface must
return a live NodeList with the nodes that the HTMLDocument getElementsByClassName()
method would return when passed the same argument(s), excluding any elements that
are not descendants of the HTMLElement object on which the method was invoked.

HTML, SVG, and MathML elements define which classes they are in by having an
attribute with no namespace with the name class containing a space-separated list of
classes to which the element belongs. Other specifications may also allow elements in
their namespaces to be labeled as being in specific classes.

Given the following XHTML fragment:

<div id="example">
 <p id="p1" class="aaa bbb"/>
 <p id="p2" class="aaa ccc"/>
 <p id="p3" class="bbb ccc"/>
</div>

A call to document.getElementById('example').getElementsByClassName('aaa') would
return a NodeList with the two paragraphs p1 and p2 in it.

A call to getElementsByClassName('ccc bbb') would only return one node, however,
namely p3. A call to
document.getElementById('example').getElementsByClassName('bbb ccc ') would
return the same thing.

A call to getElementsByClassName('aaa,bbb') would return no nodes; none of the
elements above are in the "aaa,bbb" class.

The HTMLDocument interface supports named properties. The names of the supported
named properties at any moment consist of the values of the name content attributes of all
the applet, embed, form, iframe, img, and fallback-free object elements in the Document
that have name content attributes, and the values of the id content attributes of all the
applet and fallback-free object elements in the Document that have id content attributes,
and the values of the id content attributes of all the img elements in the Document that
have both name content attributes and id content attributes.

When the HTMLDocument object is indexed for property retrieval using a name name,
then the user agent must return the value obtained using the following steps:

1. Let elements be the list of named elements with the name name in the Document.

There will be at least one such element, by definition.

2. If elements has only one element, and that element is an iframe element, then
return the WindowProxy object of the nested browsing context represented by that
iframe element, and abort these steps.

3. Otherwise, if elements has only one element, return that element and abort these
steps.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 118 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 118 from 931

4. Otherwise return an HTMLCollection rooted at the Document node, whose filter
matches only named elements with the name name.

Named elements with the name name, for the purposes of the above algorithm, are those
that are either:

• applet, embed, form, iframe, img, or fallback-free object elements that have a name
content attribute whose value is name, or

• applet or fallback-free object elements that have an id content attribute whose
value is name, or

• img elements that have an id content attribute whose value is name, and that have
a name content attribute present also.

An object element is said to be fallback-free if it has no object or embed descendants.

The dir attribute on the HTMLDocument interface is defined along with the dir content
attribute.

3.2 Elements

3.2.1 Semantics

ISSUE-41 (Decentralized-extensibility) blocks progress to Last Call

Elements, attributes, and attribute values in HTML are defined (by this specification) to
have certain meanings (semantics). For example, the ol element represents an ordered
list, and the lang attribute represents the language of the content.

Authors must not use elements, attributes, and attribute values for purposes other than
their appropriate intended semantic purpose. Authors must not use elements, attributes,
and attribute values that are not permitted by this specification or other applicable
specifications.

For example, the following document is non-conforming, despite being syntactically
correct:

<!DOCTYPE HTML>
<html lang="en-GB">
 <head> <title> Demonstration </title> </head>
 <body>
 <table>
 <tr> <td> My favourite animal is the cat. </td> </tr>
 <tr>
 <td>
 —<cite>Ernest</cite>,
 in an essay from 1992
 </td>
 </tr>
 </table>
 </body>
</html>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 119 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 119 from 931

...because the data placed in the cells is clearly not tabular data (and the cite element
mis-used). A corrected version of this document might be:

<!DOCTYPE HTML>
<html lang="en-GB">
 <head> <title> Demonstration </title> </head>
 <body>
 <blockquote>
 <p> My favourite animal is the cat. </p>
 </blockquote>
 <p>
 —Ernest,
 in an essay from 1992
 </p>
 </body>
</html>

This next document fragment, intended to represent the heading of a corporate site, is
similarly non-conforming because the second line is not intended to be a heading of a
subsection, but merely a subheading or subtitle (a subordinate heading for the same
section).

<body>
 <h1>ABC Company</h1>
 <h2>Leading the way in widget design since 1432</h2>
 ...

The hgroup element should be used in these kinds of situations:

<body>
 <hgroup>
 <h1>ABC Company</h1>
 <h2>Leading the way in widget design since 1432</h2>
 </hgroup>
 ...

In the next example, there is a non-conforming attribute value ("carpet") and a non-
conforming attribute ("texture"), which is not permitted by this specification:

<label>Carpet: <input type="carpet" name="c" texture="deep
pile"></label>

Here would be an alternative and correct way to mark this up:

<label>Carpet: <input type="text" class="carpet" name="c" data-
texture="deep pile"></label>

Through scripting and using other mechanisms, the values of attributes, text, and indeed
the entire structure of the document may change dynamically while a user agent is
processing it. The semantics of a document at an instant in time are those represented by
the state of the document at that instant in time, and the semantics of a document can
therefore change over time. User agents must update their presentation of the document
as this occurs.

HTML has a progress element that describes a progress bar. If its "value" attribute is
dynamically updated by a script, the UA would update the rendering to show the
progress changing.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 120 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 120 from 931

3.2.2 Elements in the DOM

The nodes representing HTML elements in the DOM must implement, and expose to
scripts, the interfaces listed for them in the relevant sections of this specification. This
includes HTML elements in XML documents, even when those documents are in another
context (e.g. inside an XSLT transform).

Elements in the DOM represent things; that is, they have intrinsic meaning, also known as
semantics.

For example, an ol element represents an ordered list.

The basic interface, from which all the HTML elements' interfaces inherit, and which must
be used by elements that have no additional requirements, is the HTMLElement interface.

interface HTMLElement : Element {
 // DOM tree accessors
 NodeList getElementsByClassName(in DOMString classNames);

 // dynamic markup insertion
 attribute DOMString innerHTML;
 attribute DOMString outerHTML;
 void insertAdjacentHTML(in DOMString position, in DOMString text);

 // metadata attributes
 attribute DOMString id;
 attribute DOMString title;
 attribute DOMString lang;
 attribute DOMString dir;
 attribute DOMString className;
 readonly attribute DOMTokenList classList;
 readonly attribute DOMStringMap dataset;

 // microdata
 attribute DOMString item;
 [PutForwards=value] readonly attribute DOMSettableTokenList itemprop;
 readonly attribute HTMLPropertyCollection properties;
 attribute DOMString content;
 attribute HTMLElement subject;

 // user interaction
 attribute boolean hidden;
 void click();
 void scrollIntoView();
 void scrollIntoView(in boolean top);
 attribute long tabIndex;
 void focus();
 void blur();
 attribute DOMString accessKey;
 readonly attribute DOMString accessKeyLabel;
 attribute boolean draggable;
 attribute DOMString contentEditable;
 readonly attribute boolean isContentEditable;
 attribute HTMLMenuElement contextMenu;
 attribute DOMString spellcheck;

 // command API
 readonly attribute DOMString commandType;
 readonly attribute DOMString label;
 readonly attribute DOMString icon;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 121 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 121 from 931

 readonly attribute boolean disabled;
 readonly attribute boolean checked;

 // styling
 readonly attribute CSSStyleDeclaration style;

 // event handler DOM attributes
 attribute Function onabort;
 attribute Function onblur;
 attribute Function oncanplay;
 attribute Function oncanplaythrough;
 attribute Function onchange;
 attribute Function onclick;
 attribute Function oncontextmenu;
 attribute Function ondblclick;
 attribute Function ondrag;
 attribute Function ondragend;
 attribute Function ondragenter;
 attribute Function ondragleave;
 attribute Function ondragover;
 attribute Function ondragstart;
 attribute Function ondrop;
 attribute Function ondurationchange;
 attribute Function onemptied;
 attribute Function onended;
 attribute Function onerror;
 attribute Function onfocus;
 attribute Function onformchange;
 attribute Function onforminput;
 attribute Function oninput;
 attribute Function oninvalid;
 attribute Function onkeydown;
 attribute Function onkeypress;
 attribute Function onkeyup;
 attribute Function onload;
 attribute Function onloadeddata;
 attribute Function onloadedmetadata;
 attribute Function onloadstart;
 attribute Function onmousedown;
 attribute Function onmousemove;
 attribute Function onmouseout;
 attribute Function onmouseover;
 attribute Function onmouseup;
 attribute Function onmousewheel;
 attribute Function onpause;
 attribute Function onplay;
 attribute Function onplaying;
 attribute Function onprogress;
 attribute Function onratechange;
 attribute Function onreadystatechange;
 attribute Function onscroll;
 attribute Function onseeked;
 attribute Function onseeking;
 attribute Function onselect;
 attribute Function onshow;
 attribute Function onstalled;
 attribute Function onsubmit;
 attribute Function onsuspend;
 attribute Function ontimeupdate;
 attribute Function onvolumechange;
 attribute Function onwaiting;
};

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 122 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 122 from 931

interface HTMLUnknownElement : HTMLElement { };

The HTMLElement interface holds methods and attributes related to a number of disparate
features, and the members of this interface are therefore described in various different
sections of this specification.

The HTMLUnknownElement interface must be used for HTML elements that are not defined
by this specification.

3.2.3 Global attributes

The following attributes are common to and may be specified on all HTML elements (even
those not defined in this specification):

• accesskey
• class
• contenteditable
• contextmenu
• dir
• draggable
• id
• item
• hidden
• lang
• itemprop
• spellcheck
• style
• subject
• tabindex
• title

Unless otherwise specified, the following event handler content attributes may be
specified on any HTML element:

• onabort
• onblur*
• oncanplay
• oncanplaythrough
• onchange
• onclick
• oncontextmenu
• ondblclick
• ondrag
• ondragend
• ondragenter
• ondragleave
• ondragover
• ondragstart
• ondrop
• ondurationchange
• onemptied

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 123 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 123 from 931

• onended
• onerror*
• onfocus*
• onformchange
• onforminput
• oninput
• oninvalid
• onkeydown
• onkeypress
• onkeyup
• onload*
• onloadeddata
• onloadedmetadata
• onloadstart
• onmousedown
• onmousemove
• onmouseout
• onmouseover
• onmouseup
• onmousewheel
• onpause
• onplay
• onplaying
• onprogress
• onratechange
• onreadystatechange
• onscroll
• onseeked
• onseeking
• onselect
• onshow
• onstalled
• onsubmit
• onsuspend
• ontimeupdate
• onvolumechange
• onwaiting

The attributes marked with an asterisk have a different meaning when specified on
body elements as those elements expose event handler attributes of the Window
object with the same names.

Custom data attributes (e.g. data-foldername or data-msgid) can be specified on any
HTML element, to store custom data specific to the page.

In HTML documents, elements in the HTML namespace may have an xmlns attribute
specified, if, and only if, it has the exact value "http://www.w3.org/1999/xhtml". This does
not apply to XML documents.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 124 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 124 from 931

In HTML, the xmlns attribute has absolutely no effect. It is basically a talisman. It is
allowed merely to make migration to and from XHTML mildly easier. When parsed
by an HTML parser, the attribute ends up in no namespace, not the
"http://www.w3.org/2000/xmlns/" namespace like namespace declaration attributes
in XML do.

In XML, an xmlns attribute is part of the namespace declaration mechanism, and an
element cannot actually have an xmlns attribute in no namespace specified.

To enable assistive technology products to expose a more fine-grained interface than is
otherwise possible with HTML elements and attributes, a set of annotations for assistive
technology products can be specified.

3.2.3.1 The id attribute

Status: Implemented and widely deployed

The id attribute represents its element's unique identifier. The value must be unique in the
element's home subtree and must contain at least one character. The value must not
contain any space characters.

An element's unique identifier can be used for a variety of purposes, most notably
as a way to link to specific parts of a document using fragment identifiers, as a way
to target an element when scripting, and as a way to style a specific element from
CSS.

If the value is not the empty string, user agents must associate the element with the given
value (exactly, including any space characters) for the purposes of ID matching within the
element's home subtree (e.g. for selectors in CSS or for the getElementById() method in
the DOM).

Identifiers are opaque strings. Particular meanings should not be derived from the value of
the id attribute.

This specification doesn't preclude an element having multiple IDs, if other mechanisms
(e.g. DOM Core methods) can set an element's ID in a way that doesn't conflict with the id
attribute.

The id DOM attribute must reflect the id content attribute.

3.2.3.2 The title attribute

Status: Implemented and widely deployed

The title attribute represents advisory information for the element, such as would be
appropriate for a tooltip. On a link, this could be the title or a description of the target
resource; on an image, it could be the image credit or a description of the image; on a
paragraph, it could be a footnote or commentary on the text; on a citation, it could be
further information about the source; and so forth. The value is text.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 125 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 125 from 931

If this attribute is omitted from an element, then it implies that the title attribute of the
nearest ancestor HTML element with a title attribute set is also relevant to this element.
Setting the attribute overrides this, explicitly stating that the advisory information of any
ancestors is not relevant to this element. Setting the attribute to the empty string indicates
that the element has no advisory information.

If the title attribute's value contains U+000A LINE FEED (LF) characters, the content is
split into multiple lines. Each U+000A LINE FEED (LF) character represents a line break.

Caution is advised with respect to the use of newlines in title attributes.

For instance, the following snippet actually defines an abbreviation's expansion with a line
break in it:

<p>My logs show that there was some interest in <abbr title="Hypertext
Transport Protocol">HTTP</abbr> today.</p>

Some elements, such as link, abbr, and input, define additional semantics for the title
attribute beyond the semantics described above.

The title DOM attribute must reflect the title content attribute.

3.2.3.3 The lang and xml:lang attributes

Status: Implemented and widely deployed

The lang attribute (in no namespace) specifies the primary language for the element's
contents and for any of the element's attributes that contain text. Its value must be a valid
BCP 47 language code, or the empty string. [BCP47]

The lang attribute in the XML namespace is defined in XML. [XML]

If these attributes are omitted from an element, then the language of this element is the
same as the language of its parent element, if any. Setting the attribute to the empty string
indicates that the primary language is unknown.

The lang attribute in no namespace may be used on any HTML element.

The lang attribute in the XML namespace may be used on HTML elements in XML
documents, as well as elements in other namespaces if the relevant specifications allow it
(in particular, MathML and SVG allow lang attributes in the XML namespace to be
specified on their elements). If both the lang attribute in no namespace and the lang
attribute in the XML namespace are specified on the same element, they must have
exactly the same value when compared in an ASCII case-insensitive manner.

Authors must not use the lang attribute in the XML namespace in HTML documents. To
ease migration to and from XHTML, authors may specify an attribute in no namespace
with no prefix and with the literal localname "xml:lang" on HTML elements in HTML
documents, but such attributes must only be specified if a lang attribute in no namespace
is also specified, and both attributes must have the same value when compared in an
ASCII case-insensitive manner.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 126 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 126 from 931

To determine the language of a node, user agents must look at the nearest ancestor
element (including the element itself if the node is an element) that has a lang attribute in
the XML namespace set or is an HTML element and has a lang in no namespace attribute
set. That attribute specifies the language of the node.

If both the lang attribute in no namespace and the lang attribute in the XML namespace
are set on an element, user agents must use the lang attribute in the XML namespace,
and the lang attribute in no namespace must be ignored for the purposes of determining
the element's language.

If no explicit language is given for the root element, but there is a document-wide default
language set, then that is the language of the node.

If there is no document-wide default language, then language information from a higher-
level protocol (such as HTTP), if any, must be used as the final fallback language. In the
absence of any language information, the default value is unknown (the empty string).

If the resulting value is not a recognized language code, then it must be treated as an
unknown language (as if the value was the empty string).

User agents may use the element's language to determine proper processing or rendering
(e.g. in the selection of appropriate fonts or pronunciations, or for dictionary selection).

The lang DOM attribute must reflect the lang content attribute in no namespace.

3.2.3.4 The xml:base attribute (XML only)

The xml:base attribute is defined in XML Base. [XMLBASE]

The xml:base attribute may be used on elements of XML documents. Authors must not
use the xml:base attribute in HTML documents.

3.2.3.5 The dir attribute

Status: Implemented and widely deployed

The dir attribute specifies the element's text directionality. The attribute is an enumerated
attribute with the keyword ltr mapping to the state ltr, and the keyword rtl mapping to
the state rtl. The attribute has no defaults.

The processing of this attribute is primarily performed by the presentation layer. For
example, the rendering section in this specification defines a mapping from this attribute to
the CSS 'direction' and 'unicode-bidi' properties, and CSS defines rendering in terms of
those properties.

The directionality of an element, which is used in particular by the canvas element's text
rendering API, is either 'ltr' or 'rtl'. If the user agent supports CSS and the 'direction'

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 127 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 127 from 931

property on this element has a computed value of either 'ltr' or 'rtl', then that is the
directionality of the element. Otherwise, if the element is being rendered, then the
directionality of the element is the directionality used by the presentation layer, potentially
determined from the value of the dir attribute on the element. Otherwise, if the element's
dir attribute has the state ltr, the element's directionality is 'ltr' (left-to-right); if the attribute
has the state rtl, the element's directionality is 'rtl' (right-to-left); and otherwise, the
element's directionality is the same as its parent element, or 'ltr' if there is no parent
element.

document . dir [= value]

Returns the html element's dir attribute's value, if any.

Can be set, to either "ltr" or "rtl", to replace the html element's dir attribute's
value.

If there is no html element, returns the empty string and ignores new values.

The dir DOM attribute on an element must reflect the dir content attribute of that
element, limited to only known values.

The dir DOM attribute on HTMLDocument objects must reflect the dir content attribute of
the html element, if any, limited to only known values. If there is no such element, then the
attribute must return the empty string and do nothing on setting.

Authors are strongly encouraged to use the dir attribute to indicate text direction
rather than using CSS, since that way their documents will continue to render
correctly even in the absence of CSS (e.g. as interpreted by search engines).

3.2.3.6 The class attribute

Status: Last call for comments

Every HTML element may have a class attribute specified.

The attribute, if specified, must have a value that is an unordered set of unique space-
separated tokens representing the various classes that the element belongs to.

The classes that an HTML element has assigned to it consists of all the classes returned
when the value of the class attribute is split on spaces.

Assigning classes to an element affects class matching in selectors in CSS, the
getElementsByClassName() method in the DOM, and other such features.

Authors may use any value in the class attribute, but are encouraged to use the values
that describe the nature of the content, rather than values that describe the desired
presentation of the content.

The className and classList DOM attributes must both reflect the class content
attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 128 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 128 from 931

3.2.3.7 The style attribute

Status: Implemented and widely deployed

All HTML elements may have the style content attribute set. If specified, the attribute
must contain only a list of zero or more semicolon-separated (;) CSS declarations. [CSS]

In user agents that support CSS, the attribute's value must be parsed when the attribute is
added or has its value changed, with its value treated as the body (the part inside the curly
brackets) of a declaration block in a rule whose selector matches just the element on
which the attribute is set. All URLs in the value must be resolved relative to the element
when the attribute is parsed. For the purposes of the CSS cascade, the attribute must be
considered to be a 'style' attribute at the author level.

Documents that use style attributes on any of their elements must still be comprehensible
and usable if those attributes were removed.

In particular, using the style attribute to hide and show content, or to convey
meaning that is otherwise not included in the document, is non-conforming. (To
hide and show content, use the hidden attribute.)

element . style

Returns a CSSStyleDeclaration object for the element's style attribute.

The style DOM attribute must return a CSSStyleDeclaration whose value represents the
declarations specified in the attribute, if present. Mutating the CSSStyleDeclaration object
must create a style attribute on the element (if there isn't one already) and then change
its value to be a value representing the serialized form of the CSSStyleDeclaration object.
[CSSOM]

In the following example, the words that refer to colors are marked up using the span
element and the style attribute to make those words show up in the relevant colors in
visual media.

<p>My sweat suit is <span style="color: green; background:
transparent">green and my eyes are <span style="color: blue;
background: transparent">blue.</p>

3.2.3.8 Embedding custom non-visible data

Status: Last call for comments

A custom data attribute is an attribute in no namespace whose name starts with the
string "data-", has at least one character after the hyphen, is XML-compatible, and
contains no characters in the range U+0041 .. U+005A (LATIN CAPITAL LETTER A ..
LATIN CAPITAL LETTER Z).

All attributes in HTML documents get lowercased automatically, so the restriction
on uppercase letters doesn't affect such documents.

Custom data attributes are intended to store custom data private to the page or
application, for which there are no more appropriate attributes or elements.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 129 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 129 from 931

These attributes are not intended for use by software that is independent of the site that
uses the attributes.

For instance, a site about music could annotate list items representing tracks in an album
with custom data attributes containing the length of each track. This information could then
be used by the site itself to allow the user to sort the list by track length, or to filter the list
for tracks of certain lengths.

 <li data-length="2m11s">Beyond The Sea
 ...

It would be inappropriate, however, for the user to use generic software not associated
with that music site to search for tracks of a certain length by looking at this data.

This is because these attributes are intended for use by the site's own scripts, and are not
a generic extension mechanism for publicly-usable metadata.

Every HTML element may have any number of custom data attributes specified, with any
value.

element . dataset

Returns a DOMStringMap object for the element's data-* attributes.

The dataset DOM attribute provides convenient accessors for all the data-* attributes on
an element. On getting, the dataset DOM attribute must return a DOMStringMap object,
associated with the following algorithms, which expose these attributes on their element:

The algorithm for getting the list of name-value pairs

1. Let list be an empty list of name-value pairs.
2. For each content attribute on the element whose first five characters are the

string "data-", add a name-value pair to list whose name is the attribute's
name with the first five character removed and whose value is the attribute's
value.

3. Return list.

The algorithm for setting names to certain values

1. Let name be the concatenation of the string data- and the name passed to
the algorithm.

2. Let value be the value passed to the algorithm.
3. Set the value of the attribute with the name name, to the value value,

replacing any previous value if the attribute already existed. If
setAttribute() would have raised an exception when setting an attribute
with the name name, then this must raise the same exception.

The algorithm for deleting names

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 130 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 130 from 931

1. Let name be the concatenation of the string data- and the name passed to
the algorithm.

2. Remove the attribute with the name name, if such an attribute exists. Do
nothing otherwise.

If a Web page wanted an element to represent a space ship, e.g. as part of a game, it
would have to use the class attribute along with data-* attributes:

<div class="spaceship" data-id="92432"
 data-weapons="laser 2" data-shields="50%"
 data-x="30" data-y="10" data-z="90">
 <button class="fire"
 onclick="spaceships[this.parentNode.dataset.id].fire()">
 Fire
 </button>
</div>

Authors should carefully design such extensions so that when the attributes are ignored
and any associated CSS dropped, the page is still usable.

User agents must not derive any implementation behavior from these attributes or values.
Specifications intended for user agents must not define these attributes to have any
meaningful values.

3.2.4 Element definitions

Each element in this specification has a definition that includes the following information:

Categories
A list of categories to which the element belongs. These are used when defining
the content models for each element.

Contexts in which this element may be used
A non-normative description of where the element can be used. This information is
redundant with the content models of elements that allow this one as a child, and is
provided only as a convenience.

Content model
A normative description of what content must be included as children and
descendants of the element.

Content attributes
A normative list of attributes that may be specified on the element.

DOM interface
A normative definition of a DOM interface that such elements must implement.

This is then followed by a description of what the element represents, along with any
additional normative conformance criteria that may apply to authors and implementations.
Examples are sometimes also included.

3.2.5 Content models

All the elements in this specification have a defined content model, which describes what
nodes are allowed inside the elements, and thus what the structure of an HTML document
or fragment must look like.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 131 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 131 from 931

As noted in the conformance and terminology sections, for the purposes of
determining if an element matches its content model or not, CDATASection nodes in
the DOM are treated as equivalent to Text nodes, and entity reference nodes are
treated as if they were expanded in place.

The space characters are always allowed between elements. User agents represent these
characters between elements in the source markup as text nodes in the DOM. Empty text
nodes and text nodes consisting of just sequences of those characters are considered
inter-element whitespace.

Inter-element whitespace, comment nodes, and processing instruction nodes must be
ignored when establishing whether an element matches its content model or not, and
must be ignored when following algorithms that define document and element semantics.

An element A is said to be preceded or followed by a second element B if A and B have
the same parent node and there are no other element nodes or text nodes (other than
inter-element whitespace) between them.

Authors must not use elements in the HTML namespace anywhere except where they are
explicitly allowed, as defined for each element, or as explicitly required by other
specifications. For XML compound documents, these contexts could be inside elements
from other namespaces, if those elements are defined as providing the relevant contexts.

The Atom specification defines the Atom content element, when its type attribute has the
value xhtml, as requiring that it contains a single HTML div element. Thus, a div element
is allowed in that context, even though this is not explicitly normatively stated by this
specification. [ATOM]

In addition, elements in the HTML namespace may be orphan nodes (i.e. without a parent
node).

For example, creating a td element and storing it in a global variable in a script is
conforming, even though td elements are otherwise only supposed to be used inside tr
elements.

var data = {
 name: "Banana",
 cell: document.createElement('td'),
};

3.2.5.1 Kinds of content

Each element in HTML falls into zero or more categories that group elements with similar
characteristics together. The following broad categories are used in this specification:

• Metadata content
• Flow content
• Sectioning content
• Heading content
• Phrasing content
• Embedded content
• Interactive content

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 132 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 132 from 931

Some elements also fall into other categories, which are defined in other parts of
this specification.

These categories are related as follows:

In addition, certain elements are categorized as form-associated elements and further
subcategorized to define their role in various form-related processing models.

Some elements have unique requirements and do not fit into any particular category.

3.2.5.1.1 Metadata content

Metadata content is content that sets up the presentation or behavior of the rest of the
content, or that sets up the relationship of the document with other documents, or that
conveys other "out of band" information.

• base
• command
• link
• meta
• noscript
• script
• style
• title

Elements from other namespaces whose semantics are primarily metadata-related (e.g.
RDF) are also metadata content.

Thus, in the XML serialization, one can use RDF, like this:

<html xmlns="http://www.w3.org/1999/xhtml"
 xmlns:r="http://www.w3.org/1999/02/22-rdf-syntax-ns#">
 <head>
 <title>Hedral's Home Page</title>
 <r:RDF>
 <Person xmlns="http://www.w3.org/2000/10/swap/pim/contact#"
 r:about="http://hedral.example.com/#">
 <fullName>Cat Hedral</fullName>
 <mailbox r:resource="mailto:hedral@damowmow.com"/>
 <personalTitle>Sir</personalTitle>
 </Person>
 </r:RDF>
 </head>
 <body>
 <h1>My home page</h1>
 <p>I like playing with string, I guess. Sister says squirrels are fun
 too so sometimes I follow her to play with them.</p>
 </body>
</html>

This isn't possible in the HTML serialization, however.

3.2.5.1.2 Flow content

Most elements that are used in the body of documents and applications are categorized
as flow content.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 133 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 133 from 931

• a
• abbr
• address
• area (if it is a descendant of a map element)
• article
• aside
• audio
• b
• bdo
• blockquote
• br
• button
• canvas
• cite
• code
• command
• datalist
• del
• details
• dfn
• dialog
• div
• dl
• em
• embed
• fieldset
• figure
• footer
• form
• h1
• h2
• h3
• h4
• h5
• h6
• header
• hgroup
• hr
• i
• iframe
• img
• input
• ins
• kbd
• keygen
• label
• link (if the itemprop attribute is present)
• map
• mark
• math
• menu
• meta (if the itemprop attribute is present)
• meter
• nav

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 134 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 134 from 931

• noscript
• object
• ol
• output
• p
• pre
• progress
• q
• ruby
• samp
• script
• section
• select
• small
• span
• strong
• style (if the scoped attribute is present)
• sub
• sup
• svg
• table
• textarea
• time
• ul
• var
• video
• Text

As a general rule, elements whose content model allows any flow content should have
either at least one descendant text node that is not inter-element whitespace, or at least
one descendant element node that is embedded content. For the purposes of this
requirement, del elements and their descendants must not be counted as contributing to
the ancestors of the del element.

This requirement is not a hard requirement, however, as there are many cases where an
element can be empty legitimately, for example when it is used as a placeholder which will
later be filled in by a script, or when the element is part of a template and would on most
pages be filled in but on some pages is not relevant.

3.2.5.1.3 Sectioning content

Sectioning content is content that defines the scope of headings and footers.

• article
• aside
• nav
• section

Each sectioning content element potentially has a heading and an outline. See the section
on headings and sections for further details.

There are also certain elements that are sectioning roots. These are distinct from
sectioning content, but they can also have an outline.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 135 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 135 from 931

3.2.5.1.4 Heading content

Heading content defines the header of a section (whether explicitly marked up using
sectioning content elements, or implied by the heading content itself).

• h1
• h2
• h3
• h4
• h5
• h6
• hgroup

3.2.5.1.5 Phrasing content

Phrasing content is the text of the document, as well as elements that mark up that text
at the intra-paragraph level. Runs of phrasing content form paragraphs.

• a (if it contains only phrasing content)
• abbr
• area (if it is a descendant of a map element)
• audio
• b
• bdo
• br
• button
• canvas
• cite
• code
• command
• datalist
• del (if it contains only phrasing content)
• dfn
• em
• embed
• i
• iframe
• img
• input
• ins (if it contains only phrasing content)
• kbd
• keygen
• label
• link (if the itemprop attribute is present)
• map (if it contains only phrasing content)
• mark
• math
• meta (if the itemprop attribute is present)
• meter
• noscript
• object
• output
• progress
• q

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 136 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 136 from 931

• ruby
• samp
• script
• select
• small
• span
• strong
• sub
• sup
• svg
• textarea
• time
• var
• video
• Text

As a general rule, elements whose content model allows any phrasing content should
have either at least one descendant text node that is not inter-element whitespace, or at
least one descendant element node that is embedded content. For the purposes of this
requirement, nodes that are descendants of del elements must not be counted as
contributing to the ancestors of the del element.

Most elements that are categorized as phrasing content can only contain elements
that are themselves categorized as phrasing content, not any flow content.

Text, in the context of content models, means text nodes. Text is sometimes used as a
content model on its own, but is also phrasing content, and can be inter-element
whitespace (if the text nodes are empty or contain just space characters).

3.2.5.1.6 Embedded content

Embedded content is content that imports another resource into the document, or
content from another vocabulary that is inserted into the document.

• audio
• canvas
• embed
• iframe
• img
• math
• object
• svg
• video

Elements that are from namespaces other than the HTML namespace and that convey
content but not metadata, are embedded content for the purposes of the content models
defined in this specification. (For example, MathML, or SVG.)

Some embedded content elements can have fallback content: content that is to be used
when the external resource cannot be used (e.g. because it is of an unsupported format).
The element definitions state what the fallback is, if any.

3.2.5.1.7 Interactive content

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 137 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 137 from 931

Interactive content is content that is specifically intended for user interaction.

• a
• audio (if the controls attribute is present)
• button
• details
• embed
• iframe
• img (if the usemap attribute is present)
• input (if the type attribute is not in the Hidden state)
• keygen
• label
• menu (if the type attribute is in the tool bar state)
• object (if the usemap attribute is present)
• select
• textarea
• video (if the controls attribute is present)

Certain elements in HTML have an activation behavior, which means that the user can
activate them. This triggers a sequence of events dependent on the activation
mechanism, and normally culminating in a click event followed by a DOMActivate event,
as described below.

The user agent should allow the user to manually trigger elements that have an activation
behavior, for instance using keyboard or voice input, or through mouse clicks. When the
user triggers an element with a defined activation behavior in a manner other than clicking
it, the default action of the interaction event must be to run synthetic click activation steps
on the element.

When a user agent is to run synthetic click activation steps on an element, the user
agent must run pre-click activation steps on the element, then fire a click event at the
element. The default action of this click event must be to run post-click activation steps on
the element. If the event is canceled, the user agent must run canceled activation steps on
the element instead.

Given an element target, the nearest activatable element is the element returned by the
following algorithm:

1. If target has a defined activation behavior, then return target and abort these steps.

2. If target has a parent element, then set target to that parent element and return to
the first step.

3. Otherwise, there is no nearest activatable element.

When a pointing device is clicked, the user agent must run these steps:

1. Let e be the nearest activatable element of the element designated by the user, if
any.

2. If there is an element e, run pre-click activation steps on it.

3. Dispatch the required click event.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 138 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 138 from 931

If there is an element e, then the default action of the click event must be to run
post-click activation steps on element e.

If there is an element e but the event is canceled, the user agent must run canceled
activation steps on element e.

The above doesn't happen for arbitrary synthetic events dispatched by author
script. However, the click() method can be used to make it happen
programmatically.

When a user agent is to run pre-click activation steps on an element, it must run the
pre-click activation steps defined for that element, if any.

When a user agent is to run post-click activation steps on an element, the user agent
must fire a simple event called DOMActivate that is cancelable at that element. The default
action of this event must be to run final activation steps on that element. If the event is
canceled, the user agent must run canceled activation steps on the element instead.

When a user agent is to run canceled activation steps on an element, it must run the
canceled activation steps defined for that element, if any.

When a user agent is to run final activation steps on an element, it must run the
activation behavior defined for that element. Activation behaviors can refer to the click
and DOMActivate events that were fired by the steps above leading up to this point.

3.2.5.2 Transparent content models

Some elements are described as transparent; they have "transparent" in the description
of their content model.

When a content model includes a part that is "transparent", those parts must not contain
content that would not be conformant if all transparent elements in the tree were replaced,
in their parent element, by the children in the "transparent" part of their content model,
retaining order.

When a transparent element has no parent, then the part of its content model that is
"transparent" must instead be treated as accepting any flow content.

3.2.5.3 Paragraphs

The term paragraph as defined in this section is distinct from (though related to) the
p element defined later. The paragraph concept defined here is used to describe
how to interpret documents.

A paragraph is typically a run of phrasing content that forms a block of text with one or
more sentences that discuss a particular topic, as in typography, but can also be used for
more general thematic grouping. For instance, an address is also a paragraph, as is a part
of a form, a byline, or a stanza in a poem.

In the following example, there are two paragraphs in a section. There is also a heading,
which contains phrasing content that is not a paragraph. Note how the comments and
inter-element whitespace do not form paragraphs.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 139 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 139 from 931

<section>
 <h1>Example of paragraphs</h1>
 This is the first paragraph in this example.
 <p>This is the second.</p>
 <!-- This is not a paragraph. -->
</section>

Paragraphs in flow content are defined relative to what the document looks like without the
a, ins, del, and map elements complicating matters, since those elements, with their hybrid
content models, can straddle paragraph boundaries, as shown in the first two examples
below.

Generally, having elements straddle paragraph boundaries is best avoided.
Maintaining such markup can be difficult.

The following example takes the markup from the earlier example and puts ins and del
elements around some of the markup to show that the text was changed (though in this
case, the changes admittedly don't make much sense). Notice how this example has
exactly the same paragraphs as the previous one, despite the ins and del elements —
the ins element straddles the heading and the first paragraph, and the del element
straddles the boundary between the two paragraphs.

<section>
 <ins><h1>Example of paragraphs</h1>
 This is the first paragraph in</ins> this example.
 <p>This is the second.</p>
 <!-- This is not a paragraph. -->
</section>

Let view be a view of the DOM that replaces all a, ins, del, and map elements in the
document with their contents. Then, in view, for each run of sibling phrasing content nodes
uninterrupted by other types of content, in an element that accepts content other than
phrasing content, let first be the first node of the run, and let last be the last node of the
run. For each such run that consists of at least one node that is neither embedded content
nor inter-element whitespace, a paragraph exists in the original DOM from immediately
before first to immediately after last. (Paragraphs can thus span across a, ins, del, and
map elements.)

Conformance checkers may warn authors of cases where they have paragraphs that
overlap each other (this can happen with object, video, audio, and canvas elements).

A paragraph is also formed explicitly by p elements.

The p element can be used to wrap individual paragraphs when there would
otherwise not be any content other than phrasing content to separate the
paragraphs from each other.

In the following example, the link spans half of the first paragraph, all of the heading
separating the two paragraphs, and half of the second paragraph. It straddles the
paragraphs and the heading.

<aside>
 Welcome!

 This is home of...

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 140 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 140 from 931

 <h1>The Falcons!</h1>
 The Lockheed Martin multirole jet fighter aircraft!

 This page discusses the F-16 Fighting Falcon's innermost secrets.
</aside>

Here is another way of marking this up, this time showing the paragraphs explicitly, and
splitting the one link element into three:

<aside>
 <p>Welcome! This is home of...</p>
 <h1>The Falcons!</h1>
 <p>The Lockheed Martin multirole jet
 fighter aircraft! This page discusses the F-16 Fighting
 Falcon's innermost secrets.</p>
</aside>

It is possible for paragraphs to overlap when using certain elements that define fallback
content. For example, in the following section:

<section>
 <h1>My Cats</h1>
 You can play with my cat simulator.
 <object data="cats.sim">
 To see the cat simulator, use one of the following links:

 Download simulator file
 Use online
simulator

 Alternatively, upgrade to the Mellblom Browser.
 </object>
 I'm quite proud of it.
</section>

There are five paragraphs:

1. The paragraph that says "You can play with my cat simulator. object I'm quite
proud of it.", where object is the object element.

2. The paragraph that says "To see the cat simulator, use one of the following
links:".

3. The paragraph that says "Download simulator file".
4. The paragraph that says "Use online simulator".
5. The paragraph that says "Alternatively, upgrade to the Mellblom Browser.".

The first paragraph is overlapped by the other four. A user agent that supports the
"cats.sim" resource will only show the first one, but a user agent that shows the fallback
will confusingly show the first sentence of the first paragraph as if it was in the same
paragraph as the second one, and will show the last paragraph as if it was at the start of
the second sentence of the first paragraph.

To avoid this confusion, explicit p elements can be used.

3.2.6 Annotations for assistive technology products

Status: First draft. ISSUE-35 (aria-processing) and ISSUE-14 (aria-role) block progress to
Last Call

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 141 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 141 from 931

Authors may use the ARIA role and aria-* attributes on HTML elements, in accordance
with the requirements described in the ARIA specifications, except where these conflict
with the strong native semantics described below. These exceptions are intended to
prevent authors from making assistive technology products report nonsensical states that
do not represent the actual state of the document. [ARIA]

User agents are required to implement ARIA semantics on all HTML elements, as defined
in the ARIA specifications. The implicit ARIA semantics defined below must be recognised
by implementations. [ARIAIMPL]

The following table defines the strong native semantics and corresponding implicit ARIA
semantics that apply to HTML elements. Each language feature (element or attribute) in a
cell in the first column implies the ARIA semantics (role, states, and/or properties) given in
the cell in the second column of the same row. Authors must not set the ARIA role and
aria-* attributes in a manner that conflicts with the semantics described in the following
table. When multiple rows apply to an element, the role from the last row to define a role
must be applied, and the states and properties from all the rows must be combined.

Language feature Strong native semantics and implied ARIA semantics
a element that represents a
hyperlink

link role

address element contentinfo role
area element that represents a
hyperlink

link role

button element button role
datalist element listbox role, with the aria-multiselectable property set

to "false"
footer element contentinfo role
h1 element that does not have
an hgroup ancestor

heading role

h2 element that does not have
an hgroup ancestor

heading role

h3 element that does not have
an hgroup ancestor

heading role

h4 element that does not have
an hgroup ancestor

heading role

h5 element that does not have
an hgroup ancestor

heading role

h6 element that does not have
an hgroup ancestor

heading role

header element banner role
hgroup element heading role
hr element separator role
img element whose alt
attribute's value is empty

presentation role

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 142 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 142 from 931

Language feature Strong native semantics and implied ARIA semantics
input element with a type
attribute in the Button state

button role

input element with a type
attribute in the Checkbox state

checkbox role, with the aria-checked state set to "mixed"
if the element's indeterminate DOM attribute is true, or
"true" if the element's checkedness is true, or "false"
otherwise

input element with a type
attribute in the Color state

No role

input element with a type
attribute in the Date state

No role, with the aria-readonly state set to "true" if the
element has a readonly attribute

input element with a type
attribute in the Date and Time
state

No role, with the aria-readonly state set to "true" if the
element has a readonly attribute

input element with a type
attribute in the Local Date and
Time state

No role, with the aria-readonly state set to "true" if the
element has a readonly attribute

input element with a type
attribute in the E-mail state with
no suggestions source element

textbox role, with the aria-readonly state set to "true" if
the element has a readonly attribute

input element with a type
attribute in the File Upload
state

button role

input element with a type
attribute in the Hidden state

No role

input element with a type
attribute in the Image Button
state

button role

input element with a type
attribute in the Month state

No role, with the aria-readonly state set to "true" if the
element has a readonly attribute

input element with a type
attribute in the Number state

spinbutton role, with the aria-readonly state set to
"true" if the element has a readonly attribute, the aria-
valuemax property set to the element's maximum, the
aria-valuemin property set to the element's minimum,
and, if the result of applying the rules for parsing floating
point number values to the element's value is a number,
with the aria-valuenow property set to that number

input element with a type
attribute in the Password state

textbox role, with the aria-readonly state set to "true" if
the element has a readonly attribute

input element with a type
attribute in the Radio Button
state

radio role, with the aria-checked state set to "true" if the
element's checkedness is true, or "false" otherwise

input element with a type
attribute in the Range state

slider role, with the aria-valuemax property set to the
element's maximum, the aria-valuemin property set to
the element's minimum, and the aria-valuenow property

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 143 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 143 from 931

Language feature Strong native semantics and implied ARIA semantics
set to the result of applying the rules for parsing floating
point number values to the element's value, if that that
results in a number, or the default value otherwise

input element with a type
attribute in the Reset Button
state

button role

input element with a type
attribute in the Search state
with no suggestions source
element

textbox role, with the aria-readonly state set to "true" if
the element has a readonly attribute

input element with a type
attribute in the Submit Button
state

button role

input element with a type
attribute in the Telephone state
with no suggestions source
element

textbox role, with the aria-readonly state set to "true" if
the element has a readonly attribute

input element with a type
attribute in the Text state with
no suggestions source element

textbox role, with the aria-readonly state set to "true" if
the element has a readonly attribute

input element with a type
attribute in the Text, Search,
Telephone, URL, or E-mail
states with a suggestions
source element

combobox role, with the aria-owns property set to the
same value as the list attribute, and the aria-readonly
state set to "true" if the element has a readonly attribute

input element with a type
attribute in the Time state

No role, with the aria-readonly state set to "true" if the
element has a readonly attribute

input element with a type
attribute in the URL state with
no suggestions source element

textbox role, with the aria-readonly state set to "true" if
the element has a readonly attribute

input element with a type
attribute in the Week state

No role, with the aria-readonly state set to "true" if the
element has a readonly attribute

link element that represents a
hyperlink

link role

menu element with a type
attribute in the context menu
state

No role

menu element with a type
attribute in the list state

menu role

menu element with a type
attribute in the tool bar state

toolbar role

nav element navigation role
option element that is in a list
of options or that represents a

option role, with the aria-selected state set to "true" if
the element's selectedness is true, or "false" otherwise.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 144 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 144 from 931

Language feature Strong native semantics and implied ARIA semantics
suggestion in a datalist
element
progress element progressbar role, with, if the progress bar is determinate,

the aria-valuemax property set to the maximum value of
the progress bar, the aria-valuemin property set to zero,
and the aria-valuenow property set to the current value
of the progress bar

select element with a multiple
attribute

listbox role, with the aria-multiselectable property set
to "true"

select element with no
multiple attribute

listbox role, with the aria-multiselectable property set
to "false"

td element gridcell role, with the aria-labelledby property set to
the value of the headers attribute, if any

textarea element textbox role, with the aria-multiline property set to
"true", and the aria-readonly state set to "true" if the
element has a readonly attribute

th elemen that is neither a
column header nor a row
header

gridcell role, with the aria-labelledby property set to
the value of the headers attribute, if any

th element that is a column
header

columnheader role, with the aria-labelledby property set
to the value of the headers attribute, if any

th element that is a row header rowheader role, with the aria-labelledby property set to
the value of the headers attribute, if any

tr element row role
An element that defines a
command, whose Type facet is
"checkbox", and that is a
descendant of a menu element
whose type attribute in the list
state

menuitemcheckbox role, with the aria-checked state set to
"true" if the command's Checked State facet is true, and
"false" otherwise

An element that defines a
command, whose Type facet is
"command", and that is a
descendant of a menu element
whose type attribute in the list
state

menuitem role

An element that defines a
command, whose Type facet is
"radio", and that is a
descendant of a menu element
whose type attribute in the list
state

menuitemradio role, with the aria-checked state set to
"true" if the command's Checked State facet is true, and
"false" otherwise

Elements that are disabled The aria-disabled state set to "true"
Elements that are required The aria-required state set to "true"

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 145 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 145 from 931

Some HTML elements have native semantics that can be overridden. The following table
lists these elements and their implicit ARIA semantics, along with the restrictions that
apply to those elements. Each language feature (element or attribute) in a cell in the first
column implies, unless otherwise overriden, the ARIA semantic (role, state, or property)
given in the cell in the second column of the same row, but this semantic may be
overridden under the conditions listed in the cell in the third column of that row.

Language feature Default implied
ARIA semantic

Restrictions

article element article role Role must be either article, document,
application, or main

aside element note role Role must be either note, complementary, or
search

html element document role Role must be either document or application
li element whose
parent is an ol or ul
element

listitem role Role must be either listitem or treeitem

ol element list role Role must be either list, tree, or directory
output element status role No restrictions
section element region role Role must be either region, document,

application, contentinfo, main, search, alert,
dialog, alertdialog, status, or log

table element grid role Role must be either grid or treegrid
ul element list role Role must be either list or tree, or directory

User agents may apply different defaults than those described in this section in order to
expose the semantics of HTML elements in a manner more fine-grained than possible
with the above definitions.

3.3 APIs in HTML documents

Status: Awaiting implementation feedback

For HTML documents, and for HTML elements in HTML documents, certain APIs defined
in DOM Core become case-insensitive or case-changing, as sometimes defined in DOM
Core, and as summarized or required below. [DOMCORE].

This does not apply to XML documents or to elements that are not in the HTML
namespace despite being in HTML documents.

Element.tagName and Node.nodeName
These attributes must return element names converted to ASCII uppercase,
regardless of the case with which they were created.

Document.createElement()
The canonical form of HTML markup is all-lowercase; thus, this method will
lowercase the argument before creating the requisite element. Also, the element
created must be in the HTML namespace.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 146 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 146 from 931

This doesn't apply to Document.createElementNS(). Thus, it is possible, by
passing this last method a tag name in the wrong case, to create an element
that claims to have the tag name of an element defined in this specification,
but doesn't support its interfaces, because it really has another tag name not
accessible from the DOM APIs.

Element.setAttribute()
Element.setAttributeNode()

Attribute names are converted to ASCII lowercase.

Specifically: when an attribute is set on an HTML element using
Element.setAttribute(), the name argument must be converted to ASCII
lowercase before the element is affected; and when an Attr node is set on an
HTML element using Element.setAttributeNode(), it must have its name
converted to ASCII lowercase before the element is affected.

This doesn't apply to Document.setAttributeNS() and
Document.setAttributeNodeNS().

Element.getAttribute()
Element.getAttributeNode()

Attribute names are converted to ASCII lowercase.

Specifically: When the Element.getAttribute() method or the
Element.getAttributeNode() method is invoked on an HTML element, the name
argument must be converted to ASCII lowercase before the element's attributes are
examined.

This doesn't apply to Document.getAttributeNS() and
Document.getAttributeNodeNS().

Document.getElementsByTagName()
Element.getElementsByTagName()

HTML elements match by lower-casing the argument before comparison, elements
from other namespaces are treated as in XML (case-sensitively).

Specifically, these methods (but not their namespaced counterparts) must compare
the given argument in a case-sensitive manner, but when looking at HTML
elements, the argument must first be converted to ASCII lowercase.

Thus, in an HTML document with nodes in multiple namespaces, these
methods will effectively be both case-sensitive and case-insensitive at the
same time.

3.4 Interactions with XPath and XSLT

Status: Controversial Working Draft

Implementations of XPath 1.0 that operate on HTML documents parsed or created in the
manners described in this specification (e.g. as part of the document.evaluate() API) are
affected as follows:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 147 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 147 from 931

In addition to the cases where a name expression would match a node per XPath 1.0, a
name expression must evaluate to matching a node when all the following conditions are
also met:

• The name expression has no namespace.
• The name expression has local name that is a match for local.
• The expression is being tested against an element node.
• The element has local name local.
• The element is in the HTML namespace.
• The element's document is an HTML document.

These requirements are a willful violation of the XPath 1.0 specification, motivated
by desire to have implementations be compatible with legacy content while still
supporting the changes that this specification introduces to HTML regarding which
namespace is used for HTML elements. [XPATH10]

XSLT 1.0 processors outputting to a DOM when the output method is "html" (either
explicitly or via the defaulting rule in XSLT 1.0) are affected as follows:

If the transformation program outputs an element in no namespace, the processor must,
prior to constructing the corresponding DOM element node, change the namespace of the
element to the HTML namespace, ASCII-lowercase the element's local name, and ASCII-
lowercase the names of any non-namespaced attributes on the element.

This requirement is a willful violation of the XSLT 1.0 specification, required
because this specification changes the namespaces and case-sensitivity rules of
HTML in a manner that would otherwise be incompatible with DOM-based XSLT
transformations. (Processors that serialize the output are unaffected.) [XSLT10]

3.5 Dynamic markup insertion

APIs for dynamically inserting markup into the document interact with the parser,
and thus their behavior, varies depending on whether they are used with HTML
documents (and the HTML parser) or XHTML in XML documents (and the XML
parser).

3.5.1 Controlling the input stream

Status: Last call for comments

The open() method comes in several variants with different numbers of arguments.

document = document . open([type [, replace]])
Causes the Document to be replaced in-place, as if it was a new Document object,
but reusing the previous object, which is then returned.

If the type argument is omitted or has the value "text/html", then the resulting
Document has an HTML parser associated with it, which can be given data to parse
using document.write(). Otherwise, all content passed to document.write() will be
parsed as plain text.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 148 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 148 from 931

If the replace argument is absent or false, a new entry is added to the session
history to represent this entry, and the previous entries for this Document are all
collapsed into one entry with a new Document object.

The method has no effect if the Document is still being parsed.

window = document . open(url, name, features [, replace])
Works like the window.open() method.

document . close()
Closes the input stream that was opened by the document.open() method.

When called with two or fewer arguments, the method must act as follows:

1. Let type be the value of the first argument, if there is one, or "text/html" otherwise.

2. Let replace be true if there is a second argument and it is an ASCII case-insensitive
match for the value "replace", and false otherwise.

3. If the document has an active parser that isn't a script-created parser, and the
insertion point associated with that parser's input stream is not undefined (that is, it
does point to somewhere in the input stream), then the method does nothing. Abort
these steps and return the Document object on which the method was invoked.

This basically causes document.open() to be ignored when it's called in an
inline script found during the parsing of data sent over the network, while still
letting it have an effect when called asynchronously or on a document that is
itself being spoon-fed using these APIs.

4. Unload the Document object, with the recycle parameter set to true. If the user
refused to allow the document to be unloaded, then these steps must be aborted.

5. If the document has an active parser, then abort that parser, and throw away any
pending content in the input stream.

6. Unregister all event listeners registered on the Document node and its descendants.

7. Remove any tasks associated with the Document in any task source.

8. Remove all child nodes of the document, without firing any mutation events.

9. Replace the Document's singleton objects with new instances of those objects. (This
includes in particular the Window, Location, History, ApplicationCache,
UndoManager, Navigator, and Selection objects, the various BarProp objects, the
two Storage objects, and the various HTMLCollection objects. It also includes all the
Web IDL prototypes in the JavaScript binding, including the Document object's
prototype.)

10. Change the document's character encoding to UTF-16.

11. Change the document's address to the first script's browsing context's active
document's address.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 149 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 149 from 931

12. Create a new HTML parser and associate it with the document. This is a script-
created parser (meaning that it can be closed by the document.open() and
document.close() methods, and that the tokenizer will wait for an explicit call to
document.close() before emitting an end-of-file token). The encoding confidence is
irrelevant.

13. Mark the document as being an HTML document (it might already be so-marked).

14. If the type string contains a U+003B SEMICOLON (;) character, remove the first
such character and all characters from it up to the end of the string.

Strip all leading and trailing space characters from type.

If type is not now an ASCII case-insensitive match for the string "text/html", then
act as if the tokenizer had emitted a start tag token with the tag name "pre", then
set the HTML parser's tokenization stage's content model flag to PLAINTEXT.

15. If replace is false, then:

1. Remove all the entries in the browsing context's session history after the
current entry in its Document's History object

2. Remove any earlier entries that share the same Document
3. Add a new entry just before the last entry that is associated with the text that

was parsed by the previous parser associated with the Document object, as
well as the state of the document at the start of these steps. (This allows the
user to step backwards in the session history to see the page before it was
blown away by the document.open() call.)

16. Finally, set the insertion point to point at just before the end of the input stream
(which at this point will be empty).

17. Return the Document on which the method was invoked.

When called with three or more arguments, the open() method on the HTMLDocument object
must call the open() method on the Window object of the HTMLDocument object, with the
same arguments as the original call to the open() method, and return whatever that
method returned. If the HTMLDocument object has no Window object, then the method must
raise an INVALID_ACCESS_ERR exception.

The close() method must do nothing if there is no script-created parser associated with
the document. If there is such a parser, then, when the method is called, the user agent
must insert an explicit "EOF" character at the end of the parser's input stream.

3.5.2 document.write()
document . write(text...)

Adds the given string(s) to the Document's input stream. If necessary, calls the
open() method implicitly first.

This method throws an INVALID_ACCESS_ERR exception when invoked on XML
documents.

The document.write(...) method must act as follows:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 150 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 150 from 931

1. If the method was invoked on an XML document, throw an INVALID_ACCESS_ERR
exception and abort these steps.

2. If the insertion point is undefined, the open() method must be called (with no
arguments) on the document object. If the user refused to allow the document to be
unloaded, then these steps must be aborted. Otherwise, the insertion point will
point at just before the end of the (empty) input stream.

3. The string consisting of the concatenation of all the arguments to the method must
be inserted into the input stream just before the insertion point.

4. If there is a pending external script, then the method must now return without
further processing of the input stream.

5. Otherwise, the tokenizer must process the characters that were inserted, one at a
time, processing resulting tokens as they are emitted, and stopping when the
tokenizer reaches the insertion point or when the processing of the tokenizer is
aborted by the tree construction stage (this can happen if a script end tag token is
emitted by the tokenizer).

If the document.write() method was called from script executing inline (i.e.
executing because the parser parsed a set of script tags), then this is a
reentrant invocation of the parser.

6. Finally, the method must return.

3.5.3 document.writeln()
document . writeln(text...)

Adds the given string(s) to the Document's input stream, followed by a newline
character. If necessary, calls the open() method implicitly first.

This method throws an INVALID_ACCESS_ERR exception when invoked on XML
documents.

The document.writeln(...) method, when invoked, must act as if the document.write()
method had been invoked with the same argument(s), plus an extra argument consisting
of a string containing a single line feed character (U+000A).

3.5.4 innerHTML

Status: Implemented and widely deployed

The innerHTML DOM attribute represents the markup of the node's contents.

document . innerHTML [= value]
Returns a fragment of HTML or XML that represents the Document.

Can be set, to replace the Document's contents with the result of parsing the given
string.

In the case of XML documents, will throw a SYNTAX_ERR if the Document cannot be
serialized to XML, or if the given string is not well-formed.

element . innerHTML [= value]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 151 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 151 from 931

Returns a fragment of HTML or XML that represents the element's contents.
Can be set, to replace the contents of the element with nodes parsed from the
given string.

In the case of XML documents, will throw a SYNTAX_ERR if the element cannot be
serialized to XML, or if the given string is not well-formed.

On getting, if the node's document is an HTML document, then the attribute must return
the result of running the HTML fragment serialization algorithm on the node; otherwise,
the node's document is an XML document, and the attribute must return the result of
running the XML fragment serialization algorithm on the node instead (this might raise an
exception instead of returning a string).

On setting, the following steps must be run:

1. If the node's document is an HTML document: Invoke the HTML fragment parsing
algorithm.

If the node's document is an XML document: Invoke the XML fragment parsing
algorithm.

In either case, the algorithm must be invoked with the string being assigned into the
innerHTML attribute as the input. If the node is an Element node, then, in addition,
that element must be passed as the context element.

If this raises an exception, then abort these steps.

Otherwise, let new children be the nodes returned.

2. If the attribute is being set on a Document node, and that document has an active
parser, then abort that parser.

3. Remove the child nodes of the node whose innerHTML attribute is being set, firing
appropriate mutation events.

4. If the attribute is being set on a Document node, let target document be that
Document node. Otherwise, the attribute is being set on an Element node; let target
document be the ownerDocument of that Element.

5. Set the ownerDocument of all the nodes in new children to the target document.

6. Append all the new children nodes to the node whose innerHTML attribute is being
set, preserving their order, and firing mutation events as if a DocumentFragment
containing the new children had been inserted.

3.5.5 outerHTML

Status: Last call for comments

The outerHTML DOM attribute represents the markup of the element and its contents.

element . outerHTML [= value]
Returns a fragment of HTML or XML that represents the element and its contents.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 152 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 152 from 931

Can be set, to replace the element with nodes parsed from the given string.

In the case of XML documents, will throw a SYNTAX_ERR if the element cannot be
serialized to XML, or if the given string is not well-formed.

On getting, if the node's document is an HTML document, then the attribute must return
the result of running the HTML fragment serialization algorithm on a fictional node whose
only child is the node on which the attribute was invoked; otherwise, the node's document
is an XML document, and the attribute must return the result of running the XML fragment
serialization algorithm on that fictional node instead (this might raise an exception instead
of returning a string).

On setting, the following steps must be run:

1. Let target be the element whose outerHTML attribute is being set.

2. If target has no parent node, then abort these steps. There would be no way to
obtain a reference to the nodes created even if the remaining steps were run.

3. If target's parent node is a Document object, throw a NO_MODIFICATION_ALLOWED_ERR
exception and abort these steps.

4. Let parent be target's parent node, unless that is a DocumentFragment node, in
which case let parent be an arbitrary body element.

5. If target's document is an HTML document: Invoke the HTML fragment parsing
algorithm.

If target's document is an XML document: Invoke the XML fragment parsing
algorithm.

In either case, the algorithm must be invoked with the string being assigned into the
outerHTML attribute as the input, and parent as the context element.

If this raises an exception, then abort these steps.

Otherwise, let new children be targets returned.

6. Set the ownerDocument of all the nodes in new children to target's document.

7. Remove target from its parent node, firing mutation events as appropriate, and then
insert in its place all the new children nodes, preserving their order, and again firing
mutation events as if a DocumentFragment containing the new children had been
inserted.

3.5.6 insertAdjacentHTML()
element . insertAdjacentHTML(position, text)

Parsed the given string text as HTML or XML and inserts the resulting nodes into
the tree in the position given by the position argument, as follows:

"beforebegin"
Before the element itself.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 153 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 153 from 931

"afterbegin"
Just inside the element, before its first child.

"beforeend"
Just inside the element, after its last child.

"afterend"
After the element itself.

Throws a SYNTAX_ERR exception the arguments have invalid values (e.g., in the
case of XML documents, if the given string is not well-formed).

Throws a NO_MODIFICATION_ALLOWED_ERR exception if the given position isn't
possible (e.g. inserting elements after the root element of a Document).

The insertAdjacentHTML(position, text) method, when invoked, must run the following
algorithm:

1. Let position and text be the method's first and second arguments, respectively.

2. Let target be the element on which the method was invoked.

3. Use the first matching item from this list:

If position is an ASCII case-insensitive match for the string "beforebegin"
If position is an ASCII case-insensitive match for the string "afterend"
If target has no parent node, then abort these steps.

If target's parent node is a Document object, then throw a
NO_MODIFICATION_ALLOWED_ERR exception and abort these steps.

Otherwise, let context be the parent node of target.

If position is an ASCII case-insensitive match for the string "afterbegin"
If position is an ASCII case-insensitive match for the string "beforeend"
Let context be the same as target.

Otherwise
Throw a SYNTAX_ERR exception.

4. If target's document is an HTML document: Invoke the HTML fragment parsing
algorithm.

If target's document is an XML document: Invoke the XML fragment parsing
algorithm.

In either case, the algorithm must be invoked with text as the input, and the
element selected in by the previous step as the context element.

If this raises an exception, then abort these steps.

Otherwise, let new children be targets returned.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 154 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 154 from 931

5. Set the ownerDocument of all the nodes in new children to target's document.

6. Use the first matching item from this list:

If position is an ASCII case-insensitive match for the string "beforebegin"
Insert all the new children nodes immediately before target.

If position is an ASCII case-insensitive match for the string "afterbegin"
Insert all the new children nodes before the first child of target, if there is one. If
there is no such child, append them all to target.

If position is an ASCII case-insensitive match for the string "beforeend"
Append all the new children nodes to target.

If position is an ASCII case-insensitive match for the string "afterend"
Insert all the new children nodes immediately after target.

The new children nodes must be inserted in a manner that preserves their order
and fires mutation events as if a DocumentFragment containing the new children had
been inserted.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 155 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 155 from 931

4 The elements of HTML

4.1 The root element

4.1.1 The html element
Categories

None.
Contexts in which this element may be used:

As the root element of a document.
Wherever a subdocument fragment is allowed in a compound document.

Content model:
A head element followed by a body element.

Content attributes:
Global attributes
manifest

DOM interface:
interface HTMLHtmlElement : HTMLElement {};

The html element represents the root of an HTML document.

The manifest attribute gives the address of the document's application cache manifest, if
there is one. If the attribute is present, the attribute's value must be a valid URL.

The manifest attribute only has an effect during the early stages of document load.
Changing the attribute dynamically thus has no effect (and thus, no DOM API is provided
for this attribute).

For the purposes of application cache selection, later base elements cannot affect
the resolving of relative URLs in manifest attributes, as the attributes are processed
before those elements are seen.

4.2 Document metadata

4.2.1 The head element
Categories

None.
Contexts in which this element may be used:

As the first element in an html element.
Content model:

One or more elements of metadata content, of which exactly one is a title
element.

Content attributes:
Global attributes

DOM interface:
interface HTMLHeadElement : HTMLElement {};

The head element represents a collection of metadata for the Document.

4.2.2 The title element
Categories

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 156 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 156 from 931

Metadata content.
Contexts in which this element may be used:

In a head element containing no other title elements.
Content model:

Text.
Content attributes:

Global attributes
DOM interface:

interface HTMLTitleElement : HTMLElement {

 attribute DOMString text;

};

The title element represents the document's title or name. Authors should use titles that
identify their documents even when they are used out of context, for example in a user's
history or bookmarks, or in search results. The document's title is often different from its
first heading, since the first heading does not have to stand alone when taken out of
context.

There must be no more than one title element per document.

The title element must not contain any elements.

The text DOM attribute must return the same value as the textContent DOM attribute on
the element.

Here are some examples of appropriate titles, contrasted with the top-level headings that
might be used on those same pages.

 <title>Introduction to The Mating Rituals of Bees</title>
 ...
 <h1>Introduction</h1>
 <p>This companion guide to the highly successful
 <cite>Introduction to Medieval Bee-Keeping</cite> book is...

The next page might be a part of the same site. Note how the title describes the subject
matter unambiguously, while the first heading assumes the reader knows what the context
is and therefore won't wonder if the dances are Salsa or Waltz:

 <title>Dances used during bee mating rituals</title>
 ...
 <h1>The Dances</h1>

The string to use as the document's title is given by the document.title DOM attribute.
User agents should use the document's title when referring to the document in their user
interface.

4.2.3 The base element

Status: Working draft

Categories
Metadata content.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 157 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 157 from 931

Contexts in which this element may be used:
In a head element containing no other base elements.

Content model:
Empty.

Content attributes:
Global attributes
href
target

DOM interface:
interface HTMLBaseElement : HTMLElement {

 attribute DOMString href;

 attribute DOMString target;

};

The base element allows authors to specify the document base URL for the purposes of
resolving relative URLs, and the name of the default browsing context for the purposes of
following hyperlinks. The element does not represent any content beyond this information.

There must be no more than one base element per document.

A base element must have either an href attribute, a target attribute, or both.

The href content attribute, if specified, must contain a valid URL.

A base element, if it has an href attribute, must come before any other elements in the
tree that have attributes defined as taking URLs, except the html element (its manifest
attribute isn't affected by base elements).

If there are multiple base elements with href attributes, all but the first are ignored.

The target attribute, if specified, must contain a valid browsing context name or keyword,
which specifies which browsing context is to be used as the default when hyperlinks and
forms in the Document cause navigation.

A base element, if it has a target attribute, must come before any elements in the tree that
represent hyperlinks.

If there are multiple base elements with target attributes, all but the first are ignored.

The href and target DOM attributes must reflect the respective content attributes of the
same name.

4.2.4 The link element

Status: Last call for comments

Categories
Metadata content.
If the itemprop attribute is present: flow content.
If the itemprop attribute is present: phrasing content.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 158 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 158 from 931

Contexts in which this element may be used:
Where metadata content is expected.
In a noscript element that is a child of a head element.
If the itemprop attribute is present: where phrasing content is expected.

Content model:
Empty.

Content attributes:
Global attributes
href
rel
media
hreflang
type
sizes
Also, the title attribute has special semantics on this element.

DOM interface:
interface HTMLLinkElement : HTMLElement {

 attribute boolean disabled;

 attribute DOMString href;

 attribute DOMString rel;

 readonly attribute DOMTokenList relList;

 attribute DOMString media;

 attribute DOMString hreflang;

 attribute DOMString type;

 attribute DOMString sizes;

};

HTMLLinkElement implements LinkStyle;

The link element allows authors to link their document to other resources.

The destination of the link(s) is given by the href attribute, which must be present and
must contain a valid URL. If the href attribute is absent, then the element does not define
a link.

The types of link indicated (the relationships) are given by the value of the rel attribute,
which must be present, and must have a value that is a set of space-separated tokens.
The allowed values and their meanings are defined in a later section. If the rel attribute is
absent, or if the values used are not allowed according to the definitions in this
specification, then the element does not define a link.

Two categories of links can be created using the link element. Links to external
resources are links to resources that are to be used to augment the current document,
and hyperlink links are links to other documents. The link types section defines whether
a particular link type is an external resource or a hyperlink. One element can create
multiple links (of which some might be external resource links and some might be

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 159 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 159 from 931

hyperlinks); exactly which and how many links are created depends on the keywords
given in the rel attribute. User agents must process the links on a per-link basis, not a
per-element basis.

Each link is handled separately. For instance, if there are two link elements with
rel="stylesheet", they each count as a separate external resource, and each is
affected by its own attributes independently.

The exact behavior for links to external resources depends on the exact relationship, as
defined for the relevant link type. Some of the attributes control whether or not the external
resource is to be applied (as defined below). For external resources that are represented
in the DOM (for example, style sheets), the DOM representation must be made available
even if the resource is not applied. To obtain the resource, the user agent must resolve
the URL given by the href attribute, relative to the element, and then fetch the resulting
absolute URL. User agents may opt to only fetch such resources when they are needed,
instead of pro-actively fetching all the external resources that are not applied.

The semantics of the protocol used (e.g. HTTP) must be followed when fetching external
resources. (For example, redirects must be followed and 404 responses must cause the
external resource to not be applied.)

Fetching external resources must delay the load event of the element's document until the
task that is queued by the networking task source once the resource has been fetched
(defined below) has been run.

The task that is queued by the networking task source once the resource has been
fetched must, if the loads were successful, queue a task to fire a simple event called load
at the link element; otherwise, if the resource or one of its subresources failed to
completely load for any reason (e.g. DNS error, HTTP 404 response, a connection being
prematurely closed, unsupported Content-Type), it must instead queue a task to fire a
simple event called error at the link element. Non-network errors in processing the
resource or its subresources (e.g. CSS parse errors, PNG decoding errors) are not
failures for the purposes of this paragraph.

The task source for these tasks is the DOM manipulation task source.

Interactive user agents should provide users with a means to follow the hyperlinks created
using the link element, somewhere within their user interface. The exact interface is not
defined by this specification, but it should include the following information (obtained from
the element's attributes, again as defined below), in some form or another (possibly
simplified), for each hyperlink created with each link element in the document:

• The relationship between this document and the resource (given by the rel
attribute)

• The title of the resource (given by the title attribute).
• The address of the resource (given by the href attribute).
• The language of the resource (given by the hreflang attribute).
• The optimum media for the resource (given by the media attribute).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 160 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 160 from 931

User agents may also include other information, such as the type of the resource (as
given by the type attribute).

Hyperlinks created with the link element and its rel attribute apply to the whole
page. This contrasts with the rel attribute of a and area elements, which indicates
the type of a link whose context is given by the link's location within the document.

The media attribute says which media the resource applies to. The value must be a valid
media query. [MQ]

If the link is a hyperlink then the media attribute is purely advisory, and describes for which
media the document in question was designed.

However, if the link is an external resource link, then the media attribute is prescriptive.
The user agent must apply the external resource to views while their state match the listed
media and the other relevant conditions apply, and must not apply them otherwise.

The external resource might have further restrictions defined within that limit its
applicability. For example, a CSS style sheet might have some @media blocks. This
specification does not override such further restrictions or requirements.

The default, if the media attribute is omitted, is all, meaning that by default links apply to
all media.

The hreflang attribute on the link element has the same semantics as the hreflang
attribute on hyperlink elements.

The type attribute gives the MIME type of the linked resource. It is purely advisory. The
value must be a valid MIME type, optionally with parameters.

For external resource links, the type attribute is used as a hint to user agents so that they
can avoid fetching resources they do not support. If the attribute is present, then the user
agent must assume that the resource is of the given type. If the attribute is omitted, but the
external resource link type has a default type defined, then the user agent must assume
that the resource is of that type. If the UA does not support the given MIME type for the
given link relationship, then the UA should not fetch the resource; if the UA does support
the given MIME type for the given link relationship, then the UA should fetch the resource.
If the attribute is omitted, and the external resource link type does not have a default type
defined, but the user agent would fetch the resource if the type was known and supported,
then the user agent should fetch the resource under the assumption that it will be
supported.

User agents must not consider the type attribute authoritative — upon fetching the
resource, user agents must not use the type attribute to determine its actual type. Only
the actual type (as defined in the next paragraph) is used to determine whether to apply
the resource, not the aforementioned assumed type.

If the external resource link type defines rules for processing the resource's Content-Type
metadata, then those rules apply. Otherwise, if the resource is expected to be an image,
user agents may apply the image sniffing rules, with the official type being the type
determined from the resource's Content-Type metadata, and use the resulting sniffed type
of the resource as if it was the actual type. Otherwise, if neither of these conditions apply

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 161 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 161 from 931

or if the user agent opts not to apply the image sniffing rules, then the user agent must
use the resource's Content-Type metadata to determine the type of the resource. If there
is no type metadata, but the external resource link type has a default type defined, then
the user agent must assume that the resource is of that type.

The stylesheet link type defines rules for processing the resource's Content-Type
metadata.

Once the user agent has established the type of the resource, the user agent must apply
the resource if it is of a supported type and the other relevant conditions apply, and must
ignore the resource otherwise.

If a document contains style sheet links labeled as follows:

<link rel="stylesheet" href="A" type="text/plain">
<link rel="stylesheet" href="B" type="text/css">
<link rel="stylesheet" href="C">

...then a compliant UA that supported only CSS style sheets would fetch the B and C files,
and skip the A file (since text/plain is not the MIME type for CSS style sheets).

For files B and C, it would then check the actual types returned by the server. For those
that are sent as text/css, it would apply the styles, but for those labeled as text/plain, or
any other type, it would not.

If one the two files was returned without a Content-Type metadata, or with a syntactically
incorrect type like Content-Type: "null", then the default type for stylesheet links would
kick in. Since that default type is text/css, the style sheet would nonetheless be applied.

The title attribute gives the title of the link. With one exception, it is purely advisory. The
value is text. The exception is for style sheet links, where the title attribute defines
alternative style sheet sets.

The title attribute on link elements differs from the global title attribute of most
other elements in that a link without a title does not inherit the title of the parent
element: it merely has no title.

The sizes attribute is used with the icon link type. The attribute must not be specified on
link elements that do not have a rel attribute that specifies the icon keyword.

Some versions of HTTP defined a Link: header, to be processed like a series of link
elements. If supported, for the purposes of ordering links defined by HTTP headers must
be assumed to come before any links in the document, in the order that they were given in
the HTTP entity header. (URIs in these headers are to be processed and resolved
according to the rules given in HTTP; the rules of this specification don't apply.) [HTTP]
[WEBLINK]

The DOM attributes href, rel, media, hreflang, and type, and sizes each must reflect the
respective content attributes of the same name.

The DOM attribute relList must reflect the rel content attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 162 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 162 from 931

The DOM attribute disabled only applies to style sheet links. When the link element
defines a style sheet link, then the disabled attribute behaves as defined for the
alternative style sheets DOM. For all other link elements it always return false and does
nothing on setting.

The LinkStyle interface is also be implemented by this element; the styling processing
model defines how. [CSSOM]

4.2.5 The meta element

Status: Working draft

Categories
Metadata content.
If the itemprop attribute is present: flow content.
If the itemprop attribute is present: phrasing content.

Contexts in which this element may be used:
If the charset attribute is present, or if the element's http-equiv attribute is in the
Encoding declaration state: in a head element.
If the http-equiv attribute is present and in the Encoding declaration state: in a
head element.
If the http-equiv attribute is present but not in the Encoding declaration state: in a
noscript element that is a child of a head element.
If the name attribute is present: where metadata content is expected.
If the itemprop attribute is present: where phrasing content is expected.

Content model:
Empty.

Content attributes:
Global attributes
name
http-equiv
content
charset

DOM interface:
interface HTMLMetaElement : HTMLElement {

 attribute DOMString name;

 attribute DOMString httpEquiv;

};

The meta element represents various kinds of metadata that cannot be expressed using
the title, base, link, style, and script elements.

The meta element can represent document-level metadata with the name attribute, pragma
directives with the http-equiv attribute, and the file's character encoding declaration when
an HTML document is serialized to string form (e.g. for transmission over the network or
for disk storage) with the charset attribute.

Exactly one of the name, http-equiv, charset, and itemprop attributes must be specified.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 163 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 163 from 931

If either name, http-equiv, or itemprop is specified, then the content attribute must also be
specified. Otherwise, it must be omitted.

The charset attribute specifies the character encoding used by the document. This is a
character encoding declaration. If the attribute is present in an XML document, its value
must be an ASCII case-insensitive match for the string "UTF-8" (and the document is
therefore required to use UTF-8 as its encoding).

The charset attribute on the meta element has no effect in XML documents, and is
only allowed in order to facilitate migration to and from XHTML.

There must not be more than one meta element with a charset attribute per document.

The content attribute gives the value of the document metadata or pragma directive when
the element is used for those purposes. The allowed values depend on the exact context,
as described in subsequent sections of this specification.

If a meta element has a name attribute, it sets document metadata. Document metadata is
expressed in terms of name/value pairs, the name attribute on the meta element giving the
name, and the content attribute on the same element giving the value. The name
specifies what aspect of metadata is being set; valid names and the meaning of their
values are described in the following sections. If a meta element has no content attribute,
then the value part of the metadata name/value pair is the empty string.

The name DOM attribute must reflect the content attribute of the same name. The DOM
attribute httpEquiv must reflect the content attribute http-equiv.

4.2.5.1 Standard metadata names

This specification defines a few names for the name attribute of the meta element.

application-name
The value must be a short free-form string that giving the name of the Web
application that the page represents. If the page is not a Web application, the
application-name metadata name must not be used. User agents may use the
application name in UI in preference to the page's title, since the title might
include status messages and the like relevant to the status of the page at a
particular moment in time instead of just being the name of the application.

description
The value must be a free-form string that describes the page. The value must be
appropriate for use in a directory of pages, e.g. in a search engine.

generator
The value must be a free-form string that identifies the software used to generate
the document. This value must not be used on hand-authored pages.

4.2.5.2 Other metadata names

ISSUE-27 (rel-ownership) blocks progress to Last Call

Extensions to the predefined set of metadata names may be registered in the
WHATWG Wiki MetaExtensions page.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 164 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 164 from 931

Anyone is free to edit the WHATWG Wiki MetaExtensions page at any time to add a type.
These new names must be specified with the following information:

Keyword
The actual name being defined. The name should not be confusingly similar to any
other defined name (e.g. differing only in case).

Brief description
A short description of what the metadata name's meaning is, including the format
the value is required to be in.

Link to more details
A link to a more detailed description of the metadata name's semantics and
requirements. It could be another page on the Wiki, or a link to an external page.

Synonyms
A list of other names that have exactly the same processing requirements. Authors
should not use the names defined to be synonyms, they are only intended to allow
user agents to support legacy content.

Status
One of the following:

Proposal
The name has not received wide peer review and approval. Someone has
proposed it and is using it.
Accepted
The name has received wide peer review and approval. It has a specification that
unambiguously defines how to handle pages that use the name, including when
they use it in incorrect ways.
Unendorsed
The metadata name has received wide peer review and it has been found wanting.
Existing pages are using this keyword, but new pages should avoid it. The "brief
description" and "link to more details" entries will give details of what authors
should use instead, if anything.
If a metadata name is added with the "proposal" status and found to be redundant
with existing values, it should be removed and listed as a synonym for the existing
value.

Conformance checkers must use the information given on the WHATWG Wiki
MetaExtensions page to establish if a value not explicitly defined in this specification is
allowed or not. Conformance checkers may cache this information (e.g. for performance
reasons or to avoid the use of unreliable network connectivity).

When an author uses a new type not defined by either this specification or the Wiki page,
conformance checkers should offer to add the value to the Wiki, with the details described
above, with the "proposal" status.

This specification does not define how new values will get approved. It is expected that
the Wiki will have a community that addresses this.

Metadata names whose values are to be URLs must not be proposed or accepted. Links
must be represented using the link element, not the meta element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 165 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 165 from 931

4.2.5.3 Pragma directives

When the http-equiv attribute is specified on a meta element, the element is a pragma
directive.

The http-equiv attribute is an enumerated attribute. The following table lists the keywords
defined for this attribute. The states given in the first cell of the rows with keywords give
the states to which those keywords map.

State Keywords Notes
Content Language content-language Conformance checkers will include a warning
Encoding declaration content-type
Default style default-style
Refresh refresh

When a meta element is inserted into the document, if its http-equiv attribute is present
and represents one of the above states, then the user agent must run the algorithm
appropriate for that state, as described in the following list:

Content language state (http-equiv="content-language")
This pragma sets the document-wide default language. Until the pragma is
successfully processed, there is no document-wide default language.

Conformance checkers will include a warning if this pragma is used. Authors
are encouraged to use the lang attribute instead.

1. If another meta element with an http-equiv attribute in the Content
Language state has already been successfully processed (i.e. when it was
inserted the user agent processed it and reached the last step of this list of
steps), then abort these steps.

2. If the meta element has no content attribute, or if that attribute's value is the
empty string, then abort these steps.

3. Let input be the value of the element's content attribute.

4. Let position point at the first character of input.

5. Skip whitespace.

6. Collect a sequence of characters that are neither space characters nor a
U+002C COMMA character (",").

7. Let the document-wide default language be the string that resulted from the
previous step.

For meta elements with an http-equiv attribute in the Content Language state, the
content attribute must have a value consisting of a valid BCP 47 language code.
[BCP47]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 166 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 166 from 931

This pragma is not exactly equivalent to the HTTP Content-Language header,
for instance it only supports one language. [HTTP]

Encoding declaration state (http-equiv="content-type")
The Encoding declaration state is just an alternative form of setting the charset
attribute: it is a character encoding declaration. This state's user agent
requirements are all handled by the parsing section of the specification.

For meta elements with an http-equiv attribute in the Encoding declaration state,
the content attribute must have a value that is an ASCII case-insensitive match for
a string that consists of: the literal string "text/html;", optionally followed by any
number of space characters, followed by the literal string "charset=", followed by
the character encoding name of the character encoding declaration.

If the document contains a meta element with an http-equiv attribute in the
Encoding declaration state, then the document must not contain a meta element
with the charset attribute present.

The Encoding declaration state may be used in HTML documents, but elements
with an http-equiv attribute in that state must not be used in XML documents.

Default style state (http-equiv="default-style")
This pragma sets the name of the default alternative style sheet set.

1. If the meta element has no content attribute, or if that attribute's value is the
empty string, then abort these steps.

2. Set the preferred style sheet set to the value of the element's content
attribute. [CSSOM]

Refresh state (http-equiv="refresh")
This pragma acts as timed redirect.

1. If another meta element with an http-equiv attribute in the Refresh state has
already been successfully processed (i.e. when it was inserted the user
agent processed it and reached the last step of this list of steps), then abort
these steps.

2. If the meta element has no content attribute, or if that attribute's value is the
empty string, then abort these steps.

3. Let input be the value of the element's content attribute.

4. Let position point at the first character of input.

5. Skip whitespace.

6. Collect a sequence of characters in the range U+0030 DIGIT ZERO to
U+0039 DIGIT NINE, and parse the resulting string using the rules for
parsing non-negative integers. If the sequence of characters collected is the
empty string, then no number will have been parsed; abort these steps.
Otherwise, let time be the parsed number.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 167 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 167 from 931

7. Collect a sequence of characters in the range U+0030 DIGIT ZERO to
U+0039 DIGIT NINE and U+002E FULL STOP ("."). Ignore any collected
characters.

8. Skip whitespace.

9. Let url be the address of the current page.

10. If the character in input pointed to by position is a U+003B SEMICOLON
(";"), then advance position to the next character. Otherwise, jump to the last
step.

11. Skip whitespace.

12. If the character in input pointed to by position is one of U+0055 LATIN
CAPITAL LETTER U or U+0075 LATIN SMALL LETTER U, then advance
position to the next character. Otherwise, jump to the last step.

13. If the character in input pointed to by position is one of U+0052 LATIN
CAPITAL LETTER R or U+0072 LATIN SMALL LETTER R, then advance
position to the next character. Otherwise, jump to the last step.

14. If the character in input pointed to by position is one of U+004C LATIN
CAPITAL LETTER L or U+006C LATIN SMALL LETTER L, then advance
position to the next character. Otherwise, jump to the last step.

15. Skip whitespace.

16. If the character in input pointed to by position is a U+003D EQUALS SIGN
("="), then advance position to the next character. Otherwise, jump to the last
step.

17. Skip whitespace.

18. If the character in input pointed to by position is either a U+0027
APOSTROPHE character (') or U+0022 QUOTATION MARK character ("),
then let quote be that character, and advance position to the next character.
Otherwise, let quote be the empty string.

19. Let url be equal to the substring of input from the character at position to the
end of the string.

20. If quote is not the empty string, and there is a character in url equal to quote,
then truncate url at that character, so that it and all subsequent characters
are removed.

21. Strip any trailing space characters from the end of url.

22. Strip any U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF),
and U+000D CARRIAGE RETURN (CR) characters from url.

23. Resolve the url value to an absolute URL, relative to the meta element. If this
fails, abort these steps.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 168 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 168 from 931

24. Perform one or more of the following steps:

o Set a timer so that in time seconds, adjusted to take into account user
or user agent preferences, if the user has not canceled the redirect,
the user agent navigates the document's browsing context to url, with
replacement enabled, and with the document's browsing context as
the source browsing context.

o Provide the user with an interface that, when selected, navigates a
browsing context to url, with the document's browsing context as the
source browsing context.

o Do nothing.

In addition, the user agent may, as with anything, inform the user of any and
all aspects of its operation, including the state of any timers, the destinations
of any timed redirects, and so forth.

For meta elements with an http-equiv attribute in the Refresh state, the content
attribute must have a value consisting either of:

• just a valid non-negative integer, or
• a valid non-negative integer, followed by a U+003B SEMICOLON (;),

followed by one or more space characters, followed by either a U+0055
LATIN CAPITAL LETTER U or a U+0075 LATIN SMALL LETTER U, a
U+0052 LATIN CAPITAL LETTER R or a U+0072 LATIN SMALL LETTER
R, a U+004C LATIN CAPITAL LETTER L or a U+006C LATIN SMALL
LETTER L, a U+003D EQUALS SIGN (=), and then a valid URL.

In the former case, the integer represents a number of seconds before the page is
to be reloaded; in the latter case the integer represents a number of seconds
before the page is to be replaced by the page at the given URL.

There must not be more than one meta element with any particular state in the document
at a time.

4.2.5.4 Other pragma directives

Extensions to the predefined set of pragma directives may, under certain conditions,
be registered in the WHATWG Wiki PragmaExtensions page.

Such extensions must use a name that is identical to a previously-registered HTTP header
defined in an RFC, and must have behavior identical to that described for the HTTP
header. Pragma directions corresponding to headers describing metadata, or not requiring
specific user agent processing, must not be registered; instead, use metadata names.
Pragma directions corresponding to headers that affect the HTTP processing model (e.g.
caching) must not be registered, as they would result in HTTP-level behavior being
different for user agents that implement HTML than for user agents that do not.

Anyone is free to edit the WHATWG Wiki PragmaExtensions page at any time to add a
pragma directive satisfying these conditions. Such registrations must specify the following
information:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 169 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 169 from 931

Keyword
The actual name being defined.

Brief description
A short description of the purpose of the pragma directive.

Specification
A link to an IETF RFC defining the corresponding HTTP header.

Conformance checkers must use the information given on the WHATWG Wiki
PragmaExtensions page to establish if a value not explicitly defined in this specification is
allowed or not. Conformance checkers may cache this information (e.g. for performance
reasons or to avoid the use of unreliable network connectivity).

4.2.5.5 Specifying the document's character encoding

A character encoding declaration is a mechanism by which the character encoding
used to store or transmit a document is specified.

The following restrictions apply to character encoding declarations:

• The character encoding name given must be the name of the character encoding
used to serialize the file.

• The value must be a valid character encoding name, and must be the preferred
name for that encoding. [IANACHARSET]

• The character encoding declaration must be serialized without the use of character
references or character escapes of any kind.

• The element containing the character encoding declaration must be serialized
completely within the first 512 bytes of the document.

• There can only be one character encoding declaration in the document.

If an HTML document does not start with a BOM, and if its encoding is not explicitly given
by Content-Type metadata, then the character encoding used must be an ASCII-
compatible character encoding, and, in addition, if that encoding isn't US-ASCII itself, then
the encoding must be specified using a meta element with a charset attribute or a meta
element with an http-equiv attribute in the Encoding declaration state.

If an HTML document contains a meta element with a charset attribute or a meta element
with an http-equiv attribute in the Encoding declaration state, then the character
encoding used must be an ASCII-compatible character encoding.

Authors should not use JIS-X-0208 (JIS_C6226-1983), JIS-X-0212 (JIS_X0212-1990),
encodings based on ISO-2022, and encodings based on EBCDIC. Authors should not use
UTF-32. Authors must not use the CESU-8, UTF-7, BOCU-1 and SCSU encodings.
[RFC1345] [RFC1468] [RFC2237] [RFC1554] [RFC1922] [RFC1557] [UNICODE] [CESU8]
[UTF7] [BOCU1] [SCSU]

Authors are encouraged to use UTF-8. Conformance checkers may advise against
authors using legacy encodings.

Authoring tools should default to using UTF-8 for newly-created documents.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 170 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 170 from 931

Using non-UTF-8 encodings can have unexpected results on form submission and
URL encodings, which use the document's character encoding by default.

In XHTML, the XML declaration should be used for inline character encoding information,
if necessary.

4.2.6 The style element

Status: Working draft

Categories
Metadata content.
If the scoped attribute is present: flow content.

Contexts in which this element may be used:
If the scoped attribute is absent: where metadata content is expected.
If the scoped attribute is absent: in a noscript element that is a child of a head
element.
If the scoped attribute is present: where flow content is expected, but before any
other flow content other than other style elements and inter-element whitespace.

Content model:
Depends on the value of the type attribute.

Content attributes:
Global attributes
media
type
scoped
Also, the title attribute has special semantics on this element.

DOM interface:
interface HTMLStyleElement : HTMLElement {

 attribute boolean disabled;

 attribute DOMString media;

 attribute DOMString type;

 attribute boolean scoped;

};

HTMLStyleElement implements LinkStyle;

The style element allows authors to embed style information in their documents. The
style element is one of several inputs to the styling processing model. The element does
not represent content for the user.

If the type attribute is given, it must contain a valid MIME type, optionally with parameters,
that designates a styling language. If the attribute is absent, the type defaults to text/css.
[RFC2318]

When examining types to determine if they support the language, user agents must not
ignore unknown MIME parameters — types with unknown parameters must be assumed
to be unsupported.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 171 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 171 from 931

The media attribute says which media the styles apply to. The value must be a valid media
query. [MQ] User agents must apply the styles to views while their state match the listed
media, and must not apply them otherwise.

The styles might be further limited in scope, e.g. in CSS with the use of @media
blocks. This specification does not override such further restrictions or
requirements.

The default, if the media attribute is omitted, is all, meaning that by default styles apply to
all media.

The scoped attribute is a boolean attribute. If set, it indicates that the styles are intended
just for the subtree rooted at the style element's parent element, as opposed to the whole
Document.

If the scoped attribute is present, then the user agent must apply the specified style
information only to the style element's parent element (if any), and that element's child
nodes. Otherwise, the specified styles must, if applied, be applied to the entire document.

The title attribute on style elements defines alternative style sheet sets. If the style
element has no title attribute, then it has no title; the title attribute of ancestors does
not apply to the style element. [CSSOM]

The title attribute on style elements, like the title attribute on link elements,
differs from the global title attribute in that a style block without a title does not
inherit the title of the parent element: it merely has no title.

All descendant elements must be processed, according to their semantics, before the
style element itself is evaluated. For styling languages that consist of pure text, user
agents must evaluate style elements by passing the concatenation of the contents of all
the text nodes that are direct children of the style element (not any other nodes such as
comments or elements), in tree order, to the style system. For XML-based styling
languages, user agents must pass all the child nodes of the style element to the style
system.

All URLs found by the styling language's processor must be resolved, relative to the
element (or as defined by the styling language), when the processor is invoked.

Once the element has been evaluated, if it had no subresources or once all the
subresources it uses have been fetched, the user agent must queue a task to fire a simple
event called load at the style element. If the resource has a subresource that fails to
completely load for any reason (e.g. DNS error, HTTP 404 response, the connection being
prematurely closed, unsupported Content-Type), the user agent must instead queue a
task to fire a simple event called error at the style element. Non-network errors in the
processing of the element's contents or its subresources (e.g. CSS parse errors) are not
failures for the purposes of this paragraph. The style element must delay the load event
of the element's document until one of these tasks has been queued.

The task source for these tasks is the DOM manipulation task source.

This specification does not specify a style system, but CSS is expected to be
supported by most Web browsers. [CSS]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 172 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 172 from 931

The media, type and scoped DOM attributes must reflect the respective content attributes
of the same name.

The DOM disabled attribute behaves as defined for the alternative style sheets DOM.

The LinkStyle interface is also be implemented by this element; the styling processing
model defines how. [CSSOM]

4.2.7 Styling

Status: Working draft

The link and style elements can provide styling information for the user agent to use
when rendering the document. The DOM Styling specification specifies what styling
information is to be used by the user agent and how it is to be used. [CSSOM]

The style and link elements implement the LinkStyle interface. [CSSOM]

For style elements, if the user agent does not support the specified styling language, then
the sheet attribute of the element's LinkStyle interface must return null. Similarly, link
elements that do not represent external resource links that contribute to the styling
processing model (i.e. that do not have a stylesheet keyword in their rel attribute), and
link elements whose specified resource has not yet been fetched, or is not in a supported
styling language, must have their LinkStyle interface's sheet attribute return null.

Otherwise, the LinkStyle interface's sheet attribute must return a StyleSheet object with
the following properties: [CSSOM]

The style sheet type
The style sheet type must be the same as the style's specified type. For style
elements, this is the same as the type content attribute's value, or text/css if that
is omitted. For link elements, this is the Content-Type metadata of the specified
resource.

The style sheet location
For link elements, the location must be the result of resolving the URL given by
the element's href content attribute, relative to the element, or the empty string if
that fails. For style elements, there is no location.

The style sheet media
The media must be the same as the value of the element's media content attribute,
or the empty string, if the attribute is omitted.

The style sheet title
The title must be the same as the value of the element's title content attribute, if
the attribute is present and has a non-empty value. If the attribute is absent or its
value is the empty string, then the style sheet does not have a title (it is the empty
string). The title is used for defining alternative style sheet sets.

The style sheet alternate flag
For link elements, true if the link is an alternative stylesheet. In all other cases,
false.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 173 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 173 from 931

The disabled DOM attribute on link and style elements must return false and do nothing
on setting, if the sheet attribute of their LinkStyle interface is null. Otherwise, it must
return the value of the StyleSheet interface's disabled attribute on getting, and forward
the new value to that same attribute on setting.

The rules for handling alternative style sheets are defined in the CSS object model
specification. [CSSOM]

4.3 Scripting

Scripts allow authors to add interactivity to their documents.

Authors are encouraged to use declarative alternatives to scripting where possible, as
declarative mechanisms are often more maintainable, and many users disable scripting.

For example, instead of using script to show or hide a section to show more details, the
details element could be used.

Authors are also encouraged to make their applications degrade gracefully in the absence
of scripting support.

For example, if an author provides a link in a table header to dynamically resort the table,
the link could also be made to function without scripts by requesting the sorted table from
the server.

4.3.1 The script element

Status: Working draft

Categories
Metadata content.
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where metadata content is expected.
Where phrasing content is expected.

Content model:
If there is no src attribute, depends on the value of the type attribute.
If there is a src attribute, the element must be either empty or contain only script
documentation.

Content attributes:
Global attributes
src
async
defer
type
charset

DOM interface:
interface HTMLScriptElement : HTMLElement {

 attribute DOMString src;

 attribute boolean async;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 174 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 174 from 931

 attribute boolean defer;

 attribute DOMString type;

 attribute DOMString charset;

 attribute DOMString text;

};

The script element allows authors to include dynamic script and data blocks in their
documents. The element does not represent content for the user.

When used to include dynamic scripts, the scripts may either be embedded inline or may
be imported from an external file using the src attribute. If the language is not that
described by "text/javascript", then the type attribute must be present. If the type
attribute is present, its value must be the type of the script's language.

When used to include data blocks, the data must be embedded inline, the format of the
data must be given using the type attribute, and the src attribute must not be specified.

The type attribute gives the language of the script or format of the data. If the attribute is
present, its value must be a valid MIME type, optionally with parameters. The charset
parameter must not be specified. (The default, which is used if the attribute is absent, is
"text/javascript".)

The src attribute, if specified, gives the address of the external script resource to use. The
value of the attribute must be a valid URL identifying a script resource of the type given by
the type attribute, if the attribute is present, or of the type "text/javascript", if the
attribute is absent.

The charset attribute gives the character encoding of the external script resource. The
attribute must not be specified if the src attribute is not present. If the attribute is set, its
value must be a valid character encoding name, must be the preferred name for that
encoding, and must match the encoding given in the charset parameter of the Content-
Type metadata of the external file, if any. [IANACHARSET]

The async and defer attributes are boolean attributes that indicate how the script should
be executed.

There are three possible modes that can be selected using these attributes. If the async
attribute is present, then the script will be executed asynchronously, as soon as it is
available. If the async attribute is not present but the defer attribute is present, then the
script is executed when the page has finished parsing. If neither attribute is present, then
the script is fetched and executed immediately, before the user agent continues parsing
the page. The exact processing details for these attributes is described below.

The defer attribute may be specified even if the async attribute is specified, to cause
legacy Web browsers that only support defer (and not async) to fall back to the defer
behavior instead of the synchronous blocking behavior that is the default.

If the defer attribute may be specified, the src attribute must also be specified.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 175 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 175 from 931

Changing the src, type, charset, async, and defer attributes dynamically has no direct
effect; these attribute are only used at specific times described below (namely, when the
element is inserted into the document).

script elements have four associated pieces of metadata. The first is a flag indicating
whether or not the script block has been "already executed". Initially, script elements
must have this flag unset (script blocks, when created, are not "already executed"). When
a script element is cloned, the "already executed" flag, if set, must be propagated to the
clone when it is created. The second is a flag indicating whether the element was "parser-
inserted". This flag is set by the HTML parser and is used to handle document.write()
calls. The third and fourth pieces of metadata are the script block's type and the script
block's character encoding. They are determined when the script is run, based on the
attributes on the element at that time.

When a script element that is neither marked as having "already executed" nor marked
as being "parser-inserted" experiences one of the events listed in the following list, the
user agent must run the script element:

• The script element gets inserted into a document.
• The script element's child nodes are changed.
• The script element has a src attribute set where previously the element had no

such attribute.

Running a script: When a script element is to be run, the user agent must act as
follows:

1. If either:

o the script element has a type attribute and its value is the empty string, or
o the script element has no type attribute but it has a language attribute and

that attribute's value is the empty string, or
o the script element has neither a type attribute nor a language attribute, then

...let the script block's type for this script element be "text/javascript".

Otherwise, if the script element has a type attribute, let the script block's type for
this script element be the value of that attribute.

Otherwise, the element has a non-empty language attribute; let the script block's
type for this script element be the concatenation of the string "text/" followed by
the value of the language attribute.

The language attribute is never conforming, and is always ignored if there is a
type attribute present.

2. If the script element has a charset attribute, then let the script block's character
encoding for this script element be the encoding given by the charset attribute.

Otherwise, let the script block's character encoding for this script element be the
same as the encoding of the document itself.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 176 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 176 from 931

3. If scripting is disabled for the script element, or if the user agent does not support
the scripting language given by the script block's type for this script element, then
the user agent must abort these steps at this point. The script is not executed.

4. If the element has no src attribute, and its child nodes consist only of comment
nodes and empty text nodes, then the user agent must abort these steps at this
point. The script is not executed.

5. The user agent must set the element's "already executed" flag.

6. If the element has a src attribute, then the value of that attribute must be resolved
relative to the element, and if that is successful, the specified resource must then
be fetched.

For historical reasons, if the URL is a javascript: URL, then the user agent must
not, despite the requirements in the definition of the fetching algorithm, actually
execute the given script; instead the user agent must act as if it had received an
empty HTTP 400 response.

Once the resource's Content Type metadata is available, if it ever is, apply the
algorithm for extracting an encoding from a Content-Type to it. If this returns an
encoding, and the user agent supports that encoding, then let the script block's
character encoding be that encoding.

Once the fetching process has completed, and the script has completed loading,
the user agent will have to complete the steps described below. (If the parser is still
active at that time, those steps defer to the parser to handle the execution of
pending scripts.)

For performance reasons, user agents may start fetching the script as soon as the
attribute is set, instead, in the hope that the element will be inserted into the
document. Either way, once the element is inserted into the document, the load
must have started. If the UA performs such prefetching, but the element is never
inserted in the document, or the src attribute is dynamically changed, then the user
agent will not execute the script, and the fetching process will have been effectively
wasted.

7. Then, the first of the following options that describes the situation must be followed:

If the document is still being parsed, and the element has a defer attribute,
and the element has a src attribute, and the element does not have an async
attribute
The element must be added to the end of the list of scripts that will execute when
the document has finished parsing.
If the element has an async attribute and a src attribute
The element must be added to the end of the list of scripts that will execute
asynchronously.
If the element has an async attribute but no src attribute, and the list of scripts
that will execute asynchronously is not empty
The element must be added to the end of the list of scripts that will execute
asynchronously.
If the element has a src attribute and has been flagged as "parser-inserted"

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 177 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 177 from 931

The element is the pending external script. (There can only be one such script at
a time.)
If the element has a src attribute
The element must be added to the end of the list of scripts that will execute as soon
as possible.
Otherwise
The user agent must immediately execute the script block, even if other scripts are
already executing.

Fetching an external script must delay the load event of the element's document until the
task that is queued by the networking task source once the resource has been fetched
(defined below) has been run.

When a script completes loading: If the script element was added to one of the lists
mentioned above and the document is still being parsed, then the parser handles it.
Otherwise, the UA must run the following steps as the task that the networking task
source places on the task queue:

If the script element was added to the list of scripts that will execute when the
document has finished parsing:

1. If the script element is not the first element in the list, then do nothing yet.
Stop going through these steps.

2. Otherwise, execute the script block (the first element in the list).

3. Remove the script element from the list (i.e. shift out the first entry in the
list).

4. If there are any more entries in the list, and if the script associated with the
element that is now the first in the list is already loaded, then jump back to
step 2 to execute it.

The scripts in the list of scripts that will execute when the document has
finished parsing can also get executed prematurely if the innerHTML attribute
is set on a node in the document.

If the script element was added to the list of scripts that will execute
asynchronously:

1. If the script is not the first element in the list, then do nothing yet. Stop going
through these steps.

2. Execute the script block (the first element in the list).

3. Remove the script element from the list (i.e. shift out the first entry in the
list).

4. If there are any more scripts in the list, and the element now at the head of
the list had no src attribute when it was added to the list, or had one, but its
associated script has finished loading, then jump back to step 2 to execute
the script associated with this element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 178 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 178 from 931

If the script element was added to the list of scripts that will execute as soon as
possible:

1. Execute the script block.

2. Remove the script element from the list.

Executing a script block: When the steps above require that the script block be
executed, the user agent must act as follows:

If the load resulted in an error (for example a DNS error, or an HTTP 404 error)
Executing the script block must just consist of firing a simple event called error at
the element.

If the load was successful
1. Initialize the script block's source as follows:

If the script is from an external file
The contents of that file, interpreted as string of Unicode characters, are the script
source.

For each of the rows in the following table, starting with the first one and going
down, if the file has as many or more bytes available than the number of bytes in
the first column, and the first bytes of the file match the bytes given in the first
column, then set the script block's character encoding to the encoding given in the
cell in the second column of that row, irrespective of any previous value:

Bytes in Hexadecimal Encoding
FE FF UTF-16BE
FF FE UTF-16LE
EF BB BF UTF-8
This step looks for Unicode Byte Order Marks (BOMs).

The file must then be converted to Unicode using the character encoding given by
the script block's character encoding.

If the script is inline and the script block's type is a text-based
language

The value of the DOM text attribute at the time the "running a script" algorithm was
first invoked is the script source.

If the script is inline and the script block's type is an XML-based
language

The child nodes of the script element at the time the "running a script" algorithm
was first invoked are the script source.

2. Pause until either any applicable style sheets have been fetched and
applied, or the user agent has timed out and decided to not wait for those
style sheets.

3. Create a script from the script element node, using the the script block's
source and the the script block's type.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 179 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 179 from 931

This is where the script is compiled and actually executed.

4. Fire a simple event called load at the script element.

The DOM attributes src, type, charset, async, and defer, each must reflect the respective
content attributes of the same name.

script . text [= value]
Returns the contents of the element, ignoring child nodes that aren't text nodes.
Can be set, to replace the element's children with the given value.

The DOM attribute text must return a concatenation of the contents of all the text nodes
that are direct children of the script element (ignoring any other nodes such as
comments or elements), in tree order. On setting, it must act the same way as the
textContent DOM attribute.

In this example, two script elements are used. One embeds an external script, and the
other includes some data.

<script src="game-engine.js"></script>
<script type="text/x-game-map">
........U.........e
o............A....e
.....A.....AAA....e
.A..AAA...AAAAA...e
</script>

The data in this case might be used by the script to generate the map of a video game.
The data doesn't have to be used that way, though; maybe the map data is actually
embedded in other parts of the page's markup, and the data block here is just used by the
site's search engine to help users who are looking for particular features in their game
maps.

When inserted using the document.write() method, script elements execute
(typically synchronously), but when inserted using innerHTML and outerHTML
attributes, they do not execute at all.

4.3.1.1 Scripting languages

A user agent is said to support the scripting language if the script block's type matches
the MIME type of a scripting language that the user agent implements.

The following lists some MIME types and the languages to which they refer:

application/ecmascript
application/javascript
application/x-ecmascript
application/x-javascript
text/ecmascript
text/javascript
text/javascript1.0
text/javascript1.1
text/javascript1.2
text/javascript1.3
text/javascript1.4

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 180 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 180 from 931

text/javascript1.5
text/jscript
text/livescript
text/x-ecmascript
text/x-javascript

JavaScript. [ECMA262]
text/javascript;e4x=1

JavaScript with ECMAScript for XML. [ECMA357]

User agents may support other MIME types and other languages.

When examining types to determine if they support the language, user agents must not
ignore unknown MIME parameters — types with unknown parameters must be assumed
to be unsupported. The charset parameter must be treated as an unknown parameter for
the purpose of comparing MIME types here.

4.3.1.2 Inline documentation for external scripts

If a script element's src attribute is specified, then the contents of the script element, if
any, must be such that the value of the DOM text attribute, which is derived from the
element's contents, matches the documentation production in the following ABNF, the
character set for which is Unicode. [ABNF]

documentation = *(*(space / tab / comment) [line-comment] newline)
comment = slash star *(not-star / star not-slash) 1*star slash
line-comment = slash slash *not-newline

; characters
tab = %x0009 ; U+0009 TAB
newline = %x000A ; U+000A LINE FEED
space = %x0020 ; U+0020 SPACE
star = %x002A ; U+002A ASTERISK
slash = %x002F ; U+002F SOLIDUS
not-newline = %x0000-0009 / %x000B-10FFFF
 ; a Unicode character other than U+000A LINE FEED
not-star = %x0000-0029 / %x002B-10FFFF
 ; a Unicode character other than U+002A ASTERISK
not-slash = %x0000-002E / %x0030-10FFFF
 ; a Unicode character other than U+002F SOLIDUS

This allows authors to include documentation, such as license information or API
information, inside their documents while still referring to external script files. The syntax is
constrained so that authors don't accidentally include what looks like valid script while also
providing a src attribute.

<script src="cool-effects.js">
 // create new instances using:
 // var e = new Effect();
 // start the effect using .play, stop using .stop:
 // e.play();
 // e.stop();
</script>

4.3.2 The noscript element

Status: Implemented and widely deployed

Categories

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 181 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 181 from 931

Metadata content.
Flow content.
Phrasing content.

Contexts in which this element may be used:
In a head element of an HTML document, if there are no ancestor noscript
elements.
Where phrasing content is expected in HTML documents, if there are no ancestor
noscript elements.

Content model:
When scripting is disabled, in a head element: in any order, zero or more link
elements, zero or more style elements, and zero or more meta elements.
When scripting is disabled, not in a head element: transparent, but there must be no
noscript element descendants.
Otherwise: text that conforms to the requirements given in the prose.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The noscript element represents nothing if scripting is enabled, and represents its
children if scripting is disabled. It is used to present different markup to user agents that
support scripting and those that don't support scripting, by affecting how the document is
parsed.

When used in HTML documents, the allowed content model is as follows:

In a head element, if scripting is disabled for the noscript element
The noscript element must contain only link, style, and meta elements.

In a head element, if scripting is enabled for the noscript element
The noscript element must contain only text, except that invoking the HTML
fragment parsing algorithm with the noscript element as the context element and
the text contents as the input must result in a list of nodes that consists only of
link, style, and meta elements, and no parse errors.

Outside of head elements, if scripting is disabled for the noscript element
The noscript element's content model is transparent, with the additional restriction
that a noscript element must not have a noscript element as an ancestor (that is,
noscript can't be nested).

Outside of head elements, if scripting is enabled for the noscript element
The noscript element must contain only text, except that the text must be such that
running the following algorithm results in a conforming document with no noscript
elements and no script elements, and such that no step in the algorithm causes
an HTML parser to flag a parse error:

1. Remove every script element from the document.
2. Make a list of every noscript element in the document. For every noscript

element in that list, perform the following steps:
1. Let the parent element be the parent element of the noscript

element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 182 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 182 from 931

2. Take all the children of the parent element that come before the
noscript element, and call these elements the before children.

3. Take all the children of the parent element that come after the
noscript element, and call these elements the after children.

4. Let s be the concatenation of all the text node children of the noscript
element.

5. Set the innerHTML attribute of the parent element to the value of s.
(This, as a side-effect, causes the noscript element to be removed
from the document.)

6. Insert the before children at the start of the parent element, preserving
their original relative order.

7. Insert the after children at the end of the parent element, preserving
their original relative order.

All these contortions are required because, for historical reasons, the noscript
element is handled differently by the HTML parser based on whether scripting was
enabled or not when the parser was invoked. The element is not allowed in XML,
because in XML the parser is not affected by such state, and thus the element
would not have the desired effect.

The noscript element must not be used in XML documents.

The noscript element is only effective in the the HTML syntax, it has no effect in the
the XHTML syntax.

The noscript element has no other requirements. In particular, children of the noscript
element are not exempt from form submission, scripting, and so forth, even when scripting
is enabled for the element.

4.4 Sections

4.4.1 The body element
Categories

Sectioning root.
Contexts in which this element may be used:

As the second element in an html element.
Content model:

Flow content.
Content attributes:

Global attributes
onafterprint
onbeforeprint
onbeforeunload
onblur
onerror
onfocus
onhashchange
onload
onmessage
onoffline
ononline
onpopstate
onredo
onresize

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 183 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 183 from 931

onstorage
onundo
onunload

DOM interface:
interface HTMLBodyElement : HTMLElement {

 attribute Function onafterprint;

 attribute Function onbeforeprint;

 attribute Function onbeforeunload;

 attribute Function onblur;

 attribute Function onerror;

 attribute Function onfocus;

 attribute Function onhashchange;

 attribute Function onload;

 attribute Function onmessage;

 attribute Function onoffline;

 attribute Function ononline;

 attribute Function onpopstate;

 attribute Function onredo;

 attribute Function onresize;

 attribute Function onstorage;

 attribute Function onundo;

 attribute Function onunload;

};

The body element represents the main content of the document.

In conforming documents, there is only one body element. The document.body DOM
attribute provides scripts with easy access to a document's body element.

Some DOM operations (for example, parts of the drag and drop model) are defined
in terms of "the body element". This refers to a particular element in the DOM, as
per the definition of the term, and not any arbitrary body element.

The body element exposes as event handler content attributes a number of the event
handler attributes of the Window object. It also mirrors their event handler DOM attributes.

The onblur, onerror, onfocus, and onload event handler attributes of the Window object,
exposed on the body element, shadow the generic event handler attributes with the same
names normally supported by HTML elements.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 184 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 184 from 931

Thus, for example, a bubbling error event fired on a child of the body element of a
Document would first trigger the onerror event handler content attributes of that
element, then that of the root html element, and only then would it trigger the onerror
event handler content attribute on the body element. This is because the event would
bubble from the target, to the body, to the html, to the Document, to the Window, and
the event handler attribute on the body is watching the Window not the body. A regular
event listener attached to the body using addEventListener(), however, would fire
when the event bubbled through the body and not when it reaches the Window object.

4.4.2 The section element

Status: Last call for comments

Categories
Flow content.
Sectioning content.
formatBlock candidate.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Flow content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The section element represents a generic document or application section. A section, in
this context, is a thematic grouping of content, typically with a heading, possibly with a
footer.

Examples of sections would be chapters, the various tabbed pages in a tabbed dialog
box, or the numbered sections of a thesis. A Web site's home page could be split into
sections for an introduction, news items, contact information.

The section element is not a generic container element. When an element is needed
for styling purposes or as a convenience for scripting, authors are encouraged to
use the div element instead. A general rule is that the section element is
appropriate only if the element's contents would be listed explicitly in the
document's outline.

In the following example, we see an article (part of a larger Web page) about apples,
containing two short sections.

<article>
 <hgroup>
 <h1>Apples</h1>
 <h2>Tasty, delicious fruit!</h2>
 </hgroup>
 <p>The apple is the pomaceous fruit of the apple tree.</p>
 <section>
 <h1>Red Delicious</h1>
 <p>These bright red apples are the most common found in many
 supermarkets.</p>
 </section>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 185 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 185 from 931

 <section>
 <h1>Granny Smith</h1>
 <p>These juicy, green apples make a great filling for
 apple pies.</p>
 </section>
</article>

Notice how the use of section means that the author can use h1 elements throughout,
without having to worry about whether a particular section is at the top level, the second
level, the third level, and so on.

4.4.3 The nav element

Status: Last call for comments

Categories
Flow content.
Sectioning content.
formatBlock candidate.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Flow content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The nav element represents a section of a page that links to other pages or to parts within
the page: a section with navigation links. Not all groups of links on a page need to be in a
nav element — only sections that consist of major navigation blocks are appropriate for
the nav element. In particular, it is common for footers to have a list of links to various key
parts of a site, but the footer element is more appropriate in such cases, and no nav
element is necessary for those links.

User agents (such as screen readers) that are targetted at users who can benefit
from navigation information being omitted in the initial rendering, or who can
benefit from navigation information being immediately available, can use this
element as a way to determine what content on the page to initially skip and/or
provide on request.

In the following example, the page has several places where links are present, but only
one of those places is considered a navigation section.

<body>
 <header>
 <h1>Wake up sheeple!</h1>
 <p>News -
 Blog -
 Forums</p>
 <p>Last Modified: <time>2009-04-01</time></p>
 <nav>
 <h1>Navigation</h1>

 Index of all articles

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 186 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 186 from 931

 Things sheeple need to wake up for
today
 Sheeple we have managed to
wake

 </nav>
 </header>
 <article>
 <p>...page content would be here...</p>
 </article>
 <footer>
 <p>Copyright © 2006 The Example Company</p>
 <p>About -
 Privacy Policy -
 Contact Us</p>
 </footer>
</body>

In the following example, there are two nav elements, one for primary navigation around
the site, and one for secondary navigation around the page itself.

<body>
 <h1>The Wiki Center Of Exampland</h1>
 <nav>

 Home
 Current Events
 ...more...

 </nav>
 <article>
 <header>
 <h1>Demos in Exampland</h1>
 <nav>

 Public demonstrations
 Demolitions
 ...more...

 </nav>
 </header>
 <section id="public">
 <h1>Public demonstrations</h1>
 <p>...more...</p>
 </section>
 <section id="destroy">
 <h1>Demolitions</h1>
 <p>...more...</p>
 </section>
 ...more...
 <footer>
 <p>Edit | Delete | Rename</p>
 </footer>
 </article>
 <footer>
 <p><small>© copyright 1998 Exampland Emperor</small></p>
 </footer>
</body>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 187 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 187 from 931

4.4.4 The article element

Status: Last call for comments

Categories
Flow content.
Sectioning content.
formatBlock candidate.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Flow content.

Content attributes:
Global attributes
pubdate

DOM interface:
interface HTMLArticleElement : HTMLElement {

 attribute DOMString pubDate;

};

The article element represents a section of a page that consists of a composition that
forms an independent part of a document, page, or site. This could be a forum post, a
magazine or newspaper article, a Web log entry, a user-submitted comment, or any other
independent item of content.

An article element is "independent" in the sense that its contents could stand alone, for
example in syndication.

When article elements are nested, the inner article elements represent articles that are
in principle related to the contents of the outer article. For instance, a Web log entry on a
site that accepts user-submitted comments could represent the comments as article
elements nested within the article element for the Web log entry.

Author information associated with an article element (q.v. the address element) does
not apply to nested article elements.

The pubdate attribute may be used to specify the time and date that the article was first
published. If present, the pubdate attribute must be a valid global date and time string
value.

The pubDate DOM attribute must reflect the element's pubdate content attribute.

4.4.5 The aside element

Status: Last call for comments

Categories
Flow content.
Sectioning content.
formatBlock candidate.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 188 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 188 from 931

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Flow content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The aside element represents a section of a page that consists of content that is
tangentially related to the content around the aside element, and which could be
considered separate from that content. Such sections are often represented as sidebars in
printed typography.

The element can also be used for typographical effects like pull quotes.

It's not appropriate to use the aside element just for parentheticals, since those are
part of the main flow of the document.

The following example shows how an aside is used to mark up background material on
Switzerland in a much longer news story on Europe.

<aside>
 <h1>Switzerland</h1>
 <p>Switzerland, a land-locked country in the middle of geographic
 Europe, has not joined the geopolitical European Union, though it is
 a signatory to a number of European treaties.</p>
</aside>

The following example shows how an aside is used to mark up a pull quote in a longer
article.

...

<p>He later joined a large company, continuing on the same work.
<q>I love my job. People ask me what I do for fun when I'm not at
work. But I'm paid to do my hobby, so I never know what to
answer. Some people wonder what they would do if they didn't have to
work... but I know what I would do, because I was unemployed for a
year, and I filled that time doing exactly what I do
now.</q></p>

<aside>
 <q> People ask me what I do for fun when I'm not at work. But I'm
 paid to do my hobby, so I never know what to answer. </q>
</aside>

<p>Of course his work — or should that be hobby? —
isn't his only passion. He also enjoys other pleasures.</p>

...

4.4.6 The h1, h2, h3, h4, h5, and h6 elements
Categories

Flow content.
Heading content.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 189 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 189 from 931

formatBlock candidate.
Contexts in which this element may be used:

Where flow content is expected.
Content model:

Phrasing content.
Content attributes:

Global attributes
DOM interface:

interface HTMLHeadingElement : HTMLElement {};

These elements represent headings for their sections.

The semantics and meaning of these elements are defined in the section on headings and
sections.

These elements have a rank given by the number in their name. The h1 element is said to
have the highest rank, the h6 element has the lowest rank, and two elements with the
same name have equal rank.

4.4.7 The hgroup element

Status: Last call for comments

Categories
Flow content.
Heading content.
formatBlock candidate.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
One or more h1, h2, h3, h4, h5, and/or h6 elements.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The hgroup element represents the heading of a section. The element is used to group a
set of h1–h6 elements when the heading has multiple levels, such as subheadings,
alternative titles, or taglines.

The point of hgroup is to mask an h2 element (that acts as a secondary title) from the
outline algorithm.

For the purposes of document summaries, outlines, and the like, the text of hgroup
elements is defined to be the text of the highest ranked h1–h6 element descendant of the
hgroup element, if there are any such elements, and the first such element if there are
multiple elements with that rank. If there are no such elements, then the text of the hgroup
element is the empty string.

Other elements of heading content in the hgroup element indicate subheadings or
subtitles.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 190 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 190 from 931

The rank of an hgroup element is the rank of the highest-ranked h1–h6 element
descendant of the hgroup element, if there are any such elements, or otherwise the same
as for an h1 element (the highest rank).

The section on headings and sections defines how hgroup elements are assigned to
individual sections.

Here are some examples of valid headings. In each case, the emphasized text represents
the text that would be used as the heading in an application extracting heading data and
ignoring subheadings.

<hgroup>
 <h1>The reality dysfunction</h1>
 <h2>Space is not the only void</h2>
</hgroup>
<hgroup>
 <h1>Dr. Strangelove</h1>
 <h2>Or: How I Learned to Stop Worrying and Love the Bomb</h2>
</hgroup>

4.4.8 The header element

Status: Last call for comments

Categories
Flow content.
formatBlock candidate.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Flow content, but with no header or footer element descendants.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The header element represents a group of introductory or navigational aids.

A header element is intended to usually contain the section's heading (an h1–h6
element or an hgroup element), but this is not required. The header element can also
be used to wrap a section's table of contents, a search form, or any relevant logos.

Here are some sample headers. This first one is for a game:

<header>
 <p>Welcome to...</p>
 <h1>Voidwars!</h1>
</header>

The following snippet shows how the element can be used to mark up a specification's
header:

<header>
 <hgroup>
 <h1>Scalable Vector Graphics (SVG) 1.2</h1>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 191 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 191 from 931

 <h2>W3C Working Draft 27 October 2004</h2>
 </hgroup>
 <dl>
 <dt>This version:</dt>
 <dd><a href="http://www.w3.org/TR/2004/WD-SVG12-
20041027/">http://www.w3.org/TR/2004/WD-SVG12-20041027/</dd>
 <dt>Previous version:</dt>
 <dd><a href="http://www.w3.org/TR/2004/WD-SVG12-
20040510/">http://www.w3.org/TR/2004/WD-SVG12-20040510/</dd>
 <dt>Latest version of SVG 1.2:</dt>
 <dd>http://www.w3.org/TR/SVG12/</dd>
 <dt>Latest SVG Recommendation:</dt>
 <dd>http://www.w3.org/TR/SVG/</dd>
 <dt>Editor:</dt>
 <dd>Dean Jackson, W3C, dean@w3.org</dd>
 <dt>Authors:</dt>
 <dd>See Author List</dd>
 </dl>
 <p class="copyright"><a href="http://www.w3.org/Consortium/Legal/ipr-
notic ...
</header>

The header element is not sectioning content; it doesn't introduce a new section.

In this example, the page has a page heading given by the h1 element, and two
subsections whose headings are given by h2 elements. The content after the header
element is still part of the last subsection started in the header element, because the
header element doesn't take part in the outline algorithm.

<body>
 <header>
 <h1>Little Green Guys With Guns</h1>
 <nav>

 Games |
 Forum |
 Download

 </nav>
 <h2>Important News</h2> <!-- this starts a second subsection -->
 <!-- this is part of the subsection entitled "Important News" -->
 <p>To play today's games you will need to update your client.</p>
 <h2>Games</h2> <!-- this starts a third subsection -->
 </header>
 <p>You have three active games:</p>
 <!-- this is still part of the subsection entitled "Games" -->
 ...

4.4.9 The footer element

Status: Last call for comments

Categories
Flow content.
formatBlock candidate.

Contexts in which this element may be used:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 192 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 192 from 931

Where flow content is expected.
Content model:

Flow content, but with no heading content descendants, no sectioning content
descendants, and no header or footer element descendants.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The footer element represents a footer for its nearest ancestor sectioning content. A
footer typically contains information about its section such as who wrote it, links to related
documents, copyright data, and the like.

Contact information belongs in an address element, possibly itself inside a footer.

Footers don't necessarily have to appear at the end of a section, though they usually do.

The footer element is inappropriate for containing entire sections. For appendices,
indexes, long colophons, verbose license agreements, and other such content which
needs sectioning with headings and so forth, regular section elements should be used,
not a footer.

Here is a page with two footers, one at the top and one at the bottom, with the same
content:

<body>
 <footer>Back to index...</footer>
 <hgroup>
 <h1>Lorem ipsum</h1>
 <h2>The ipsum of all lorems</h2>
 </hgroup>
 <p>A dolor sit amet, consectetur adipisicing elit, sed do eiusmod
 tempor incididunt ut labore et dolore magna aliqua. Ut enim ad minim
 veniam, quis nostrud exercitation ullamco laboris nisi ut aliquip ex
 ea commodo consequat. Duis aute irure dolor in reprehenderit in
 voluptate velit esse cillum dolore eu fugiat nulla
 pariatur. Excepteur sint occaecat cupidatat non proident, sunt in
 culpa qui officia deserunt mollit anim id est laborum.</p>
 <footer>Back to index...</footer>
</body>

4.4.10 The address element

Status: Implemented and widely deployed

Categories
Flow content.
formatBlock candidate.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Flow content, but with no heading content descendants, no sectioning content
descendants, and no header, footer, or address element descendants.

Content attributes:
Global attributes

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 193 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 193 from 931

DOM interface:
Uses HTMLElement.

The address element represents the contact information for its nearest article or body
element ancestor. If that is the body element, then the contact information applies to the
document as a whole.

For example, a page at the W3C Web site related to HTML might include the following
contact information:

<ADDRESS>
 Dave Raggett,
 Arnaud Le Hors,
 contact persons for the W3C HTML Activity
</ADDRESS>

The address element must not be used to represent arbitrary addresses (e.g. postal
addresses), unless those addresses are in fact the relevant contact information. (The p
element is the appropriate element for marking up postal addresses in general.)

The address element must not contain information other than contact information.

For example, the following is non-conforming use of the address element:

<ADDRESS>Last Modified: 1999/12/24 23:37:50</ADDRESS>

Typically, the address element would be included along with other information in a footer
element.

The contact information for a node node is a collection of address elements defined by the
first applicable entry from the following list:

If node is an article element
If node is a body element

The contact information consists of all the address elements that have node as an
ancestor and do not have another body or article element ancestor that is a
descendant of node.

If node has an ancestor element that is a article element
If node has an ancestor element that is a body element

The contact information of node is the same as the contact information of the
nearest article or body element ancestor, whichever is nearest.

If node's Document has a body element
The contact information of node is the same as the contact information the body
element of the Document.

Otherwise
There is no contact information for node.

User agents may expose the contact information of a node to the user, or use it for other
purposes, such as indexing sections based on the sections' contact information.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 194 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 194 from 931

Contact information for one sectioning content element, e.g. an aside element, does
not apply to its ancestor elements, e.g. the page's body.

4.4.11 Headings and sections

Status: Working draft

The h1–h6 elements and the hgroup element are headings.

The first element of heading content in an element of sectioning content represents the
heading for that section. Subsequent headings of equal or higher rank start new (implied)
sections, headings of lower rank start implied subsections that are part of the previous
one. In both cases, the element represents the heading of the implied section.

Sectioning content elements are always considered subsections of their nearest ancestor
element of sectioning content, regardless of what implied sections other headings may
have created.

Certain elements are said to be sectioning roots, including blockquote and td elements.
These elements can have their own outlines, but the sections and headings inside these
elements do not contribute to the outlines of their ancestors.

• blockquote
• body
• figure
• td

For the following fragment:

<body>
 <h1>Foo</h1>
 <h2>Bar</h2>
 <blockquote>
 <h3>Bla</h3>
 </blockquote>
 <p>Baz</p>
 <h2>Quux</h2>
 <section>
 <h3>Thud</h3>
 </section>
 <p>Grunt</p>
</body>

...the structure would be:

1. Foo (heading of explicit body section, containing the "Grunt" paragraph)
1. Bar (heading starting implied section, containing a block quote and the

"Baz" paragraph)
2. Quux (heading starting implied section)
3. Thud (heading of explicit section section)

Notice how the section ends the earlier implicit section so that a later paragraph ("Grunt")
is back at the top level.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 195 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 195 from 931

Sections may contain headings of any rank, but authors are strongly encouraged to either
use only h1 elements, or to use elements of the appropriate rank for the section's nesting
level.

Authors are also encouraged to explicitly wrap sections in elements of sectioning content,
instead of relying on the implicit sections generated by having multiple headings in one
element of sectioning content.

For example, the following is correct:

<body>
 <h4>Apples</h4>
 <p>Apples are fruit.</p>
 <section>
 <h2>Taste</h2>
 <p>They taste lovely.</p>
 <h6>Sweet</h6>
 <p>Red apples are sweeter than green ones.</p>
 <h1>Color</h1>
 <p>Apples come in various colors.</p>
 </section>
</body>

However, the same document would be more clearly expressed as:

<body>
 <h1>Apples</h1>
 <p>Apples are fruit.</p>
 <section>
 <h2>Taste</h2>
 <p>They taste lovely.</p>
 <section>
 <h3>Sweet</h3>
 <p>Red apples are sweeter than green ones.</p>
 </section>
 </section>
 <section>
 <h2>Color</h2>
 <p>Apples come in various colors.</p>
 </section>
</body>

Both of the documents above are semantically identical and would produce the same
outline in compliant user agents.

4.4.11.1 Creating an outline

This section defines an algorithm for creating an outline for a sectioning content element
or a sectioning root element. It is defined in terms of a walk over the nodes of a DOM tree,
in tree order, with each node being visited when it is entered and when it is exited during
the walk.

The outline for a sectioning content element or a sectioning root element consists of a list
of one or more potentially nested sections. A section is a container that corresponds to
some nodes in the original DOM tree. Each section can have one heading associated with
it, and can contain any number of further nested sections. The algorithm for the outline
also associates each node in the DOM tree with a particular section and potentially a

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 196 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 196 from 931

heading. (The sections in the outline aren't section elements, though some may
correspond to such elements — they are merely conceptual sections.)

The following markup fragment:

<body>
 <h1>A</h1>
 <p>B</p>
 <h2>C</h2>
 <p>D</p>
 <h2>E</h2>
 <p>F</p>
</body>

...results in the following outline being created for the body node (and thus the entire
document):

1. Section created for body node.
Associated with heading "A".
Also associated with paragraph "B".
Nested sections:
1. Section implied for first h2 element.

Associated with heading "C".
Also associated with paragraph "D".
No nested sections.

2. Section implied for second h2 element.
Associated with heading "E".
Also associated with paragraph "F".
No nested sections.

The algorithm that must be followed during a walk of a DOM subtree rooted at a
sectioning content element or a sectioning root element to determine that element's
outline is as follows:

1. Let current outlinee be null. (It holds the element whose outline is being created.)

2. Let current section be null. (It holds a pointer to a section, so that elements in the
DOM can all be associated with a section.)

3. Create a stack to hold elements, which is used to handle nesting. Initialize this
stack to empty.

4. As you walk over the DOM in tree order, trigger the first relevant step below for
each element as you enter and exit it.

If the top of the stack is an element, and you are exiting that element
The element being exited is a heading content element.

Pop that element from the stack.

If the top of the stack is a heading content element
Do nothing.

When entering a sectioning content element or a sectioning root element

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 197 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 197 from 931

If current outlinee is not null, push current outlinee onto the stack.

Let current outlinee be the element that is being entered.

Let current section be a newly created section for the current outlinee element.

Let there be a new outline for the new current outlinee, initialized with just the new
current section as the only section in the outline.

When exiting a sectioning content element, if the stack is not empty
Pop the top element from the stack, and let the current outlinee be that element.

Let current section be the last section in the outline of the current outlinee element.

Append the outline of the sectioning content element being exited to the current
section. (This does not change which section is the last section in the outline.)

When exiting a sectioning root element, if the stack is not empty
Run these steps:

1. Pop the top element from the stack, and let the current outlinee be that
element.

2. Let current section be the last section in the outline of the current outlinee
element.

3. Finding the deepest child: If current section has no child sections, stop these
steps.

4. Let current section be the last child section of the current current section.

5. Go back to the substep labeled finding the deepest child.

When exiting a sectioning content element or a sectioning root element
The current outlinee is the element being exited.

Let current section be the first section in the outline of the current outlinee element.

Skip to the next step in the overall set of steps. (The walk is over.)

If the current outlinee is null.
Do nothing.

When entering a heading content element
If the current section has no heading, let the element being entered be the heading
for the current section.

Otherwise, if the element being entered has a rank equal to or greater than the
heading of the last section of the outline of the current outlinee, then create a new
section and append it to the outline of the current outlinee element, so that this new
section is the new last section of that outline. Let current section be that new
section. Let the element being entered be the new heading for the current section.

Otherwise, run these substeps:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 198 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 198 from 931

6. Let candidate section be current section.

7. If the element being entered has a rank lower than the rank of the heading of
the candidate section, then create a new section, and append it to candidate
section. (This does not change which section is the last section in the
outline.) Let current section be this new section. Let the element being
entered be the new heading for the current section. Abort these substeps.

8. Let new candidate section be the section that contains candidate section in
the outline of current outlinee.

9. Let candidate section be new candidate section.

10. Return to step 2.

Push the element being entered onto the stack. (This causes the algorithm to skip
any descendants of the element.)

Recall that h1 has the highest rank, and h6 has the lowest rank.

Otherwise
Do nothing.

In addition, whenever you exit a node, after doing the steps above, if current
section is not null, associate the node with the section current section.

5. If the current outlinee is null, then there was no sectioning content element or
sectioning root element in the DOM. There is no outline. Abort these steps.

6. Associate any nodes that were not associated with a section in the steps above
with current outlinee as their section.

7. Associate all nodes with the heading of the section with which they are associated,
if any.

8. If current outlinee is the body element, then the outline created for that element is
the outline of the entire document.

The tree of sections created by the algorithm above, or a proper subset thereof, must be
used when generating document outlines, for example when generating tables of
contents.

When creating an interactive table of contents, entries should jump the user to the
relevant sectioning content element, if the section was created for a real element in the
original document, or to the relevant heading content element, if the section in the tree
was generated for a heading in the above process.

Selecting the first section of the document therefore always takes the user to the
top of the document, regardless of where the first heading in the body is to be found.

The following JavaScript function shows how the tree walk could be implemented.
The root argument is the root of the tree to walk, and the enter and exit arguments

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 199 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 199 from 931

are callbacks that are called with the nodes as they are entered and exited.
[ECMA262]

function (root, enter, exit) {
 var node = root;
 start: while (node) {
 enter(node);
 if (node.firstChild) {
 node = node.firstChild;
 continue start;
 }
 while (node) {
 exit(node);
 if (node.nextSibling) {
 node = node.nextSibling;
 continue start;
 }
 if (node == root)
 node = null;
 else
 node = node.parentNode;
 }
 }
}

4.4.11.2 Distinguishing site-wide headings from page headings

Given the outline of a document, but ignoring any sections created for nav and aside
elements, and any of their descendants, if the only root of the tree is the body element's
section, and it has only a single subsection which is created by an article element, then
the heading of the body element should be assumed to be a site-wide heading, and the
heading of the article element should be assumed to be the page's heading.

If a page starts with a heading that is common to the whole site, the document must be
authored such that, in the document's outline, ignoring any sections created for nav and
aside elements and any of their descendants, the tree has only one root section, the body
element's section, its heading is the site-wide heading, the body element has just one
subsection, that subsection is created by an article element, and that article's heading
is the page heading.

If a page does not contain a site-wide heading, then the page must be authored such that,
in the document's outline, ignoring any sections created for nav and aside elements and
any of their descendants, either the body element has no subsections, or it has more than
one subsection, or it has a single subsection but that subsection is not created by an
article element, or there is more than one section at the root of the outline.

Conceptually, a site is thus a document with many articles — when those articles
are split into many pages, the heading of the original single page becomes the
heading of the site, repeated on every page.

4.5 Grouping content

Status: Last call for comments

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 200 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 200 from 931

4.5.1 The p element

Status: Implemented and widely deployed

Categories
Flow content.
formatBlock candidate.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
interface HTMLParagraphElement : HTMLElement {};

The p element represents a paragraph.

The following examples are conforming HTML fragments:

<p>The little kitten gently seated himself on a piece of
carpet. Later in his life, this would be referred to as the time the
cat sat on the mat.</p>
<fieldset>
 <legend>Personal information</legend>
 <p>
 <label>Name: <input name="n"></label>
 <label><input name="anon" type="checkbox"> Hide from other
users</label>
 </p>
 <p><label>Address: <textarea name="a"></textarea></label></p>
</fieldset>
<p>There was once an example from Femley,

Whose markup was of dubious quality.

The validator complained,

So the author was pained,

To move the error from the markup to the rhyming.</p>

The p element should not be used when a more specific element is more appropriate.

The following example is technically correct:

<section>
 <!-- ... -->
 <p>Last modified: 2001-04-23</p>
 <p>Author: fred@example.com</p>
</section>

However, it would be better marked-up as:

<section>
 <!-- ... -->
 <footer>Last modified: 2001-04-23</footer>
 <address>Author: fred@example.com</address>
</section>

Or:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 201 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 201 from 931

<section>
 <!-- ... -->
 <footer>
 <p>Last modified: 2001-04-23</p>
 <address>Author: fred@example.com</address>
 </footer>
</section>

4.5.2 The hr element

Status: Implemented and widely deployed

Categories
Flow content.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Empty.

Content attributes:
Global attributes

DOM interface:
interface HTMLHRElement : HTMLElement {};

The hr element represents a paragraph-level thematic break, e.g. a scene change in a
story, or a transition to another topic within a section of a reference book.

4.5.3 The br element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Empty.

Content attributes:
Global attributes

DOM interface:
interface HTMLBRElement : HTMLElement {};

The br element represents a line break.

br elements must be empty. Any content inside br elements must not be considered part
of the surrounding text.

br elements must be used only for line breaks that are actually part of the content, as in
poems or addresses.

The following example is correct usage of the br element:

<p>P. Sherman

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 202 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 202 from 931

42 Wallaby Way

Sydney</p>

br elements must not be used for separating thematic groups in a paragraph.

The following examples are non-conforming, as they abuse the br element:

<p><a ...>34 comments.

<a ...>Add a comment.</p>
<p><label>Name: <input name="name"></label>

<label>Address: <input name="address"></label></p>

Here are alternatives to the above, which are correct:

<p><a ...>34 comments.</p>
<p><a ...>Add a comment.</p>
<p><label>Name: <input name="name"></label></p>
<p><label>Address: <input name="address"></label></p>

If a paragraph consists of nothing but a single br element, it represents a placeholder
blank line (e.g. as in a template). Such blank lines must not be used for presentation
purposes.

4.5.4 The pre element

Status: Implemented and widely deployed

Categories
Flow content.
formatBlock candidate.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
interface HTMLPreElement : HTMLElement {};

The pre element represents a block of preformatted text, in which structure is represented
by typographic conventions rather than by elements.

In the the HTML syntax, a leading newline character immediately following the pre
element start tag is stripped.

Some examples of cases where the pre element could be used:

• Including an e-mail, with paragraphs indicated by blank lines, lists indicated by lines
prefixed with a bullet, and so on.

• Including fragments of computer code, with structure indicated according to the
conventions of that language.

• Displaying ASCII art.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 203 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 203 from 931

Authors are encouraged to consider how preformatted text will be experienced
when the formatting is lost, as will be the case for users of speech synthesizers,
braille displays, and the like. For cases like ASCII art, it is likely that an alternative
presentation, such as a textual description, would be more universally accessible to
the readers of the document.

To represent a block of computer code, the pre element can be used with a code element;
to represent a block of computer output the pre element can be used with a samp element.
Similarly, the kbd element can be used within a pre element to indicate text that the user is
to enter.

In the following snippet, a sample of computer code is presented.

<p>This is the <code>Panel</code> constructor:</p>
<pre><code>function Panel(element, canClose, closeHandler) {
 this.element = element;
 this.canClose = canClose;
 this.closeHandler = function () { if (closeHandler) closeHandler() };
}</code></pre>

In the following snippet, samp and kbd elements are mixed in the contents of a pre element
to show a session of Zork I.

<pre><samp>You are in an open field west of a big white house with a
boarded
front door.
There is a small mailbox here.

></samp> <kbd>open mailbox</kbd>

<samp>Opening the mailbox reveals:
A leaflet.

></samp></pre>

The following shows a contemporary poem that uses the pre element to preserve its
unusual formatting, which forms an intrinsic part of the poem itself.

<pre> maxling

it is with a heart
 heavy

that i admit loss of a feline
 so loved

a friend lost to the
 unknown
 (night)

~cdr 11dec07</pre>

4.5.5 The dialog element

Status: Working draft

Categories
Flow content.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 204 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 204 from 931

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Zero or more pairs of one dt element followed by one dd element.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The dialog element represents a conversation, meeting minutes, a chat transcript, a
dialog in a screenplay, an instant message log, or some other construct in which different
players take turns in discourse.

Each part of the conversation must have an explicit talker (or speaker) given by a dt
element, and a discourse (or quote) given by a dd element.

This example demonstrates this using an extract from Abbot and Costello's famous
sketch, Who's on first:

<dialog>
 <dt> Costello
 <dd> Look, you gotta first baseman?
 <dt> Abbott
 <dd> Certainly.
 <dt> Costello
 <dd> Who's playing first?
 <dt> Abbott
 <dd> That's right.
 <dt> Costello
 <dd> When you pay off the first baseman every month, who gets the
money?
 <dt> Abbott
 <dd> Every dollar of it.
</dialog>

Text in a dt element in a dialog element is implicitly the source of the text given in
the following dd element, and the contents of the dd element are implicitly a quote
from that speaker. There is thus no need to include cite, q, or blockquote elements
in this markup. Indeed, a q element inside a dd element in a conversation would
actually imply the people talking were themselves quoting another work. See the
cite, q, and blockquote elements for other ways to cite or quote.

4.5.6 The blockquote element

Status: Last call for comments

Categories
Flow content.
Sectioning root.
formatBlock candidate.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Flow content.

Content attributes:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 205 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 205 from 931

Global attributes
cite

DOM interface:
interface HTMLQuoteElement : HTMLElement {

 attribute DOMString cite;

};

The HTMLQuoteElement interface is also used by the q element.

The blockquote element represents a section that is quoted from another source.

Content inside a blockquote must be quoted from another source, whose address, if it has
one, should be cited in the cite attribute.

If the cite attribute is present, it must be a valid URL. To obtain the corresponding citation
link, the value of the attribute must be resolved relative to the element. User agents should
allow users to follow such citation links.

The cite DOM attribute must reflect the element's cite content attribute.

The best way to represent a conversation is not with the cite and blockquote
elements, but with the dialog element.

This next example shows the use of cite alongside blockquote:

<p>His next piece was the aptly named <cite>Sonnet 130</cite>:</p>
<blockquote cite="http://quotes.example.org/s/sonnet130.html">
 <p>My mistress' eyes are nothing like the sun,

 Coral is far more red, than her lips red,

 ...

4.5.7 The ol element

Status: Working draft

Categories
Flow content.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Zero or more li elements.

Content attributes:
Global attributes
reversed
start

DOM interface:
interface HTMLOListElement : HTMLElement {

 attribute boolean reversed;

 attribute long start;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 206 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 206 from 931

};

The ol element represents a list of items, where the items have been intentionally
ordered, such that changing the order would change the meaning of the document.

The items of the list are the li element child nodes of the ol element, in tree order.

The reversed attribute is a boolean attribute. If present, it indicates that the list is a
descending list (..., 3, 2, 1). If the attribute is omitted, the list is an ascending list (1, 2, 3,
...).

The start attribute, if present, must be a valid integer giving the ordinal value of the first
list item.

If the start attribute is present, user agents must parse it as an integer, in order to
determine the attribute's value. The default value, used if the attribute is missing or if the
value cannot be converted to a number according to the referenced algorithm, is 1 if the
element has no reversed attribute, and is the number of child li elements otherwise.

The first item in the list has the ordinal value given by the ol element's start attribute,
unless that li element has a value attribute with a value that can be successfully parsed,
in which case it has the ordinal value given by that value attribute.

Each subsequent item in the list has the ordinal value given by its value attribute, if it has
one, or, if it doesn't, the ordinal value of the previous item, plus one if the reversed is
absent, or minus one if it is present.

The reversed DOM attribute must reflect the value of the reversed content attribute.

The start DOM attribute must reflect the value of the start content attribute.

The following markup shows a list where the order matters, and where the ol element is
therefore appropriate. Compare this list to the equivalent list in the ul section to see an
example of the same items using the ul element.

<p>I have lived in the following countries (given in the order of when
I first lived there):</p>

 Switzerland
 United Kingdom
 United States
 Norway

Note how changing the order of the list changes the meaning of the document. In the
following example, changing the relative order of the first two items has changed the
birthplace of the author:

<p>I have lived in the following countries (given in the order of when
I first lived there):</p>

 United Kingdom
 Switzerland
 United States

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 207 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 207 from 931

 Norway

4.5.8 The ul element

Status: Implemented and widely deployed

Categories
Flow content.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Zero or more li elements.

Content attributes:
Global attributes

DOM interface:
interface HTMLUListElement : HTMLElement {};

The ul element represents a list of items, where the order of the items is not important —
that is, where changing the order would not materially change the meaning of the
document.

The items of the list are the li element child nodes of the ul element.

The following markup shows a list where the order does not matter, and where the ul
element is therefore appropriate. Compare this list to the equivalent list in the ol section to
see an example of the same items using the ol element.

<p>I have lived in the following countries:</p>

 Norway
 Switzerland
 United Kingdom
 United States

Note that changing the order of the list does not change the meaning of the document.
The items in the snippet above are given in alphabetical order, but in the snippet below
they are given in order of the size of their current account balance in 2007, without
changing the meaning of the document whatsoever:

<p>I have lived in the following countries:</p>

 Switzerland
 Norway
 United Kingdom
 United States

4.5.9 The li element

Status: Implemented and widely deployed

Categories
None.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 208 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 208 from 931

Contexts in which this element may be used:
Inside ol elements.
Inside ul elements.
Inside menu elements.

Content model:
Flow content.

Content attributes:
Global attributes
If the element is a child of an ol element: value

DOM interface:
interface HTMLLIElement : HTMLElement {

 attribute long value;

};

The li element represents a list item. If its parent element is an ol, ul, or menu element,
then the element is an item of the parent element's list, as defined for those elements.
Otherwise, the list item has no defined list-related relationship to any other li element.

The value attribute, if present, must be a valid integer giving the ordinal value of the list
item.

If the value attribute is present, user agents must parse it as an integer, in order to
determine the attribute's value. If the attribute's value cannot be converted to a number,
the attribute must be treated as if it was absent. The attribute has no default value.

The value attribute is processed relative to the element's parent ol element (q.v.), if there
is one. If there is not, the attribute has no effect.

The value DOM attribute must reflect the value of the value content attribute.

The following example, the top ten movies are listed (in reverse order). Note the way the
list is given a title by using a figure element and its legend.

<figure>
 <legend>The top 10 movies of all time</legend>

 <li value="10"><cite>Josie and the Pussycats</cite>, 2001
 <li value="9"><cite lang="sh">Црна мачка, бели мачор</cite>, 1998
 <li value="8"><cite>A Bug's Life</cite>, 1998
 <li value="7"><cite>Toy Story</cite>, 1995
 <li value="6"><cite>Monsters, Inc</cite>, 2001
 <li value="5"><cite>Cars</cite>, 2006
 <li value="4"><cite>Toy Story 2</cite>, 1999
 <li value="3"><cite>Finding Nemo</cite>, 2003
 <li value="2"><cite>The Incredibles</cite>, 2004
 <li value="1"><cite>Ratatouille</cite>, 2007

</figure>

The markup could also be written as follows, using the reversed attribute on the ol
element:

<figure>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 209 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 209 from 931

 <legend>The top 10 movies of all time</legend>
 <ol reversed>
 <cite>Josie and the Pussycats</cite>, 2001
 <cite lang="sh">Црна мачка, бели мачор</cite>, 1998
 <cite>A Bug's Life</cite>, 1998
 <cite>Toy Story</cite>, 1995
 <cite>Monsters, Inc</cite>, 2001
 <cite>Cars</cite>, 2006
 <cite>Toy Story 2</cite>, 1999
 <cite>Finding Nemo</cite>, 2003
 <cite>The Incredibles</cite>, 2004
 <cite>Ratatouille</cite>, 2007

</figure>

If the li element is the child of a menu element and itself has a child that defines a
command, then the li element will match the :enabled and :disabled pseudo-
classes in the same way as the first such child element does.

4.5.10 The dl element

Status: Implemented and widely deployed

Categories
Flow content.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Zero or more groups each consisting of one or more dt elements followed by one
or more dd elements.

Content attributes:
Global attributes

DOM interface:
interface HTMLDListElement : HTMLElement {};

The dl element represents an association list consisting of zero or more name-value
groups (a description list). Each group must consist of one or more names (dt elements)
followed by one or more values (dd elements).

Name-value groups may be terms and definitions, metadata topics and values, or any
other groups of name-value data.

The values within a group are alternatives; multiple paragraphs forming part of the same
value must all be given within the same dd element.

The order of the list of groups, and of the names and values within each group, may be
significant.

If a dl element is empty, it contains no groups.

If a dl element contains non-whitespace text nodes, or elements other than dt and dd,
then those elements or text nodes do not form part of any groups in that dl.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 210 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 210 from 931

If a dl element contains only dt elements, then it consists of one group with names but no
values.

If a dl element contains only dd elements, then it consists of one group with values but no
names.

If a dl element starts with one or more dd elements, then the first group has no associated
name.

If a dl element ends with one or more dt elements, then the last group has no associated
value.

When a dl element doesn't match its content model, it is often due to accidentally
using dd elements in the place of dt elements and vice versa. Conformance
checkers can spot such mistakes and might be able to advise authors how to
correctly use the markup.

In the following example, one entry ("Authors") is linked to two values ("John" and "Luke").

<dl>
 <dt> Authors
 <dd> John
 <dd> Luke
 <dt> Editor
 <dd> Frank
</dl>

In the following example, one definition is linked to two terms.

<dl>
 <dt lang="en-US"> <dfn>color</dfn> </dt>
 <dt lang="en-GB"> <dfn>colour</dfn> </dt>
 <dd> A sensation which (in humans) derives from the ability of
 the fine structure of the eye to distinguish three differently
 filtered analyses of a view. </dd>
</dl>

The following example illustrates the use of the dl element to mark up metadata of sorts.
At the end of the example, one group has two metadata labels ("Authors" and "Editors")
and two values ("Robert Rothman" and "Daniel Jackson").

<dl>
 <dt> Last modified time </dt>
 <dd> 2004-12-23T23:33Z </dd>
 <dt> Recommended update interval </dt>
 <dd> 60s </dd>
 <dt> Authors </dt>
 <dt> Editors </dt>
 <dd> Robert Rothman </dd>
 <dd> Daniel Jackson </dd>
</dl>

The following example shows the dl element used to give a set of instructions. The order
of the instructions here is important (in the other examples, the order of the blocks was not
important).

<p>Determine the victory points as follows (use the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 211 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 211 from 931

first matching case):</p>
<dl>
 <dt> If you have exactly five gold coins </dt>
 <dd> You get five victory points </dd>
 <dt> If you have one or more gold coins, and you have one or more
silver coins </dt>
 <dd> You get two victory points </dd>
 <dt> If you have one or more silver coins </dt>
 <dd> You get one victory point </dd>
 <dt> Otherwise </dt>
 <dd> You get no victory points </dd>
</dl>

The following snippet shows a dl element being used as a glossary. Note the use of dfn
to indicate the word being defined.

<dl>
 <dt><dfn>Apartment</dfn>, n.</dt>
 <dd>An execution context grouping one or more threads with one or
 more COM objects.</dd>
 <dt><dfn>Flat</dfn>, n.</dt>
 <dd>A deflated tire.</dd>
 <dt><dfn>Home</dfn>, n.</dt>
 <dd>The user's login directory.</dd>
</dl>

The dl element is inappropriate for marking up dialogue. For an example of how to
mark up dialogue, see the dialog element.

4.5.11 The dt element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
Before dd or dt elements inside dl elements.
Before a dd element inside a dialog element.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The dt element represents the term, or name, part of a term-description group in a
description list (dl element), and the talker, or speaker, part of a talker-discourse pair in a
conversation (dialog element).

The dt element itself, when used in a dl element, does not indicate that its contents
are a term being defined, but this can be indicated using the dfn element.

If the dt element is the child of a dialog element, and it further contains a time element,
then that time element represents a timestamp for when the associated discourse (dd
element) was said, and is not part of the name of the talker.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 212 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 212 from 931

The following extract shows how an IM conversation log could be marked up.

<dialog>
 <dt> <time>14:22</time> egof
 <dd> I'm not that nerdy, I've only seen 30% of the star trek episodes
 <dt> <time>14:23</time> kaj
 <dd> if you know what percentage of the star trek episodes you have
seen, you are inarguably nerdy
 <dt> <time>14:23</time> egof
 <dd> it's unarguably
 <dt> <time>14:24</time> kaj
 <dd> you are not helping your case
</dialog>

4.5.12 The dd element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
After dt or dd elements inside dl elements.
After a dt element inside a dialog element.

Content model:
Flow content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The dd element represents the description, definition, or value, part of a term-description
group in a description list (dl element), and the discourse, or quote, part in a conversation
(dialog element).

A dl can be used to define a vocabulary list, like in a dictionary. In the following example,
each entry, given by a dt with a dfn, has several dds, showing the various parts of the
definition.

<dl>
 <dt><dfn>happiness</dfn></dt>
 <dd class="pronunciation">/'hæ p. nes/</dd>
 <dd class="part-of-speech"><i><abbr>n.</abbr></i></dd>
 <dd>The state of being happy.</dd>
 <dd>Good fortune; success. <q>Oh happiness! It worked!</q></dd>
 <dt><dfn>rejoice</dfn></dt>
 <dd class="pronunciation">/ri jois'/</dd>
 <dd><i class="part-of-speech"><abbr>v.intr.</abbr></i> To be delighted
oneself.</dd>
 <dd><i class="part-of-speech"><abbr>v.tr.</abbr></i> To cause one to be
delighted.</dd>
</dl>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 213 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 213 from 931

4.5.13 Common grouping idioms

4.5.13.1 Tag clouds

This specification does not define any markup specifically for marking up lists of keywords
that apply to a group of pages (also known as tag clouds). In general, authors are
encouraged to either mark up such lists using ul elements with explicit inline counts that
are then hidden and turned into a presentational effect using a style sheet, or to use SVG.

Here, three tags are included in a short tag cloud:

<style>
@media screen, print, handheld, tv {
 /* should be ignored by non-visual browsers */
 .tag-cloud > li > span { display: none; }
 .tag-cloud > li { display: inline; }
 .tag-cloud-1 { font-size: 0.7em; }
 .tag-cloud-2 { font-size: 0.9em; }
 .tag-cloud-3 { font-size: 1.1em; }
 .tag-cloud-4 { font-size: 1.3em; }
 .tag-cloud-5 { font-size: 1.5em; }
}
</style>
...
<ul class="tag-cloud">
 <li class="tag-cloud-4"><a title="28 instances"
href="/t/apple">apple (popular)
 <li class="tag-cloud-2">kiwi
(rare)
 <li class="tag-cloud-5">pear
(very popular)

The actual frequency of each tag is given using the title attribute. A CSS style sheet is
provided to convert the markup into a cloud of differently-sized words, but for user agents
that do not support CSS or are not visual, the markup contains annotations like "(popular)"
or "(rare)" to categorize the various tags by frequency, thus enabling all users to benefit
from the information.

The ul element is used (rather than ol) because the order is not particular important:
while the list is in fact ordered alphabetically, it would convey the same information if
ordered by, say, the length of the tag.

The tag rel-keyword is not used on these a elements because they do not represent tags
that apply to the page itself; they are just part of an index listing the tags themselves.

4.6 Text-level semantics

4.6.1 The a element

Status: Last call for comments

Categories
Flow content.
When the element only contains phrasing content: phrasing content.
Interactive content.

Contexts in which this element may be used:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 214 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 214 from 931

Where phrasing content is expected.
Content model:

Transparent, but there must be no interactive content descendant.
Content attributes:

Global attributes
href
target
ping
rel
media
hreflang
type

DOM interface:
interface HTMLAnchorElement : HTMLElement {

 stringifier attribute DOMString href;

 attribute DOMString target;

 attribute DOMString ping;

 attribute DOMString rel;

 readonly attribute DOMTokenList relList;

 attribute DOMString media;

 attribute DOMString hreflang;

 attribute DOMString type;

 // URL decomposition attributes

 attribute DOMString protocol;

 attribute DOMString host;

 attribute DOMString hostname;

 attribute DOMString port;

 attribute DOMString pathname;

 attribute DOMString search;

 attribute DOMString hash;

};

If the a element has an href attribute, then it represents a hyperlink (a hypertext anchor).

If the a element has no href attribute, then the element represents a placeholder for
where a link might otherwise have been placed, if it had been relevant.

The target, ping, rel, media, hreflang, and type attributes must be omitted if the href
attribute is not present.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 215 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 215 from 931

If a site uses a consistent navigation tool bar on every page, then the link that would
normally link to the page itself could be marked up using an a element:

<nav>

 Home
 News
 <a>Examples
 Legal

</nav>

Interactive user agents should allow users to follow hyperlinks created using the a
element. The href, target and ping attributes decide how the link is followed. The rel,
media, hreflang, and type attributes may be used to indicate to the user the likely nature
of the target resource before the user follows the link.

The activation behavior of a elements that represent hyperlinks is to run the following
steps:

1. If the DOMActivate event in question is not trusted (i.e. a click() method call was
the reason for the event being dispatched), and the a element's target attribute is
such that applying the rules for choosing a browsing context given a browsing
context name, using the value of the target attribute as the browsing context
name, would result in there not being a chosen browsing context, then raise an
INVALID_ACCESS_ERR exception and abort these steps.

2. If the target of the click event is an img element with an ismap attribute specified,
then server-side image map processing must be performed, as follows:

1. If the DOMActivate event was dispatched as the result of a real pointing-
device-triggered click event on the img element, then let x be the distance
in CSS pixels from the left edge of the image's left border, if it has one, or
the left edge of the image otherwise, to the location of the click, and let y be
the distance in CSS pixels from the top edge of the image's top border, if it
has one, or the top edge of the image otherwise, to the location of the click.
Otherwise, let x and y be zero.

2. Let the hyperlink suffix be a U+003F QUESTION MARK character, the
value of x expressed as a base-ten integer using ASCII digits (U+0030
DIGIT ZERO to U+0039 DIGIT NINE), a U+002C COMMA character, and
the value of y expressed as a base-ten integer using ASCII digits.

3. Finally, the user agent must follow the hyperlink defined by the a element. If the
steps above defined a hyperlink suffix, then take that into account when following
the hyperlink.

The DOM attributes href, ping, target, rel, media, hreflang, and type, must reflect the
respective content attributes of the same name.

The DOM attribute relList must reflect the rel content attribute.

The a element also supports the complement of URL decomposition attributes, protocol,
host, port, hostname, pathname, search, and hash. These must follow the rules given for

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 216 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 216 from 931

URL decomposition attributes, with the input being the result of resolving the element's
href attribute relative to the element, if there is such an attribute and resolving it is
successful, or the empty string otherwise; and the common setter action being the same
as setting the element's href attribute to the new output value.

The a element may be wrapped around entire paragraphs, lists, tables, and so forth, even
entire sections, so long as there is no interactive content within (e.g. buttons or other
links). This example shows how this can be used to make an entire advertising block into
a link:

<aside class="advertising">
 <h1>Advertising</h1>

 <section>
 <h1>Mellblomatic 9000!</h1>
 <p>Turn all your widgets into mellbloms!</p>
 <p>Only $9.99 plus shipping and handling.</p>
 </section>

 <section>
 <h1>The Mellblom Browser</h1>
 <p>Web browsing at the speed of light.</p>
 <p>No other browser goes faster!</p>
 </section>

</aside>

4.6.2 The em element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The em element represents stress emphasis of its contents.

The level of emphasis that a particular piece of content has is given by its number of
ancestor em elements.

The placement of emphasis changes the meaning of the sentence. The element thus
forms an integral part of the content. The precise way in which emphasis is used in this
way depends on the language.

These examples show how changing the emphasis changes the meaning. First, a general
statement of fact, with no emphasis:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 217 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 217 from 931

<p>Cats are cute animals.</p>

By emphasizing the first word, the statement implies that the kind of animal under
discussion is in question (maybe someone is asserting that dogs are cute):

<p>Cats are cute animals.</p>

Moving the emphasis to the verb, one highlights that the truth of the entire sentence is in
question (maybe someone is saying cats are not cute):

<p>Cats are cute animals.</p>

By moving it to the adjective, the exact nature of the cats is reasserted (maybe someone
suggested cats were mean animals):

<p>Cats are cute animals.</p>

Similarly, if someone asserted that cats were vegetables, someone correcting this might
emphasize the last word:

<p>Cats are cute animals.</p>

By emphasizing the entire sentence, it becomes clear that the speaker is fighting hard to
get the point across. This kind of emphasis also typically affects the punctuation, hence
the exclamation mark here.

<p>Cats are cute animals!</p>

Anger mixed with emphasizing the cuteness could lead to markup such as:

<p>Cats are cute animals!</p>

The em element isn't a generic "italics" element. Sometimes, text is intended to
stand out from the rest of the paragraph, as if it was in a different mood or voice.
For this, the i element is more appropriate.

The em element also isn't intended to convey importance; for that purpose, the
strong element is more appropriate.

4.6.3 The strong element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 218 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 218 from 931

The strong element represents strong importance for its contents.

The relative level of importance of a piece of content is given by its number of ancestor
strong elements; each strong element increases the importance of its contents.

Changing the importance of a piece of text with the strong element does not change the
meaning of the sentence.

Here is an example of a warning notice in a game, with the various parts marked up
according to how important they are:

<p>Warning. This dungeon is dangerous.
Avoid the ducks. Take any gold you find.
Do not take any of the diamonds,
they are explosive and will destroy anything within
ten meters. You have been warned.</p>

4.6.4 The small element

Status: Last call for comments

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The small element represents side comments such as small print.

Small print typically features disclaimers, caveats, legal restrictions, or copyrights.
Small print is also sometimes used for attribution, or for satisfying licensing
requirements.

The small element does not "de-emphasize" or lower the importance of text
emphasized by the em element or marked as important with the strong element.

The small element should not be used for extended spans of text, such as multiple
paragraphs, lists, or sections of text. It is only intended for short runs of text. The text of a
page listing terms of use, for instance, would not be a suitable candidate for the small
element: in such a case, the text is not a side comment, it is the main content of the page.

In this example the footer contains contact information and a copyright notice.

<footer>
 <address>
 For more details, contact
 John Smith.
 </address>
 <p><small>© copyright 2038 Example Corp.</small></p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 219 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 219 from 931

</footer>

In this second example, the small element is used for a side comment in an article.

<p>Example Corp today announced record profits for the
second quarter <small>(Full Disclosure: Foo News is a subsidiary of
Example Corp)</small>, leading to speculation about a third quarter
merger with Demo Group.</p>

This is distinct from a sidebar, which might be multiple paragraphs long and is removed
from the main flow of text. In the following example, we see a sidebar from the same
article. This sidebar also has small print, indicating the source of the information in the
sidebar.

<aside>
 <h1>Example Corp</h1>
 <p>This company mostly creates small software and Web
 sites.</p>
 <p>The Example Corp company mission is "To provide entertainment
 and news on a sample basis".</p>
 <p><small>Information obtained from example.com home
 page.</small></p>
</aside>

In this last example, the small element is marked as being important small print.

<p><small>Continued use of this service will result in a
kiss.</small></p>

4.6.5 The cite element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The cite element represents the title of a work (e.g. a book, a paper, an essay, a poem, a
score, a song, a script, a film, a TV show, a game, a sculpture, a painting, a theatre
production, a play, an opera, a musical, an exhibition, a legal case report, etc). This can
be a work that is being quoted or referenced in detail (i.e. a citation), or it can just be a
work that is mentioned in passing.

A person's name is not the title of a work — even if people call that person a piece of work
— and the element must therefore not be used to mark up people's names. (In some
cases, the b element might be appropriate for names; e.g. in a gossip article where the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 220 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 220 from 931

names of famous people are keywords rendered with a different style to draw attention to
them. In other cases, if an element is really needed, the span element can be used.)

A ship is similarly not a work, and the element must not be used to mark up ship names
(the i element can be used for that purpose).

This next example shows a typical use of the cite element:

<p>My favorite book is <cite>The Reality Dysfunction</cite> by
Peter F. Hamilton. My favorite comic is <cite>Pearls Before
Swine</cite> by Stephan Pastis. My favorite track is <cite>Jive
Samba</cite> by the Cannonball Adderley Sextet.</p>

This is correct usage:

<p>According to the Wikipedia article <cite>HTML</cite>, as it
stood in mid-February 2008, leaving attribute values unquoted is
unsafe. This is obviously an over-simplification.</p>

The following, however, is incorrect usage, as the cite element here is containing far
more than the title of the work:

<!-- do not copy this example, it is an example of bad usage! -->
<p>According to <cite>the Wikipedia article on HTML</cite>, as it
stood in mid-February 2008, leaving attribute values unquoted is
unsafe. This is obviously an over-simplification.</p>

The cite element is obviously a key part of any citation in a bibliography, but it is only
used to mark the title:

<p><cite>Universal Declaration of Human Rights</cite>, United Nations,
December 1948. Adopted by General Assembly resolution 217 A (III).</p>

A citation is not a quote (for which the q element is appropriate).

This is incorrect usage, because cite is not for quotes:

<p><cite>This is wrong!</cite>, said Ian.</p>

This is also incorrect usage, because a person is not a work:

<p><q>This is still wrong!</q>, said <cite>Ian</cite>.</p>

The correct usage does not use a cite element:

<p><q>This is correct</q>, said Ian.</p>

As mentioned above, the b element might be relevant for marking names as being
keywords in certain kinds of documents:

<p>And then Ian said <q>this might be right, in a
gossip column, maybe!</q>.</p>

4.6.6 The q element

Status: Working draft. ISSUE-48 (UA-q-quotes) blocks progress to Last Call

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 221 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 221 from 931

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes
cite

DOM interface:
The q element uses the HTMLQuoteElement interface.

The q element represents some phrasing content quoted from another source.

Quotation punctuation (such as quotation marks) must not appear immediately before,
after, or inside q elements; they will be inserted into the rendering by the user agent.

Content inside a q element must be quoted from another source, whose address, if it has
one, should be cited in the cite attribute. The source may be fictional, as when quoting
characters in a novel or screenplay.

If the cite attribute is present, it must be a valid URL. To obtain the corresponding citation
link, the value of the attribute must be resolved relative to the element. User agents should
allow users to follow such citation links.

The q element must not be used in place of quotation marks that do not represent quotes;
for example, it is inappropriate to use the q element for marking up sarcastic statements.

The use of q elements to mark up quotations is entirely optional; using explicit quotation
punctuation without q elements is just as correct.

Here is a simple example of the use of the q element:

<p>The man said <q>Things that are impossible just take
longer</q>. I disagreed with him.</p>

Here is an example with both an explicit citation link in the q element, and an explicit
citation outside:

<p>The W3C page <cite>About W3C</cite> says the W3C's
mission is <q cite="http://www.w3.org/Consortium/">To lead the
World Wide Web to its full potential by developing protocols and
guidelines that ensure long-term growth for the Web</q>. I
disagree with this mission.</p>

In the following example, the quotation itself contains a quotation:

<p>In <cite>Example One</cite>, he writes <q>The man
said <q>Things that are impossible just take longer</q>. I
disagreed with him</q>. Well, I disagree even more!</p>

In the following example, quotation marks are used instead of the q element:

<p>His best argument was ❝I disagree❞, which

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 222 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 222 from 931

I thought was laughable.</p>

In the following example, there is no quote — the quotation marks are used to name a
word. Use of the q element in this case would be inappropriate.

<p>The word "ineffable" could have been used to describe the disaster
resulting from the campaign's mismanagement.</p>

4.6.7 The dfn element

Status: Last call for comments

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content, but there must be no descendant dfn elements.

Content attributes:
Global attributes
Also, the title attribute has special semantics on this element.

DOM interface:
Uses HTMLElement.

The dfn element represents the defining instance of a term. The paragraph, description
list group, or section that is the nearest ancestor of the dfn element must also contain the
definition(s) for the term given by the dfn element.

Defining term: If the dfn element has a title attribute, then the exact value of that
attribute is the term being defined. Otherwise, if it contains exactly one element child node
and no child text nodes, and that child element is an abbr element with a title attribute,
then the exact value of that attribute is the term being defined. Otherwise, it is the exact
textContent of the dfn element that gives the term being defined.

If the title attribute of the dfn element is present, then it must contain only the term being
defined.

The title attribute of ancestor elements does not affect dfn elements.

An a element that links to a dfn element represents an instance of the term defined by the
dfn element.

In the following fragment, the term "GDO" is first defined in the first paragraph, then used
in the second.

<p>The <dfn><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

With the addition of an a element, the reference can be made explicit:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 223 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 223 from 931

<p>The <dfn id=gdo><abbr title="Garage Door Opener">GDO</abbr></dfn>
is a device that allows off-world teams to open the iris.</p>
<!-- ... later in the document: -->
<p>Teal'c activated his <abbr title="Garage Door
Opener">GDO</abbr>
and so Hammond ordered the iris to be opened.</p>

4.6.8 The abbr element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes
Also, the title attribute has special semantics on this element.

DOM interface:
Uses HTMLElement.

The abbr element represents an abbreviation or acronym, optionally with its expansion.
The title attribute may be used to provide an expansion of the abbreviation. The
attribute, if specified, must contain an expansion of the abbreviation, and nothing else.

The paragraph below contains an abbreviation marked up with the abbr element. This
paragraph defines the term "Web Hypertext Application Technology Working Group".

<p>The <dfn id=whatwg><abbr
title="Web Hypertext Application Technology Working
Group">WHATWG</abbr></dfn>
is a loose unofficial collaboration of Web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

An alternative way to write this would be:

<p>The <dfn id=whatwg>Web Hypertext Application Technology
Working Group</dfn> (<abbr
title="Web Hypertext Application Technology Working
Group">WHATWG</abbr>)
is a loose unofficial collaboration of Web browser manufacturers and
interested parties who wish to develop new technologies designed to
allow authors to write and deploy Applications over the World Wide
Web.</p>

This paragraph has two abbreviations. Notice how only one is defined; the other, with no
expansion associated with it, does not use the abbr element.

<p>The
<abbr title="Web Hypertext Application Technology Working
Group">WHATWG</abbr>
started working on HTML 5 in 2004.</p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 224 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 224 from 931

This paragraph links an abbreviation to its definition.

<p>The <abbr
title="Web Hypertext Application Technology Working
Group">WHATWG</abbr>
community does not have much representation from Asia.</p>

This paragraph marks up an abbreviation without giving an expansion, possibly as a hook
to apply styles for abbreviations (e.g. smallcaps).

<p>Philip` and Dashiva both denied that they were going to
get the issue counts from past revisions of the specification to
backfill the <abbr>WHATWG</abbr> issue graph.</p>

If an abbreviation is pluralized, the expansion's grammatical number (plural vs singular)
must match the grammatical number of the contents of the element.

Here the plural is outside the element, so the expansion is in the singular:

<p>Two <abbr title="Working Group">WG</abbr>s worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

Here the plural is inside the element, so the expansion is in the plural:

<p>Two <abbr title="Working Groups">WGs</abbr> worked on
this specification: the <abbr>WHATWG</abbr> and the
<abbr>HTMLWG</abbr>.</p>

Abbreviations do not have to be marked up using this element. It is expected to be useful
in the following cases:

• Abbreviations for which the author wants to give expansions, where using the abbr
element with a title attribute is an alternative to including the expansion inline
(e.g. in parentheses).

• Abbreviations that are likely to be unfamiliar to the document's readers, for which
authors are encouraged to either mark up the abbreviation using a abbr element
with a title attribute or include the expansion inline in the text the first time the
abbreviation is used.

• Abbreviations whose presence needs to be semantically annotated, e.g. so that
they can be identified from a style sheet and given specific styles, for which the
abbr element can be used without a title attribute.

Providing an expansion in a title attribute once will not necessarily cause other abbr
elements in the same document with the same contents but without a title attribute to
behave as if they had the same expansion. Every abbr element is independent.

4.6.9 The code element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 225 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 225 from 931

Where phrasing content is expected.
Content model:

Phrasing content.
Content attributes:

Global attributes
DOM interface:

Uses HTMLElement.

The code element represents a fragment of computer code. This could be an XML element
name, a filename, a computer program, or any other string that a computer would
recognize.

Although there is no formal way to indicate the language of computer code being marked
up, authors who wish to mark code elements with the language used, e.g. so that syntax
highlighting scripts can use the right rules, may do so by adding a class prefixed with
"language-" to the element.

The following example shows how the element can be used in a paragraph to mark up
element names and computer code, including punctuation.

<p>The <code>code</code> element represents a fragment of computer
code.</p>

<p>When you call the <code>activate()</code> method on the
<code>robotSnowman</code> object, the eyes glow.</p>

<p>The example below uses the <code>begin</code> keyword to indicate
the start of a statement block. It is paired with an <code>end</code>
keyword, which is followed by the <code>.</code> punctuation character
(full stop) to indicate the end of the program.</p>

The following example shows how a block of code could be marked up using the pre and
code elements.

<pre><code class="language-pascal">var i: Integer;
begin
 i := 1;
end.</code></pre>

A class is used in that example to indicate the language used.

See the pre element for more details.

4.6.10 The var element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 226 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 226 from 931

Global attributes
DOM interface:

Uses HTMLElement.

The var element represents a variable. This could be an actual variable in a mathematical
expression or programming context, or it could just be a term used as a placeholder in
prose.

In the paragraph below, the letter "n" is being used as a variable in prose:

<p>If there are <var>n</var> pipes leading to the ice
cream factory then I expect at least <var>n</var>
flavors of ice cream to be available for purchase!</p>

For mathematics, in particular for anything beyond the simplest of expressions, MathML is
more appropriate. However, the var element can still be used to refer to specific variables
that are then mentioned in MathML expressions.

In this example, an equation is shown, with a legend that references the variables in the
equation. The expression itself is marked up with MathML, but the variables are
mentioned in the figure's legend using var.

<figure>
 <math>
 <mi>a</mi>
 <mo>=</mo>
 <msqrt>
 <msup><mi>b</mi><mn>2</mn></msup>
 <mi>+</mi>
 <msup><mi>c</mi><mn>2</mn></msup>
 </msqrt>
 </math>
 <legend>
 Using Pythagoras' theorem to solve for the hypotenuse <var>a</var> of
 a triangle with sides <var>b</var> and <var>c</var>
 </legend>
</figure>

4.6.11 The samp element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The samp element represents (sample) output from a program or computing system.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 227 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 227 from 931

See the pre and kbd elements for more details.

This example shows the samp element being used inline:

<p>The computer said <samp>Too much cheese in tray
two</samp> but I didn't know what that meant.</p>

This second example shows a block of sample output. Nested samp and kbd elements
allow for the styling of specific elements of the sample output using a style sheet.

<pre><samp>jdoe@mowmow:~$ <kbd>ssh
demo.example.com</kbd>
Last login: Tue Apr 12 09:10:17 2005 from mowmow.example.com on pts/1
Linux demo 2.6.10-grsec+gg3+e+fhs6b+nfs+gr0501+++p3+c4a+gr2b-reslog-
v6.189 #1 SMP Tue Feb 1 11:22:36 PST 2005 i686 unknown

jdoe@demo:~$ <span
class="cursor">_</samp></pre>

4.6.12 The kbd element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The kbd element represents user input (typically keyboard input, although it may also be
used to represent other input, such as voice commands).

When the kbd element is nested inside a samp element, it represents the input as it was
echoed by the system.

When the kbd element contains a samp element, it represents input based on system
output, for example invoking a menu item.

When the kbd element is nested inside another kbd element, it represents an actual key or
other single unit of input as appropriate for the input mechanism.

Here the kbd element is used to indicate keys to press:

<p>To make George eat an apple, press
<kbd><kbd>Shift</kbd>+<kbd>F3</kbd></kbd></p>

In this second example, the user is told to pick a particular menu item. The outer kbd
element marks up a block of input, with the inner kbd elements representing each

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 228 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 228 from 931

individual step of the input, and the samp elements inside them indicating that the steps are
input based on something being displayed by the system, in this case menu labels:

<p>To make George eat an apple, select
 <kbd><kbd><samp>File</samp></kbd>|<kbd><samp>Eat
Apple...</samp></kbd></kbd>
</p>

Such precision isn't necessary; the following is equally fine:

<p>To make George eat an apple, select <kbd>File | Eat
Apple...</kbd></p>

4.6.13 The sub and sup elements

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which these elements may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The sup element represents a superscript and the sub element represents a subscript.

These elements must be used only to mark up typographical conventions with specific
meanings, not for typographical presentation for presentation's sake. For example, it
would be inappropriate for the sub and sup elements to be used in the name of the LaTeX
document preparation system. In general, authors should use these elements only if the
absence of those elements would change the meaning of the content.

In certain languages, superscripts are part of the typographical conventions for some
abbreviations.

<p>The most beautiful women are
<abbr>M^{lle}</abbr> Gwendoline and
<abbr>M^{me}</abbr> Denise.</p>

The sub element can be used inside a var element, for variables that have subscripts.

Here, the sub element is used to represents the subscript that identifies the variable in a
family of variables:

<p>The coordinate of the <var>i</var>th point is
(<var>x_{<var>i</var>}</var>,
<var>y_{<var>i</var>}</var>).
For example, the 10th point has coordinate
(<var>x₁₀</var>, <var>y₁₀</var>).</p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 229 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 229 from 931

Mathematical expressions often use subscripts and superscripts. Authors are encouraged
to use MathML for marking up mathematics, but authors may opt to use sub and sup if
detailed mathematical markup is not desired. [MATHML]

<var>E</var>=<var>m</var><var>c</var>²
f(<var>x</var>, <var>n</var>) =
log₄<var>x</var>^{<var>n</var>}

4.6.14 The i element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The i element represents a span of text in an alternate voice or mood, or otherwise offset
from the normal prose, such as a taxonomic designation, a technical term, an idiomatic
phrase from another language, a thought, a ship name, or some other prose whose typical
typographic presentation is italicized.

Terms in languages different from the main text should be annotated with lang attributes
(or, in XML, lang attributes in the XML namespace).

The examples below show uses of the i element:

<p>The <i class="taxonomy">Felis silvestris catus</i> is cute.</p>
<p>The term <i>prose content</i> is defined above.</p>
<p>There is a certain <i lang="fr">je ne sais quoi</i> in the air.</p>

In the following example, a dream sequence is marked up using i elements.

<p>Raymond tried to sleep.</p>
<p><i>The ship sailed away on Thursday</i>, he
dreamt. <i>The ship had many people aboard, including a beautiful
princess called Carey. He watched her, day-in, day-out, hoping she
would notice him, but she never did.</i></p>
<p><i>Finally one night he picked up the courage to speak with
her—</i></p>
<p>Raymond woke with a start as the fire alarm rang out.</p>

Authors are encouraged to use the class attribute on the i element to identify why the
element is being used, so that if the style of a particular use (e.g. dream sequences as
opposed to taxonomic terms) is to be changed at a later date, the author doesn't have to
go through the entire document (or series of related documents) annotating each use.
Similarly, authors are encouraged to consider whether other elements might be more

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 230 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 230 from 931

applicable than the i element, for instance the em element for marking up stress emphasis,
or the dfn element to mark up the defining instance of a term.

Style sheets can be used to format i elements, just like any other element can be
restyled. Thus, it is not the case that content in i elements will necessarily be
italicized.

4.6.15 The b element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The b element represents a span of text to be stylistically offset from the normal prose
without conveying any extra importance, such as key words in a document abstract,
product names in a review, or other spans of text whose typical typographic presentation
is boldened.

The following example shows a use of the b element to highlight key words without
marking them up as important:

<p>The frobonitor and barbinator components are fried.</p>

In the following example, objects in a text adventure are highlighted as being special by
use of the b element.

<p>You enter a small room. Your sword glows
brighter. A rat scurries past the corner wall.</p>

Another case where the b element is appropriate is in marking up the lede (or lead)
sentence or paragraph. The following example shows how a BBC article about kittens
adopting a rabbit as their own could be marked up:

<article>
 <h2>Kittens 'adopted' by pet rabbit</h2>
 <p>Six abandoned kittens have found an unexpected new
 mother figure — a pet rabbit.</p>
 <p>Veterinary nurse Melanie Humble took the three-week-old
 kittens to her Aberdeen home.</p>
[...]

The b element should be used as a last resort when no other element is more appropriate.
In particular, headings should use the h1 to h6 elements, stress emphasis should use the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 231 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 231 from 931

em element, importance should be denoted with the strong element, and text marked or
highlighted should use the mark element.

The following would be incorrect usage:

<p>WARNING! Do not frob the barbinator!</p>

In the previous example, the correct element to use would have been strong, not b.

Style sheets can be used to format b elements, just like any other element can be
restyled. Thus, it is not the case that content in b elements will necessarily be
boldened.

4.6.16 The mark element

Status: Working draft

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The mark element represents a run of text in one document marked or highlighted for
reference purposes, due to its relevance in another context. When used in a quotation or
other block of text referred to from the prose, it indicates a highlight that was not originally
present but which has been added to bring the reader's attention to a part of the text that
might not have been considered important by the original author when the block was
originally written, but which is now under previously unexpected scrutiny. When used in
the main prose of a document, it indicates a part of the document that has been
highlighted due to its likely relevance to the user's current activity.

This example shows how the mark element can be used to bring attention to a particular
part of a quotation:

<p lang="en-US">Consider the following quote:</p>
<blockquote lang="en-GB">
 <p>Look around and you will find, no-one's really
 <mark>colour</mark> blind.</p>
</blockquote>
<p lang="en-US">As we can tell from the spelling of the word,
the person writing this quote is clearly not American.</p>

Another example of the mark element is highlighting parts of a document that are matching
some search string. If someone looked at a document, and the server knew that the user
was searching for the word "kitten", then the server might return the document with one
paragraph modified as follows:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 232 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 232 from 931

<p>I also have some <mark>kitten</mark>s who are visiting me
these days. They're really cute. I think they like my garden! Maybe I
should adopt a <mark>kitten</mark>.</p>

In the following snippet, a paragraph of text refers to a specific part of a code fragment.

<p>The highlighted part below is where the error lies:</p>
<pre><code>var i: Integer;
begin
 i := <mark>1.1</mark>;
end.</code></pre>

This is another example showing the use of mark to highlight a part of quoted text that was
originally not emphasized. In this example, common typographic conventions have led the
author to explicitly style mark elements in quotes to render in italics.

<article>
 <style>
 blockquote mark, q mark {
 font: inherit; font-style: italic;
 text-decoration: none;
 background: transparent; color: inherit;
 }
 .bubble em {
 font: inherit; font-size: larger;
 text-decoration: underline;
 }
 </style>
 <h1>She knew</h1>
 <p>Did you notice the subtle joke in the joke on panel 4?</p>
 <blockquote>
 <p class="bubble">I didn't want to believe. <mark>Of course
 on some level I realized it was a known-plaintext attack.</mark> But I
 couldn't admit it until I saw for myself.</p>
 </blockquote>
 <p>(Emphasis mine.) I thought that was great. It's so pedantic, yet it
 explains everything neatly.</p>
</article>

Note, incidentally, the distinction between the em element in this example, which is part of
the original text being quoted, and the mark element, which is highlighting a part for
comment.

The following example shows the difference between denoting the importance of a span of
text (strong) as opposed to denoting the relevance of a span of text (mark). It is an extract
from a textbook, where the extract has had the parts relevant to the exam highlighted. The
safety warnings, important though they may be, are apparently not relevant to the exam.

<h3>Wormhole Physics Introduction</h3>

<p><mark>A wormhole in normal conditions can be held open for a
maximum of just under 39 minutes.</mark> Conditions that can increase
the time include a powerful energy source coupled to one or both of
the gates connecting the wormhole, and a large gravity well (such as a
black hole).</p>

<p><mark>Momentum is preserved across the wormhole. Electromagnetic
radiation can travel in both directions through a wormhole,
but matter cannot.</mark></p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 233 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 233 from 931

<p>When a wormhole is created, a vortex normally forms.
Warning: The vortex caused by the wormhole opening will
annihilate anything in its path. Vortexes can be avoided when
using sufficiently advanced dialing technology.</p>

<p><mark>An obstruction in a gate will prevent it from accepting a
wormhole connection.</mark></p>

4.6.17 The progress element

Status: Working draft

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes
value
max

DOM interface:
interface HTMLProgressElement : HTMLElement {

 attribute float value;

 attribute float max;

 readonly attribute float position;

};

The progress element represents the completion progress of a task. The progress is
either indeterminate, indicating that progress is being made but that it is not clear how
much more work remains to be done before the task is complete (e.g. because the task is
waiting for a remote host to respond), or the progress is a number in the range zero to a
maximum, giving the fraction of work that has so far been completed.

There are two attributes that determine the current task completion represented by the
element.

The value attribute specifies how much of the task has been completed, and the max
attribute specifies how much work the task requires in total. The units are arbitrary and not
specified.

Instead of using the attributes, authors are recommended to include the current value and
the maximum value inline as text inside the element.

Here is a snippet of a Web application that shows the progress of some automated task:

<section>
 <h2>Task Progress</h2>
 <p>Progress: <progress>0%</progress></p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 234 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 234 from 931

 <script>
 var progressBar = document.getElementById('p');
 function updateProgress(newValue) {
 progressBar.textContent = newValue;
 }
 </script>
</section>

(The updateProgress() method in this example would be called by some other code on
the page to update the actual progress bar as the task progressed.)

Author requirements: The max and value attributes, when present, must have values that
are valid floating point numbers. The max attribute, if present, must have a value greater
than zero. The value attribute, if present, must have a value equal to or greater than zero,
and less than or equal to the value of the max attribute, if present, or 1, otherwise.

The progress element is the wrong element to use for something that is just a
gauge, as opposed to task progress. For instance, indicating disk space usage
using progress would be inappropriate. Instead, the meter element is available for
such use cases.

User agent requirements: User agents must parse the max and value attributes' values
according to the rules for parsing floating point number values.

If the value attribute is omitted, then user agents must also parse the textContent of the
progress element in question using the steps for finding one or two numbers of a ratio in a
string. These steps will return nothing, one number, one number with a denominator
punctuation character, or two numbers.

Using the results of this processing, user agents must determine whether the progress bar
is an indeterminate progress bar, or whether it is a determinate progress bar, and in the
latter case, what its current and maximum values are, all as follows:

1. If the max attribute is omitted, and the value is omitted, and the results of parsing
the textContent was nothing, then the progress bar is an indeterminate progress
bar. Abort these steps.

2. Otherwise, it is a determinate progress bar.
3. If the max attribute is included, then, if a value could be parsed out of it, then the

maximum value is that value.
4. Otherwise, if the max attribute is absent but the value attribute is present, or, if the

max attribute is present but no value could be parsed from it, then the maximum is
1.

5. Otherwise, if neither attribute is included, then, if the textContent contained one
number with an associated denominator punctuation character, then the maximum
value is the value associated with that denominator punctuation character;
otherwise, if the textContent contained two numbers, the maximum value is the
higher of the two values; otherwise, the maximum value is 1.

6. If the value attribute is present on the element and a value could be parsed out of
it, that value is the current value of the progress bar. Otherwise, if the attribute is
present but no value could be parsed from it, the current value is zero.

7. Otherwise if the value attribute is absent and the max attribute is present, then, if
the textContent was parsed and found to contain just one number, with no
associated denominator punctuation character, then the current value is that

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 235 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 235 from 931

number. Otherwise, if the value attribute is absent and the max attribute is present
then the current value is zero.

8. Otherwise, if neither attribute is present, then the current value is the lower of the
one or two numbers that were found in the textContent of the element.

9. If the maximum value is less than or equal to zero, then it is reset to 1.
10. If the current value is less than zero, then it is reset to zero.
11. Finally, if the current value is greater than the maximum value, then the current

value is reset to the maximum value.

UA requirements for showing the progress bar: When representing a progress
element to the user, the UA should indicate whether it is a determinate or indeterminate
progress bar, and in the former case, should indicate the relative position of the current
value relative to the maximum value.

The max and value DOM attributes must reflect the respective content attributes of the
same name. When the relevant content attributes are absent, the DOM attributes must
return zero. The value parsed from the textContent never affects the DOM values.

progress . position
For a determinate progress bar (one with known current and maximum values),
returns the result of dividing the current value by the maximum value.
For an indeterminate progress bar, returns −1.

If the progress bar is an indeterminate progress bar, then the position DOM attribute
must return −1. Otherwise, it must return the result of dividing the current value by the
maximum value.

4.6.18 The meter element

Status: Working draft

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes
value
min
low
high
max
optimum

DOM interface:
interface HTMLMeterElement : HTMLElement {

 attribute float value;

 attribute float min;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 236 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 236 from 931

 attribute float max;

 attribute float low;

 attribute float high;

 attribute float optimum;

};

The meter element represents a scalar measurement within a known range, or a fractional
value; for example disk usage, the relevance of a query result, or the fraction of a voting
population to have selected a particular candidate.

This is also known as a gauge.

The meter element should not be used to indicate progress (as in a progress bar).
For that role, HTML provides a separate progress element.

The meter element also does not represent a scalar value of arbitrary range — for
example, it would be wrong to use this to report a weight, or height, unless there is
a known maximum value.

There are six attributes that determine the semantics of the gauge represented by the
element.

The min attribute specifies the lower bound of the range, and the max attribute specifies the
upper bound. The value attribute specifies the value to have the gauge indicate as the
"measured" value.

The other three attributes can be used to segment the gauge's range into "low", "medium",
and "high" parts, and to indicate which part of the gauge is the "optimum" part. The low
attribute specifies the range that is considered to be the "low" part, and the high attribute
specifies the range that is considered to be the "high" part. The optimum attribute gives the
position that is "optimum"; if that is higher than the "high" value then this indicates that the
higher the value, the better; if it's lower than the "low" mark then it indicates that lower
values are better, and naturally if it is in between then it indicates that neither high nor low
values are good.

Authoring requirements: The recommended way of giving the value is to include it as
contents of the element, either as two numbers (the higher number represents the
maximum, the other number the current value, and the minimum is assumed to be zero),
or as a percentage or similar (using one of the characters such as "%"), or as a fraction.
However, it is also possible to use the attributes to specify these values.

One of the following conditions, along with all the requirements that are listed with that
condition, must be met:

There are exactly two numbers in the contents of the element, and the value, min,
and max attributes are all omitted

If specified, the low, high, and optimum attributes must have values greater than or
equal to zero and less than or equal to the bigger of the two numbers in the
contents of the element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 237 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 237 from 931

If both the low and high attributes are specified, then the low attribute's value must
be less than or equal to the value of the high attribute.

There is exactly one number followed by zero or more White_Space characters and
a valid denominator punctuation character in the contents of the element, and the
value, min, and max attributes are all omitted

If specified, the low, high, and optimum attributes must have values greater than or
equal to zero and less than or equal to the value associated with the denominator
punctuation character.

If both the low and high attributes are specified, then the low attribute's value must
be less than or equal to the value of the high attribute.

There is exactly one number in the contents of the element, and the value attribute
is omitted
There are no numbers in the contents of the element, and the value attribute is
specified

If the min attribute attribute is specified, then the minimum is that attribute's value;
otherwise, it is 0.

If the max attribute attribute is specified, then the maximum is that attribute's value;
otherwise, it is 1.

If there is exactly one number in the contents of the element, then value is that
number; otherwise, value is the value of the value attribute.

The following inequalities must hold, as applicable:

• minimum ≤ value ≤ maximum
• minimum ≤ low ≤ maximum (if low is specified)
• minimum ≤ high ≤ maximum (if high is specified)
• minimum ≤ optimum ≤ maximum (if optimum is specified)

If both the low and high attributes are specified, then the low attribute's value must
be less than or equal to the value of the high attribute.

For the purposes of these requirements, a number is a sequence of characters in the
range U+0030 DIGIT ZERO (0) to U+0039 DIGIT NINE (9), optionally including with a
single U+002E FULL STOP character (.), and separated from other numbers by at least
one character that isn't any of those; interpreted as a base ten number.

The value, min, low, high, max, and optimum attributes, when present, must have values
that are valid floating point numbers.

If no minimum or maximum is specified, then the range is assumed to be 0..1, and
the value thus has to be within that range.

The following examples all represent a measurement of three quarters (of the maximum of
whatever is being measured):

<meter>75%</meter>
<meter>750‰</meter>
<meter>3/4</meter>
<meter>6 blocks used (out of 8 total)</meter>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 238 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 238 from 931

<meter>max: 100; current: 75</meter>
<meter><object data="graph75.png">0.75</object></meter>
<meter min="0" max="100" value="75"></meter>

The following example is incorrect use of the element, because it doesn't give a range
(and since the default maximum is 1, both of the gauges would end up looking maxed
out):

<p>The grapefruit pie had a radius of <meter>12cm</meter>
and a height of <meter>2cm</meter>.</p> <!-- BAD! -->

Instead, one would either not include the meter element, or use the meter element with a
defined range to give the dimensions in context compared to other pies:

<p>The grapefruit pie had a radius of 12cm and a height of
2cm.</p>
<dl>
 <dt>Radius: <dd> <meter min=0 max=20 value=12>12cm</meter>
 <dt>Height: <dd> <meter min=0 max=10 value=2>2cm</meter>
</dl>

There is no explicit way to specify units in the meter element, but the units may be
specified in the title attribute in free-form text.

The example above could be extended to mention the units:

<dl>
 <dt>Radius: <dd> <meter min=0 max=20 value=12
title="centimeters">12cm</meter>
 <dt>Height: <dd> <meter min=0 max=10 value=2
title="centimeters">2cm</meter>
</dl>

User agent requirements: User agents must parse the min, max, value, low, high, and
optimum attributes using the rules for parsing floating point number values.

If the value attribute has been omitted, the user agent must also process the textContent
of the element according to the steps for finding one or two numbers of a ratio in a string.
These steps will return nothing, one number, one number with a denominator punctuation
character, or two numbers.

User agents must then use all these numbers to obtain values for six points on the gauge,
as follows. (The order in which these are evaluated is important, as some of the values
refer to earlier ones.)

The minimum value
If the min attribute is specified and a value could be parsed out of it, then the
minimum value is that value. Otherwise, the minimum value is zero.

The maximum value
If the max attribute is specified and a value could be parsed out of it, the maximum
value is that value.

Otherwise, if the max attribute is specified but no value could be parsed out of it, or
if it was not specified, but either or both of the min or value attributes were
specified, then the maximum value is 1.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 239 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 239 from 931

Otherwise, none of the max, min, and value attributes were specified. If the result of
processing the textContent of the element was either nothing or just one number
with no denominator punctuation character, then the maximum value is 1; if the
result was one number but it had an associated denominator punctuation character,
then the maximum value is the value associated with that denominator punctuation
character; and finally, if there were two numbers parsed out of the textContent,
then the maximum is the higher of those two numbers.

If the above machinations result in a maximum value less than the minimum value,
then the maximum value is actually the same as the minimum value.

The actual value
If the value attribute is specified and a value could be parsed out of it, then that
value is the actual value.

If the value attribute is not specified but the max attribute is specified and the result
of processing the textContent of the element was one number with no associated
denominator punctuation character, then that number is the actual value.

If neither of the value and max attributes are specified, then, if the result of
processing the textContent of the element was one number (with or without an
associated denominator punctuation character), then that is the actual value, and if
the result of processing the textContent of the element was two numbers, then the
actual value is the lower of the two numbers found.

Otherwise, if none of the above apply, the actual value is zero.

If the above procedure results in an actual value less than the minimum value, then
the actual value is actually the same as the minimum value.

If, on the other hand, the result is an actual value greater than the maximum value,
then the actual value is the maximum value.

The low boundary
If the low attribute is specified and a value could be parsed out of it, then the low
boundary is that value. Otherwise, the low boundary is the same as the minimum
value.

If the low boundary is then less than the minimum value, then the low boundary is
actually the same as the minimum value. Similarly, if the low boundary is greater
than the maximum value, then it is actually the maximum value instead.

The high boundary
If the high attribute is specified and a value could be parsed out of it, then the high
boundary is that value. Otherwise, the high boundary is the same as the maximum
value.

If the high boundary is then less than the low boundary, then the high boundary is
actually the same as the low boundary. Similarly, if the high boundary is greater
than the maximum value, then it is actually the maximum value instead.

The optimum point

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 240 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 240 from 931

If the optimum attribute is specified and a value could be parsed out of it, then the
optimum point is that value. Otherwise, the optimum point is the midpoint between
the minimum value and the maximum value.

If the optimum point is then less than the minimum value, then the optimum point is
actually the same as the minimum value. Similarly, if the optimum point is greater
than the maximum value, then it is actually the maximum value instead.

All of which will result in the following inequalities all being true:

• minimum value ≤ actual value ≤ maximum value
• minimum value ≤ low boundary ≤ high boundary ≤ maximum value
• minimum value ≤ optimum point ≤ maximum value

UA requirements for regions of the gauge: If the optimum point is equal to the low
boundary or the high boundary, or anywhere in between them, then the region between
the low and high boundaries of the gauge must be treated as the optimum region, and the
low and high parts, if any, must be treated as suboptimal. Otherwise, if the optimum point
is less than the low boundary, then the region between the minimum value and the low
boundary must be treated as the optimum region, the region between the low boundary
and the high boundary must be treated as a suboptimal region, and the region between
the high boundary and the maximum value must be treated as an even less good region.
Finally, if the optimum point is higher than the high boundary, then the situation is
reversed; the region between the high boundary and the maximum value must be treated
as the optimum region, the region between the high boundary and the low boundary must
be treated as a suboptimal region, and the remaining region between the low boundary
and the minimum value must be treated as an even less good region.

UA requirements for showing the gauge: When representing a meter element to the
user, the UA should indicate the relative position of the actual value to the minimum and
maximum values, and the relationship between the actual value and the three regions of
the gauge.

The following markup:

<h3>Suggested groups</h3>
<menu type="toolbar">
 Hide suggested
groups
</menu>

 <p>comp.infos
ystems.www.authoring.stylesheets -
 join<
/a></p>
 <p>Group description: Layout/presentation on the
WWW.</p>
 <p><meter value="0.5">Moderate activity,</meter> Usenet, 618
subscribers</p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 241 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 241 from 931

 <p>netscape.public.moz
illa.xpinstall -
 join</p>
 <p>Group description: Mozilla XPInstall
discussion.</p>
 <p><meter value="0.25">Low activity,</meter> Usenet, 22
subscribers</p>

 <p>mozilla.dev.general -
 join</p>
 <p><meter value="0.25">Low activity,</meter> Usenet, 66
subscribers</p>

Might be rendered as follows:

User agents may combine the value of the title attribute and the other attributes to
provide context-sensitive help or inline text detailing the actual values.

For example, the following snippet:

<meter min=0 max=60 value=23.2 title=seconds></meter>

...might cause the user agent to display a gauge with a tooltip saying "Value: 23.2 out of
60." on one line and "seconds" on a second line.

The min, max, value, low, high, and optimum DOM attributes must reflect the respective
content attributes of the same name. When the relevant content attributes are absent, the
DOM attributes must return zero. The value parsed from the textContent never affects the
DOM values.

4.6.19 The time element

Status: Working draft

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 242 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 242 from 931

Phrasing content.
Content attributes:

Global attributes
datetime

DOM interface:
interface HTMLTimeElement : HTMLElement {

 attribute DOMString dateTime;

 readonly attribute Date date;

 readonly attribute Date time;

 readonly attribute Date timezone;

};

The time element represents either a time on a 24 hour clock, or a precise date in the
proleptic Gregorian calendar, optionally with a time and a time zone. [GREGORIAN]

This element is intended as a way to encode modern dates and times in a machine-
readable way so that user agents can offer to add them to the user's calendar. For
example, adding birthday reminders or scheduling events.

The time element is not intended for encoding times for which a precise date or time
cannot be established. For example, it would be inappropriate for encoding times
like "one millisecond after the big bang", "the early part of the Jurassic period", or
"a winter around 250 BCE".

For dates before the introduction of the Gregorian calendar, authors are
encouraged to not use the time element, or else to be very careful about converting
dates and times from the period to the Gregorian calendar. This is complicated by
the manner in which the Gregorian calendar was phased in, which occurred at
different times in different countries, ranging from partway through the 16th century
all the way to early in the 20th.

The datetime attribute, if present, must contain a valid date or time string that identifies
the date or time being specified.

If the datetime attribute is not present, then the date or time must be specified in the
content of the element, such that the element's textContent is a valid date or time string in
content, and the date, if any, must be expressed using the Gregorian calendar.

If the datetime attribute is present, then the element may be empty, in which case the
user agent should convey the attribute's value to the user when rendering the element.

The time element can be used to encode dates, for example in Microformats. The
following shows a hypothetical way of encoding an event using a variant on hCalendar
that uses the time element:

<div class="vevent">
 <a class="url"
href="http://www.web2con.com/">http://www.web2con.com/
 Web 2.0 Conference:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 243 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 243 from 931

 <time class="dtstart" datetime="2007-10-05">October 5</time> -
 <time class="dtend" datetime="2007-10-20">19</time>,
 at the Argent Hotel, San Francisco, CA
 </div>

The time element is not necessary for encoding dates or times. In the following snippet,
the time is encoded using time, so that it can be restyled (e.g. using XBL2) to match local
conventions, while the year is not marked up at all, since marking it up would not be
particularly useful.

<p>I usually have a snack at <time>16:00</time>.</p>
<p>I've liked model trains since at least 1983.</p>

Using a styling technology that supports restyling times, the first paragraph from the above
snippet could be rendered as follows:

I usually have a snack at 4pm.

Or it could be rendered as follows:

I usually have a snack at 16h00.

The dateTime DOM attribute must reflect the datetime content attribute.

User agents, to obtain the date, time, and time zone represented by a time element,
must follow these steps:

1. If the datetime attribute is present, then use the rules to parse a date or time string
with the flag in attribute from the value of that attribute, and let the result be result.

2. Otherwise, use the rules to parse a date or time string with the flag in content from
the element's textContent, and let the result be result.

3. If result is empty (because the parsing failed), then the date is unknown, the time is
unknown, and the time zone is unknown.

4. Otherwise: if result contains a date, then that is the date; if result contains a time,
then that is the time; and if result contains a time zone, then the time zone is the
element's time zone. (A time zone can only be present if both a date and a time are
also present.)

time . date
Returns a Date object representing the date component of the element's value, at
midnight in the UTC time zone.
Returns null if there is no date.

time . time
Returns a Date object representing the time component of the element's value, on
1970-01-01 in the UTC time zone.
Returns null if there is no time.

time . timezone
Returns a Date object representing the time corresponding to 1970-01-01 00:00
UTC in the time zone given by the element's value.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 244 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 244 from 931

Returns null if there is no time zone.

The date DOM attribute must return null if the date is unknown, and otherwise must return
the time corresponding to midnight UTC (i.e. the first second) of the given date.

The time DOM attribute must return null if the time is unknown, and otherwise must return
the time corresponding to the given time of 1970-01-01, with the time zone UTC.

The timezone DOM attribute must return null if the time zone is unknown, and otherwise
must return the time corresponding to 1970-01-01 00:00 UTC in the given time zone, with
the time zone set to UTC (i.e. the time corresponding to 1970-01-01 at 00:00 UTC plus the
offset corresponding to the time zone).

In the following snippet:

<p>Our first date was <time datetime="2006-09-23">a Saturday</time>.</p>

...the time element's date attribute would have the value 1,158,969,600,000ms, and the
time and timezone attributes would return null.

In the following snippet:

<p>We stopped talking at <time datetime="2006-09-24T05:00-07:00">5am the
next morning</time>.</p>

...the time element's date attribute would have the value 1,159,056,000,000ms, the time
attribute would have the value 18,000,000ms, and the timezone attribute would return
−25,200,000ms. To obtain the actual time, the three attributes can be added together,
obtaining 1,159,048,800,000, which is the specified date and time in UTC.

Finally, in the following snippet:

<p>Many people get up at <time>08:00</time>.</p>

...the time element's date attribute would have the value null, the time attribute would
have the value 28,800,000ms, and the timezone attribute would return null.

4.6.20 The ruby element

Status: Working draft

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
One or more groups of: phrasing content followed either by a single rt element, or
an rp element, an rt element, and another rp element.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 245 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 245 from 931

The ruby element allows one or more spans of phrasing content to be marked with ruby
annotations. Ruby annotations are short runs of text presented alongside base text,
primarily used in East Asian typography as a guide for pronunciation or to include other
annotations. In Japanese, this form of typography is also known as furigana.

A ruby element represents the spans of phrasing content it contains, ignoring all the child
rt and rp elements and their descendants. Those spans of phrasing content have
associated annotations created using the rt element.

In this example, each ideograph in the Japanese text �� is annotated with its kanji
reading.

...
<ruby>
 � <rt> �� </rt>
 � <rt> � </rt>
</ruby>
...

This might be rendered as:

In this example, each ideograph in the traditional Chinese text �� is annotated with its
bopomofo reading.

<ruby>
 � <rt> ��� </rt>
 � <rt> �� </rt>
</ruby>

This might be rendered as:

In this example, each ideograph in the simplified Chinese text �� is annotated with its
pinyin reading.

...
<ruby>
 � <rt> hàn </rt>
 � <rt> zì </rt>
</ruby>
...

This might be rendered as:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 246 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 246 from 931

4.6.21 The rt element

Status: Working draft

Categories
None.

Contexts in which this element may be used:
As a child of a ruby element.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The rt element marks the ruby text component of a ruby annotation.

An rt element that is a child of a ruby element represents an annotation (given by its
children) for the zero or more nodes of phrasing content that immediately precedes it in
the ruby element, ignoring rp elements.

An rt element that is not a child of a ruby element represents the same thing as its
children.

4.6.22 The rp element

Status: Working draft

Categories
None.

Contexts in which this element may be used:
As a child of a ruby element, either immediately before or immediately after an rt
element.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The rp element can be used to provide parentheses around a ruby text component of a
ruby annotation, to be shown by user agents that don't support ruby annotations.

An rp element that is a child of a ruby element represents nothing and its contents must
be ignored. An rp element whose parent element is not a ruby element represents its
children.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 247 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 247 from 931

The example above, in which each ideograph in the text �� is annotated with its kanji
reading, could be expanded to use rp so that in legacy user agents the readings are in
parentheses:

...
<ruby>
 � <rp>(</rp><rt>��</rt><rp>)</rp>
 � <rp>(</rp><rt>�</rt><rp>)</rp>
</ruby>
...

In conforming user agents the rendering would be as above, but in user agents that do not
support ruby, the rendering would be:

... � (��) � (�) ...

4.6.23 The bdo element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes
Also, the dir global attribute has special semantics on this element.

DOM interface:
Uses HTMLElement.

The bdo element represents explicit text directionality formatting control for its children. It
allows authors to override the Unicode bidi algorithm by explicitly specifying a direction
override. [BIDI]

Authors must specify the dir attribute on this element, with the value ltr to specify a left-
to-right override and with the value rtl to specify a right-to-left override.

If the element has the dir attribute set to the exact value ltr, then for the purposes of the
bidi algorithm, the user agent must act as if there was a U+202D LEFT-TO-RIGHT
OVERRIDE character at the start of the element, and a U+202C POP DIRECTIONAL
FORMATTING at the end of the element.

If the element has the dir attribute set to the exact value rtl, then for the purposes of the
bidi algorithm, the user agent must act as if there was a U+202E RIGHT-TO-LEFT
OVERRIDE character at the start of the element, and a U+202C POP DIRECTIONAL
FORMATTING at the end of the element.

The requirements on handling the bdo element for the bidi algorithm may be implemented
indirectly through the style layer. For example, an HTML+CSS user agent should
implement these requirements by implementing the CSS 'unicode-bidi' property. [CSS]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 248 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 248 from 931

4.6.24 The span element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes

DOM interface:
interface HTMLSpanElement : HTMLElement {};

The span element doesn't mean anything on its own, but can be useful when used
together with other attributes, e.g. class, lang, or dir. It represents its children.

4.6.25 Usage summary

This section is non-normative.

Element Purpose Example
a Hyperlinks Visit my drinks page.

em Stress emphasis I must say I adore lemonade.

strong Importance This tea is very hot.

small Side comments These grapes are made into wine. <small>Alcohol is
addictive.</small>

cite Titles of works The case <cite>Hugo v. Danielle</cite> is relevant
here.

q Quotations The judge said <q>You can drink water from the
fish tank</q> but advised against it.

dfn Defining
instance

The term <dfn>organic food</dfn> refers to food
produced without synthetic chemicals.

abbr Abbreviations Organic food in Ireland is certified by the <abbr
title="Irish Organic Farmers and Growers
Association">IOFGA</abbr>.

code Computer code The <code>fruitdb</code> program can be used for
tracking fruit production.

var Variables If there are <var>n</var> fruit in the bowl, at
least <var>n</var>÷2 will be ripe.

samp Computer output The computer said <samp>Unknown error -3</samp>.

kbd Computer input Hit <kbd>F1</kbd> to continue.

sub Subscripts Water is H₂O.

sup Superscripts The Hydrogen in heavy water is usually
²H.

i Alternative voice Lemonade consists primarily of <i>Citrus
limon</i>.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 249 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 249 from 931

Element Purpose Example
b Keywords Take a lemon and squeeze it with a

juicer.

mark Highlight Elderflower cordial, with one <mark>part</mark>
cordial to ten <mark>part</mark>s water, stands
a<mark>part</mark> from the rest.

progress Progress bar Copying: <progress>75%</progress>

meter Gauge Disk space remaining: <meter>75%<meter>

time Date and/or time Published <time>2009-10-21</time>.

ruby, rt,
rp

Ruby
annotations

<ruby> OJ <rp>(<rt>Orange Juice<rp>)</ruby>

bdo Text
directionality
formatting

The proposal is to write English, but in reverse
order. "Juice" would become "<bdo
dir=rtl>Juice</bdo>"

span Other In French we call it sirop de
sureau.

4.6.26 Footnotes

HTML does not have a dedicated mechanism for marking up footnotes. Here are the
recommended alternatives.

For short inline annotations, the title attribute should be used.

In this example, two parts of a dialog are annotated.

<dialog>
 <dt>Customer
 <dd>Hello! I wish to register a complaint. Hello. Miss?
 <dt>Shopkeeper
 <dd><span title="Colloquial pronunciation of 'What do you'"
 >Watcha mean, miss?
 <dt>Customer
 <dd>Uh, I'm sorry, I have a cold. I wish to make a complaint.
 <dt>Shopkeeper
 <dd>Sorry, we're
 closing for lunch.
</dialog>

For longer annotations, the a element should be used, pointing to an element later in the
document. The convention is that the contents of the link be a number in square brackets.

In this example, a footnote in the dialog links to a paragraph below the dialog. The
paragraph then reciprocally links back to the dialog, allowing the user to return to the
location of the footnote.

<dialog>
 <dt>Announcer
 <dd>Number 16: The <i>hand</i>.
 <dt>Interviewer
 <dd>Good evening. I have with me in the studio tonight Mr
 Norman St John Polevaulter, who for the past few years has
 been contradicting people. Mr Polevaulter, why do
 you contradict people?

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 250 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 250 from 931

 <dt>Norman
 <dd>I don't. [1]
 <dt>Interviewer
 <dd>You told me you did!
</dialog>
<section>
 <p id="fn1">[1] This is, naturally, a lie,
 but paradoxically if it were true he could not say so without
 contradicting the interviewer and thus making it false.</p>
</section>

For side notes, longer annotations that apply to entire sections of the text rather than just
specific words or sentences, the aside element should be used.

In this example, a sidebar is given after a dialog, giving some context to the dialog.

<dialog>
 <dt>Customer
 <dd>I will not buy this record, it is scratched.
 <dt>Shopkeeper
 <dd>I'm sorry?
 <dt>Customer
 <dd>I will not buy this record, it is scratched.
 <dt>Shopkeeper
 <dd>No no no, this's'a tobacconist's.
</dialog>
<aside>
 <p>In 1970, the British Empire lay in ruins, and foreign
 nationalists frequented the streets — many of them Hungarians
 (not the streets — the foreign nationals). Sadly, Alexander
 Yalt has been publishing incompetently-written phrase books.
</aside>

For figures or tables, footnotes can be included in the relevant legend or caption element,
or in surrounding prose.

In this example, a table has cells with footnotes that are given in prose. A figure element
is used to give a single legend to the combination of the table and its footnotes.

<figure>
 <legend>Table 1. Alternative activities for knights.</legend>
 <table>
 <tr>
 <th> Activity
 <th> Location
 <th> Cost
 <tr>
 <td> Dance
 <td> Wherever possible
 <td> £0^{1}
 <tr>
 <td> Routines, chorus scenes^{2}
 <td> Undisclosed
 <td> Undisclosed
 <tr>
 <td> Dining^{3}
 <td> Camelot
 <td> Cost of ham, jam, and spam^{4}
 </table>
 <p id="fn1">1. Assumed.</p>
 <p id="fn2">2. Footwork impeccable.</p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 251 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 251 from 931

 <p id="fn3">3. Quality described as "well".</p>
 <p id="fn4">4. A lot.</p>
</figure>

4.7 Edits

The ins and del elements represent edits to the document.

4.7.1 The ins element

Status: Implemented and widely deployed

Categories
Flow content.
When the element only contains phrasing content: phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Transparent.

Content attributes:
Global attributes
cite
datetime

DOM interface:
Uses the HTMLModElement interface.

The ins element represents an addition to the document.

The following represents the addition of a single paragraph:

<aside>
 <ins>
 <p> I like fruit. </p>
 </ins>
</aside>

As does this, because everything in the aside element here counts as phrasing content
and therefore there is just one paragraph:

<aside>
 <ins>
 Apples are tasty.
 </ins>
 <ins>
 So are pears.
 </ins>
</aside>

ins elements should not cross implied paragraph boundaries.

The following example represents the addition of two paragraphs, the second of which
was inserted in two parts. The first ins element in this example thus crosses a paragraph
boundary, which is considered poor form.

<aside>
 <ins datetime="2005-03-16T00:00Z">
 <p> I like fruit. </p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 252 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 252 from 931

 Apples are tasty.
 </ins>
 <ins datetime="2007-12-19T00:00Z">
 So are pears.
 </ins>
</aside>

Here is a better way of marking this up. It uses more elements, but none of the elements
cross implied paragraph boundaries.

<aside>
 <ins datetime="2005-03-16T00:00Z">
 <p> I like fruit. </p>
 </ins>
 <ins datetime="2005-03-16T00:00Z">
 Apples are tasty.
 </ins>
 <ins datetime="2007-12-19T00:00Z">
 So are pears.
 </ins>
</aside>

4.7.2 The del element

Status: Implemented and widely deployed

Categories
Flow content.
When the element only contains phrasing content: phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Transparent.

Content attributes:
Global attributes
cite
datetime

DOM interface:
Uses the HTMLModElement interface.

The del element represents a removal from the document.

del elements should not cross implied paragraph boundaries.

4.7.3 Attributes common to ins and del elements

The cite attribute may be used to specify the address of a document that explains the
change. When that document is long, for instance the minutes of a meeting, authors are
encouraged to include a fragment identifier pointing to the specific part of that document
that discusses the change.

If the cite attribute is present, it must be a valid URL that explains the change. To obtain
the corresponding citation link, the value of the attribute must be resolved relative to the
element. User agents should allow users to follow such citation links.

The datetime attribute may be used to specify the time and date of the change.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 253 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 253 from 931

If present, the datetime attribute must be a valid global date and time string value.

User agents must parse the datetime attribute according to the parse a global date and
time string algorithm. If that doesn't return a time, then the modification has no associated
timestamp (the value is non-conforming; it is not a valid global date and time string).
Otherwise, the modification is marked as having been made at the given datetime. User
agents should use the associated time-zone information to determine which time zone to
present the given datetime in.

The ins and del elements must implement the HTMLModElement interface:

interface HTMLModElement : HTMLElement {
 attribute DOMString cite;
 attribute DOMString dateTime;
};

The cite DOM attribute must reflect the element's cite content attribute. The dateTime
DOM attribute must reflect the element's datetime content attribute.

4.7.4 Edits and paragraphs

Since the ins and del elements do not affect paragraphing, it is possible, in some cases
where paragraphs are implied (without explicit p elements), for an ins or del element to
span both an entire paragraph or other non-phrasing content elements and part of another
paragraph.

For example:

<section>
 <ins>
 <p>
 This is a paragraph that was inserted.
 </p>
 This is another paragraph whose first sentence was inserted
 at the same time as the paragraph above.
 </ins>
 This is a second sentence, which was there all along.
</section>

By only wrapping some paragraphs in p elements, one can even get the end of one
paragraph, a whole second paragraph, and the start of a third paragraph to be covered by
the same ins or del element (though this is very confusing, and not considered good
practice):

<section>
 This is the first paragraph. <ins>This sentence was
 inserted.
 <p>This second paragraph was inserted.</p>
 This sentence was inserted too.</ins> This is the
 third paragraph in this example.
</section>

However, due to the way implied paragraphs are defined, it is not possible to mark up the
end of one paragraph and the start of the very next one using the same ins or del
element. You instead have to use one (or two) p element(s) and two ins or del elements:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 254 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 254 from 931

For example:

<section>
 <p>This is the first paragraph. This sentence was
 deleted.</p>
 <p>This sentence was deleted too. That
 sentence needed a separate element.</p>
</section>

Partly because of the confusion described above, authors are strongly recommended to
always mark up all paragraphs with the p element, and to not have any ins or del
elements that cross across any implied paragraphs.

4.7.5 Edits and lists

The content models of the ol and ul elements do not allow ins and del elements as
children. Lists always represent all their items, including items that would otherwise have
been marked as deleted.

To indicate that an item is inserted or deleted, an ins or del element can be wrapped
around the contents of the li element. To indicate that an item has been replaced by
another, a single li element can have one or more del elements followed by one or more
ins elements.

In the following example, a list that started empty had items added and removed from it
over time. The bits in the example that have been emphasized show the parts that are the
"current" state of the list. The list item numbers don't take into account the edits, though.

<h1>Stop-ship bugs</h1>

 <ins datetime="2008-02-12T15:20Z">Bug 225:
 Rain detector doesn't work in snow</ins>
 <del datetime="2008-03-01T20:22Z"><ins datetime="2008-02-
14T12:02Z">Bug 228:
 Water buffer overflows in April</ins>
 <ins datetime="2008-02-16T13:50Z">Bug 230:
 Water heater doesn't use renewable fuels</ins>
 <del datetime="2008-02-20T21:15Z"><ins datetime="2008-02-
16T14:25Z">Bug 232:
 Carbon dioxide emissions detected after startup</ins>

In the following example, a list that started with just fruit was replaced by a list with just
colors.

<h1>List of fruits<ins>colors</ins></h1>

 Lime<ins>Green</ins>
 Apple
 Orange
 Pear
 <ins>Teal</ins>
 Lemon<ins>Yellow</ins>
 Olive
 <ins>Purple</ins>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 255 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 255 from 931

4.8 Embedded content

4.8.1 The figure element

Status: Working draft

Categories
Flow content.
Sectioning root.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Either: one legend element followed by flow content.
Or: Flow content followed by one legend element.
Or: Flow content.

Content attributes:
Global attributes

DOM interface:
Uses HTMLElement.

The figure element represents some flow content, optionally with a caption, that is self-
contained and is typically referenced as a single unit from the main flow of the document.

The element can thus be used to annotate illustrations, diagrams, photos, code listings,
etc, that are referred to from the main content of the document, but that could, without
affecting the flow of the document, be moved away from that primary content, e.g. to the
side of the page, to dedicated pages, or to an appendix.

The first legend element child of the element, if any, represents the caption of the figure
element's contents. If there is no child legend element, then there is no caption.

The remainder of the element's contents, if any, represents the content.

This example shows the figure element to mark up a code listing.

<p>In listing 4 we see the primary core interface
API declaration.</p>
<figure id="l4">
 <legend>Listing 4. The primary core interface API declaration.</legend>
 <pre><code>interface PrimaryCore {
 boolean verifyDataLine();
 void sendData(in sequence<byte> data);
 void initSelfDestruct();
}</code></pre>
</figure>
<p>The API is designed to use UTF-8.</p>

Here we see a figure element to mark up a photo.

<figure>
 <img src="bubbles-work.jpeg"
 alt="Bubbles, sitting in his office chair, works on his
 latest project intently.">
 <legend>Bubbles at work</legend>
</figure>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 256 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 256 from 931

In this example, we see an image that is not a figure, as well as an image and a video that
are.

<h2>Malinko's comics</h2>

<p>This case centered on some sort of "intellectual property"
infringement related to a comic (see Exhibit A). The suit started
after a trailer ending with these words:</p>

<img src="promblem-packed-action.png" alt="ROUGH COPY! Promblem-Packed
Action!">

<p>...was aired. A lawyer, armed with a Bigger Notebook, launched a
preemptive strike using snowballs. A complete copy of the trailer is
included with Exhibit B.</p>

<figure>

 <legend>Exhibit A. The alleged <cite>rough copy</cite> comic.</legend>
</figure>

<figure>
 <video src="ex-b.mov"></video>
 <legend>Exhibit B. The <code>Rough Copy</cite> trailer.</legend>
</figure>

<p>The case was resolved out of court.</p>

Here, a part of a poem is marked up using figure.

<figure>
 <p>'Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,

And the mome raths outgrabe.</p>
 <legend><cite>Jabberwocky</cite> (first verse). Lewis Carroll, 1832-
98</legend>
</figure>

In this example, which could be part of a much larger work discussing a castle, the figure
has three images in it.

<figure>
 <img src="castle1423.jpeg" title="Etching. Anonymous, ca. 1423."
 alt="The castle has one tower, and a tall wall around it.">
 <img src="castle1858.jpeg" title="Oil-based paint on canvas. Maria
Towle, 1858."
 alt="The castle now has two towers and two walls.">
 <img src="castle1999.jpeg" title="Film photograph. Peter Jankle, 1999."
 alt="The castle lies in ruins, the original tower all that remains
in one piece.">
 <legend>The castle through the ages: 1423, 1858, and 1999
respectively.</legend>
</figure>

4.8.2 The img element

Status: Last call for comments. ISSUE-66 (image-analysis) and ISSUE-30 (longdesc)
block progress to Last Call

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 257 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 257 from 931

Categories
Flow content.
Phrasing content.
Embedded content.
If the element has a usemap attribute: Interactive content.

Contexts in which this element may be used:
Where embedded content is expected.

Content model:
Empty.

Content attributes:
Global attributes
alt
src
usemap
ismap
width
height

DOM interface:
[NamedConstructor=Image(),

 NamedConstructor=Image(in unsigned long width),

 NamedConstructor=Image(in unsigned long width, in unsigned long height)]

interface HTMLImageElement : HTMLElement {

 attribute DOMString alt;

 attribute DOMString src;

 attribute DOMString useMap;

 attribute boolean isMap;

 attribute unsigned long width;

 attribute unsigned long height;

 readonly attribute boolean complete;

};

An img element represents an image.

The image given by the src attribute is the embedded content, and the value of the alt
attribute is the img element's fallback content.

The src attribute must be present, and must contain a valid URL referencing a non-
interactive, optionally animated, image resource that is neither paged nor scripted. If the
base URI of the element is the same as the document's address, then the src attribute's
value must not be the empty string.

Images can thus be static bitmaps (e.g. PNGs, GIFs, JPEGs), single-page vector
documents (single-page PDFs, XML files with an SVG root element), animated
bitmaps (APNGs, animated GIFs), animated vector graphics (XML files with an SVG

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 258 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 258 from 931

root element that use declarative SMIL animation), and so forth. However, this also
precludes SVG files with script, multipage PDF files, interactive MNG files, HTML
documents, plain text documents, and so forth.

The requirements on the alt attribute's value are described in the next section.

The img must not be used as a layout tool. In particular, img elements should not be used
to display transparent images, as they rarely convey meaning and rarely add anything
useful to the document.

Unless the user agent cannot support images, or its support for images has been
disabled, or the user agent only fetches elements on demand, or the element's src
attribute has a value that is an ignored self-reference, then, when an img is created with a
src attribute, and whenever the src attribute is set subsequently, the user agent must
resolve the value of that attribute, relative to the element, and if that is successful must
then fetch that resource.

The src attribute's value is an ignored self-reference if its value is the empty string, and
the base URI of the element is the same as the document's address.

Fetching the image must delay the load event of the element's document until the task that
is queued by the networking task source once the resource has been fetched (defined
below) has been run.

This, unfortunately, can be used to perform a rudimentary port scan of the user's
local network (especially in conjunction with scripting, though scripting isn't
actually necessary to carry out such an attack). User agents may implement cross-
origin access control policies that mitigate this attack.

If the image is in a supported image type and its dimensions are known, then the image is
said to be available (this affects exactly what the element represents, as defined below).
This can be true even before the image is completely downloaded, if the user agent
supports incremental rendering of images; in such cases, each task that is queued by the
networking task source while the image is being fetched must update the presentation of
the image appropriately. It can also stop being true, e.g. if the user agent finds, after
obtaining the image's dimensions, that the image data is actually fatally corrupted.

If the image was not fetched (e.g. because the UA's image support is disabled, or because
the src attribute's value is an ignored self-reference), or if the conditions in the previous
paragraph are not met, then the image is not available.

An image might be available in one view but not another. For instance, a Document
could be rendered by a screen reader providing a speech synthesis view of the
output of a Web browser using the screen media. In this case, the image would be
available in the Web browser's screen view, but not available in the screen reader's
view.

Whether the image is fetched successfully or not (e.g. whether the response code was a
2xx code or equivalent) must be ignored when determining the image's type and whether
it is a valid image.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 259 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 259 from 931

This allows servers to return images with error responses, and have them
displayed.

The user agents should apply the image sniffing rules to determine the type of the image,
with the image's associated Content-Type headers giving the official type. If these rules
are not applied, then the type of the image must be the type given by the image's
associated Content-Type headers.

User agents must not support non-image resources with the img element (e.g. XML files
whose root element is an HTML element). User agents must not run executable code (e.g.
scripts) embedded in the image resource. User agents must only display the first page of
a multipage resource (e.g. a PDF file). User agents must not allow the resource to act in
an interactive fashion, but should honor any animation in the resource.

This specification does not specify which image types are to be supported.

The task that is queued by the networking task source once the resource has been
fetched, must act as appropriate given the following alternatives:

If the download was successful and the image is available
Queue a task to fire a simple event called load at the img element (this happens
after complete starts returning true).

Otherwise (the fetching process failed without a response from the remote server,
or completed but the image is not a supported image)

Queue a task to fire a simple event called error on the img element.

The task source for these tasks is the DOM manipulation task source.

What an img element represents depends on the src attribute and the alt attribute.

If the src attribute is set and the alt attribute is set to the empty string
The image is either decorative or supplemental to the rest of the content, redundant
with some other information in the document.

If the image is available and the user agent is configured to display that image, then
the element represents the image specified by the src attribute.

Otherwise, the element represents nothing, and may be omitted completely from
the rendering. User agents may provide the user with a notification that an image is
present but has been omitted from the rendering.

If the src attribute is set and the alt attribute is set to a value that isn't empty
The image is a key part of the content; the alt attribute gives a textual equivalent
or replacement for the image.

If the image is available and the user agent is configured to display that image, then
the element represents the image specified by the src attribute.

Otherwise, the element represents the text given by the alt attribute. User agents
may provide the user with a notification that an image is present but has been
omitted from the rendering.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 260 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 260 from 931

If the src attribute is set and the alt attribute is not
The image might be a key part of the content, and there is no textual equivalent of
the image available.

In a conforming document, the absence of the alt attribute indicates that the
image is a key part of the content but that a textual replacement for the image
was not available when the image was generated.

If the image is available, the element represents the image specified by the src
attribute.

If the image is not available or if the user agent is not configured to display the
image, then the user agent should display some sort of indicator that there is an
image that is not being rendered, and may, if requested by the user, or if so
configured, or when required to provide contextual information in response to
navigation, provide caption information for the image, derived as follows:

1. If the image has a title attribute whose value is not the empty string, then
the value of that attribute is the caption information; abort these steps.

2. If the image is the child of a figure element that has a child legend element,
then the contents of the first such legend element are the caption
information; abort these steps.

3. Run the algorithm to create the outline for the document.

4. If the img element did not end up associated with a heading in the outline, or
if there are any other images that are lacking an alt attribute and that are
associated with the same heading in the outline as the img element in
question, then there is no caption information; abort these steps.

5. The caption information is the heading with which the image is associated
according to the outline.

If the src attribute is not set and either the alt attribute is set to the empty string or
the alt attribute is not set at all

The element represents nothing.

Otherwise
The element represents the text given by the alt attribute.

The alt attribute does not represent advisory information. User agents must not present
the contents of the alt attribute in the same way as content of the title attribute.

User agents may always provide the user with the option to display any image, or to
prevent any image from being displayed. User agents may also apply image analysis
heuristics to help the user make sense of the image when the user is unable to make
direct use of the image, e.g. due to a visual disability or because they are using a text
terminal with no graphics capabilities.

The contents of img elements, if any, are ignored for the purposes of rendering.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 261 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 261 from 931

The usemap attribute, if present, can indicate that the image has an associated image map.

The ismap attribute, when used on an element that is a descendant of an a element with
an href attribute, indicates by its presence that the element provides access to a server-
side image map. This affects how events are handled on the corresponding a element.

The ismap attribute is a boolean attribute. The attribute must not be specified on an
element that does not have an ancestor a element with an href attribute.

The img element supports dimension attributes.

The DOM attributes alt, src, useMap, and isMap each must reflect the respective content
attributes of the same name.

image . width [= value]
image . height [= value]

These attributes return the actual rendered dimensions of the image, or zero if the
dimensions are not known.
They can be set, to change the corresponding content attributes.

image . complete
Returns true if the image has been downloaded, decoded, and found to be valid;
otherwise, returns false.

image = new Image([width [, height]])
Returns a new img element, with the width and height attributes set to the values
passed in the relevant arguments, if applicable.

The DOM attributes width and height must return the rendered width and height of the
image, in CSS pixels, if the image is being rendered, and is being rendered to a visual
medium; or else the intrinsic width and height of the image, in CSS pixels, if the image is
available but not being rendered to a visual medium; or else 0, if the image is not available
or its dimensions are not known. [CSS]

On setting, they must act as if they reflected the respective content attributes of the same
name.

The DOM attribute complete must return true if the user agent has fetched the image
specified in the src attribute, and it is in a supported image type (i.e. it was decoded
without fatal errors), even if the final task queued by the networking task source for the
fetching of the image resource has not yet been processed. Otherwise, the attribute must
return false.

The value of complete can thus change while a script is executing.

Three constructors are provided for creating HTMLImageElement objects (in addition to the
factory methods from DOM Core such as createElement()): Image(), Image(width), and
Image(width, height). When invoked as constructors, these must return a new
HTMLImageElement object (a new img element). If the width argument is present, the new
object's width content attribute must be set to width. If the height argument is also
present, the new object's height content attribute must be set to height.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 262 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 262 from 931

A single image can have different appropriate alternative text depending on the context.

In each of the following cases, the same image is used, yet the alt text is different each
time. The image is the coat of arms of the Canton Geneva in Switzerland.

Here it is used as a supplementary icon:

<p>I lived in Carouge.</p>

Here it is used as an icon representing the town:

<p>Home town: </p>

Here it is used as part of a text on the town:

<p>Carouge has a coat of arms.</p>
<p><img src="carouge.svg" alt="The coat of arms depicts a lion, sitting
in front of a tree."></p>
<p>It is used as decoration all over the town.</p>

Here it is used as a way to support a similar text where the description is given as well as,
instead of as an alternative to, the image:

<p>Carouge has a coat of arms.</p>
<p></p>
<p>The coat of arms depicts a lion, sitting in front of a tree.
It is used as decoration all over the town.</p>

Here it is used as part of a story:

<p>He picked up the folder and a piece of paper fell out.</p>
<p><img src="carouge.svg" alt="Shaped like a shield, the paper had a
red background, a green tree, and a yellow lion with its tongue
hanging out and whose tail was shaped like an S."></p>
<p>He stared at the folder. S! The answer he had been looking for all
this time was simply the letter S! How had he not seen that before? It
all
came together now. The phone call where Hector had referred to a lion's
tail,
the time Marco had stuck his tongue out...</p>

Here it is not known at the time of publication what the image will be, only that it will be a
coat of arms of some kind, and thus no replacement text can be provided, and instead
only a brief caption for the image is provided, in the title attribute:

<p>The last user to have uploaded a coat of arms uploaded this one:</p>
<p><img src="last-uploaded-coat-of-arms.cgi" title="User-uploaded coat
of arms."></p>

Ideally, the author would find a way to provide real replacement text even in this case, e.g.
by asking the previous user. Not providing replacement text makes the document more
difficult to use for people who are unable to view images, e.g. blind users, or users or very
low-bandwidth connections or who pay by the byte, or users who are forced to use a text-
only Web browser.

Here are some more examples showing the same picture used in different contexts, with
different appropriate alternate texts each time.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 263 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 263 from 931

<article>
 <h1>My cats</h1>
 <h2>Fluffy</h2>
 <p>Fluffy is my favorite.</p>

 <p>She's just too cute.</p>
 <h2>Miles</h2>
 <p>My other cat, Miles just eats and sleeps.</p>
</article>
<article>
 <h1>Photography</h1>
 <h2>Shooting moving targets indoors</h2>
 <p>The trick here is to know how to anticipate; to know at what speed
and
 what distance the subject will pass by.</p>
 <img src="fluffy.jpg" alt="A cat flying by, chasing a ball of yarn, can
be
 photographed quite nicely using this technique.">
 <h2>Nature by night</h2>
 <p>To achieve this, you'll need either an extremely sensitive film, or
 immense flash lights.</p>
</article>
<article>
 <h1>About me</h1>
 <h2>My pets</h2>
 <p>I've got a cat named Fluffy and a dog named Miles.</p>

 <p>My dog Miles and I like go on long walks together.</p>
 <h2>music</h2>
 <p>After our walks, having emptied my mind, I like listening to
Bach.</p>
</article>
<article>
 <h1>Fluffy and the Yarn</h1>
 <p>Fluffy was a cat who liked to play with yarn. He also liked to
jump.</p>
 <aside></aside>
 <p>He would play in the morning, he would play in the evening.</p>
</article>

4.8.2.1 Requirements for providing text to act as an alternative for images

Status: Controversial Working Draft. ISSUE-31 (missing-alt) blocks progress to Last Call

The requirements for the alt attribute depend on what the image is intended to represent,
as described in the following sections.

4.8.2.1.1 A link or button containing nothing but the image

When an a element that is a hyperlink, or a button element, has no textual content but
contains one or more images, the alt attributes must contain text that together convey the
purpose of the link or button.

In this example, a user is asked to pick his preferred color from a list of three. Each color
is given by an image, but for users who have configured their user agent not to display
images, the color names are used instead:

<h1>Pick your color</h1>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 264 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 264 from 931

In this example, each button has a set of images to indicate the kind of color output
desired by the user. The first image is used in each case to give the alternative text.

<button name="rgb"><img
src="blue" alt=""></button>
<button name="cmyk"><img src="magenta"
alt=""></button>

Since each image represents one part of the text, it could also be written like this:

<button name="rgb"><img
src="blue" alt="B"></button>
<button name="cmyk"><img src="magenta"
alt="M"></button>

However, with other alternative text, this might not work, and putting all the alternative text
into one image in each case might make more sense:

<button name="rgb"><img src="green"
alt=""></button>
<button name="cmyk"><img
src="magenta" alt=""><img src="black"
alt=""></button>

4.8.2.1.2 A phrase or paragraph with an alternative graphical representation: charts, diagrams,
graphs, maps, illustrations

Sometimes something can be more clearly stated in graphical form, for example as a
flowchart, a diagram, a graph, or a simple map showing directions. In such cases, an
image can be given using the img element, but the lesser textual version must still be
given, so that users who are unable to view the image (e.g. because they have a very
slow connection, or because they are using a text-only browser, or because they are
listening to the page being read out by a hands-free automobile voice Web browser, or
simply because they are blind) are still able to understand the message being conveyed.

The text must be given in the alt attribute, and must convey the same message as the
image specified in the src attribute.

It is important to realize that the alternative text is a replacement for the image, not a
description of the image.

In the following example we have a flowchart in image form, with text in the alt attribute
rephrasing the flowchart in prose form:

<p>In the common case, the data handled by the tokenization stage
comes from the network, but it can also come from script.</p>
<p><img src="images/parsing-model-overview.png" alt="The network
passes data to the Tokenizer stage, which passes data to the Tree
Construction stage. From there, data goes to both the DOM and to
Script Execution. Script Execution is linked to the DOM, and, using
document.write(), passes data to the Tokenizer."></p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 265 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 265 from 931

Here's another example, showing a good solution and a bad solution to the problem of
including an image in a description.

First, here's the good solution. This sample shows how the alternative text should just be
what you would have put in the prose if the image had never existed.

<!-- This is the correct way to do things. -->
<p>
 You are standing in an open field west of a house.
 <img src="house.jpeg" alt="The house is white, with a boarded front
door.">
 There is a small mailbox here.
</p>

Second, here's the bad solution. In this incorrect way of doing things, the alternative text is
simply a description of the image, instead of a textual replacement for the image. It's bad
because when the image isn't shown, the text doesn't flow as well as in the first example.

<!-- This is the wrong way to do things. -->
<p>
 You are standing in an open field west of a house.

 There is a small mailbox here.
</p>

Text such as "Photo of white house with boarded door" would be equally bad alternative
text (though it could be suitable for the title attribute or in the legend element of a figure
with this image).

4.8.2.1.3 A short phrase or label with an alternative graphical representation: icons, logos

A document can contain information in iconic form. The icon is intended to help users of
visual browsers to recognize features at a glance.

In some cases, the icon is supplemental to a text label conveying the same meaning. In
those cases, the alt attribute must be present but must be empty.

Here the icons are next to text that conveys the same meaning, so they have an empty
alt attribute:

<nav>
 <p> Help</p>
 <p>
 Configuration Tools</p>
</nav>

In other cases, the icon has no text next to it describing what it means; the icon is
supposed to be self-explanatory. In those cases, an equivalent textual label must be given
in the alt attribute.

Here, posts on a news site are labeled with an icon indicating their topic.

<body>
 <article>
 <header>
 <h1>Ratatouille wins <i>Best Movie of the Year</i> award</h1>
 <p></p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 266 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 266 from 931

 </header>
 <p>Pixar has won yet another <i>Best Movie of the Year</i> award,
 making this its 8th win in the last 12 years.</p>
 </article>
 <article>
 <header>
 <h1>Latest TWiT episode is online</h1>
 <p></p>
 </header>
 <p>The latest TWiT episode has been posted, in which we hear
 several tech news stories as well as learning much more about the
 iPhone. This week, the panelists compare how reflective their
 iPhones' Apple logos are.</p>
 </article>
</body>

Many pages include logos, insignia, flags, or emblems, which stand for a particular entity
such as a company, organization, project, band, software package, country, or some
such.

If the logo is being used to represent the entity, e.g. as a page heading, the alt attribute
must contain the name of the entity being represented by the logo. The alt attribute must
not contain text like the word "logo", as it is not the fact that it is a logo that is being
conveyed, it's the entity itself.

If the logo is being used next to the name of the entity that it represents, then the logo is
supplemental, and its alt attribute must instead be empty.

If the logo is merely used as decorative material (as branding, or, for example, as a side
image in an article that mentions the entity to which the logo belongs), then the entry
below on purely decorative images applies. If the logo is actually being discussed, then it
is being used as a phrase or paragraph (the description of the logo) with an alternative
graphical representation (the logo itself), and the first entry above applies.

In the following snippets, all four of the above cases are present. First, we see a logo used
to represent a company:

<h1></h1>

Next, we see a paragraph which uses a logo right next to the company name, and so
doesn't have any alternative text:

<article>
 <h2>News</h2>
 <p>We have recently been looking at buying the <img src="alpha.gif"
 alt=""> ΑΒΓ company, a small Greek company
 specializing in our type of product.</p>

In this third snippet, we have a logo being used in an aside, as part of the larger article
discussing the acquisition:

 <aside><p></p></aside>
 <p>The ΑΒΓ company has had a good quarter, and our
 pie chart studies of their accounts suggest a much bigger blue slice
 than its green and orange slices, which is always a good sign.</p>
</article>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 267 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 267 from 931

Finally, we have an opinion piece talking about a logo, and the logo is therefore described
in detail in the alternative text.

<p>Consider for a moment their logo:</p>

<p><img src="/images/logo" alt="It consists of a green circle with a
green question mark centered inside it."></p>

<p>How unoriginal can you get? I mean, oooooh, a question mark, how
revolutionary, how utterly ground-breaking, I'm
sure everyone will rush to adopt those specifications now! They could
at least have tried for some sort of, I don't know, sequence of
rounded squares with varying shades of green and bold white outlines,
at least that would look good on the cover of a blue book.</p>

This example shows how the alternative text should be written such that if the image isn't
available, and the text is used instead, the text flows seamlessly into the surrounding text,
as if the image had never been there in the first place.

4.8.2.1.4 Text that has been rendered to a graphic for typographical effect

Sometimes, an image just consists of text, and the purpose of the image is not to highlight
the actual typographic effects used to render the text, but just to convey the text itself.

In such cases, the alt attribute must be present but must consist of the same text as
written in the image itself.

Consider a graphic containing the text "Earth Day", but with the letters all decorated with
flowers and plants. If the text is merely being used as a heading, to spice up the page for
graphical users, then the correct alternative text is just the same text "Earth Day", and no
mention need be made of the decorations:

<h1></h1>

4.8.2.1.5 A graphical representation of some of the surrounding text

In many cases, the image is actually just supplementary, and its presence merely
reinforces the surrounding text. In these cases, the alt attribute must be present but its
value must be the empty string.

In general, an image falls into this category if removing the image doesn't make the page
any less useful, but including the image makes it a lot easier for users of visual browsers
to understand the concept.

A flowchart that repeats the previous paragraph in graphical form:

<p>The network passes data to the Tokenizer stage, which
passes data to the Tree Construction stage. From there, data goes
to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to
the Tokenizer.</p>
<p></p>

In these cases, it would be wrong to include alternative text that consists of just a caption.
If a caption is to be included, then either the title attribute can be used, or the figure
and legend elements can be used. In the latter case, the image would in fact be a phrase

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 268 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 268 from 931

or paragraph with an alternative graphical representation, and would thus require
alternative text.

<!-- Using the title="" attribute -->
<p>The network passes data to the Tokenizer stage, which
passes data to the Tree Construction stage. From there, data goes
to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to
the Tokenizer.</p>
<p><img src="images/parsing-model-overview.png" alt=""
 title="Flowchart representation of the parsing model."></p>
<!-- Using <figure> and <legend> -->
<p>The network passes data to the Tokenizer stage, which
passes data to the Tree Construction stage. From there, data goes
to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to
the Tokenizer.</p>
<figure>
 <img src="images/parsing-model-overview.png" alt="The Network leads
 to the Tokenizer, which leads to the Tree Construction. The Tree
 Construction leads to two items. The first is Script Execution, which
 leads via document.write() back to the Tokenizer. The second item
 from which Tree Construction leads is the DOM. The DOM is related to
 the Script Execution.">
 <legend>Flowchart representation of the parsing model.</legend>
</figure>
<!-- This is WRONG. Do not do this. Instead, do what the above examples
do. -->
<p>The network passes data to the Tokenizer stage, which
passes data to the Tree Construction stage. From there, data goes
to both the DOM and to Script Execution. Script Execution is
linked to the DOM, and, using document.write(), passes data to
the Tokenizer.</p>
<p><img src="images/parsing-model-overview.png"
 alt="Flowchart representation of the parsing model."></p>
<!-- Never put the image's caption in the alt="" attribute! -->

A graph that repeats the previous paragraph in graphical form:

<p>According to a study covering several billion pages,
about 62% of documents on the Web in 2007 triggered the Quirks
rendering mode of Web browsers, about 30% triggered the Almost
Standards mode, and about 9% triggered the Standards mode.</p>
<p></p>

4.8.2.1.6 A purely decorative image that doesn't add any information

In general, if an image is decorative but isn't especially page-specific, for example an
image that forms part of a site-wide design scheme, the image should be specified in the
site's CSS, not in the markup of the document.

However, a decorative image that isn't discussed by the surrounding text still has some
relevance can be included in a page using the img element. Such images are decorative,
but still form part of the content. In these cases, the alt attribute must be present but its
value must be the empty string.

Examples where the image is purely decorative despite being relevant would include
things like a photo of the Black Rock City landscape in a blog post about an event at
Burning Man, or an image of a painting inspired by a poem, on a page reciting that poem.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 269 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 269 from 931

The following snippet shows an example of the latter case (only the first verse is included
in this snippet):

<h1>The Lady of Shalott</h1>
<p></p>
<p>On either side the river lie

Long fields of barley and of rye,

That clothe the wold and meet the sky;

And through the field the road run by

To many-tower'd Camelot;

And up and down the people go,

Gazing where the lilies blow

Round an island there below,

The island of Shalott.</p>

4.8.2.1.7 A group of images that form a single larger picture with no links

When a picture has been sliced into smaller image files that are then displayed together to
form the complete picture again, one of the images must have its alt attribute set as per
the relevant rules that would be appropriate for the picture as a whole, and then all the
remaining images must have their alt attribute set to the empty string.

In the following example, a picture representing a company logo for XYZ Corp has been
split into two pieces, the first containing the letters "XYZ" and the second with the word
"Corp". The alternative text ("XYZ Corp") is all in the first image.

<h1><img src="logo2.png"
alt=""></h1>

In the following example, a rating is shown as three filled stars and two empty stars. While
the alternative text could have been "�����", the author has instead decided to more
helpfully give the rating in the form "3 out of 5". That is the alternative text of the first
image, and the rest have blank alternative text.

<p>Rating: <meter max=5 value=3><img src="1" alt="3 out of 5"
 ><img src="0" alt=""
 ></meter></p>

4.8.2.1.8 A group of images that form a single larger picture with links

Generally, image maps should be used instead of slicing an image for links.

However, if an image is indeed sliced and any of the components of the sliced picture are
the sole contents of links, then one image per link must have alternative text in its alt
attribute representing the purpose of the link.

In the following example, a picture representing the flying spaghetti monster emblem, with
each of the left noodly appendages and the right noodly appendages in different images,
so that the user can pick the left side or the right side in an adventure.

<h1>The Church</h1>
<p>You come across a flying spaghetti monster. Which side of His
Noodliness do you wish to reach out for?</p>
<p><img src="fsm-middle.png" alt=""
 ><img src="fsm-right.png" alt="Right
side."></p>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 270 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 270 from 931

4.8.2.1.9 A key part of the content

In some cases, the image is a critical part of the content. This could be the case, for
instance, on a page that is part of a photo gallery. The image is the whole point of the
page containing it.

How to provide alternative text for an image that is a key part of the content depends on
the image's provenance.

The general case
When it is possible for detailed alternative text to be provided, for example if the
image is part of a series of screenshots in a magazine review, or part of a comic
strip, or is a photograph in a blog entry about that photograph, text that can serve
as a substitute for the image must be given as the contents of the alt attribute.

A screenshot in a gallery of screenshots for a new OS, with some alternative
text:

<figure>
 <img src="KDE%20Light%20desktop.png"
 alt="The desktop is blue, with icons along the left hand
side in
 two columns, reading System, Home, K-Mail, etc. A
window is
 open showing that menus wrap to a second line if they
 cannot fit in the window. The window has a list of
icons
 along the top, with an address bar below it, a list of
 icons for tabs along the left edge, a status bar on the
 bottom, and two panes in the middle. The desktop has a
bar
 at the bottom of the screen with a few buttons, a
pager, a
 list of open applications, and a clock.">
 <legend>Screenshot of a KDE desktop.</legend>
</figure>

A graph in a financial report:

<img src="sales.gif"
 title="Sales graph"
 alt="From 1998 to 2005, sales increased by the following
percentages
 with each year: 624%, 75%, 138%, 40%, 35%, 9%, 21%">

Note that "sales graph" would be inadequate alternative text for a sales graph.
Text that would be a good caption is not generally suitable as replacement
text.

Images that defy a complete description
In certain cases, the nature of the image might be such that providing thorough
alternative text is impractical. For example, the image could be indistinct, or could
be a complex fractal, or could be a detailed topographical map.

In these cases, the alt attribute must contain some suitable alternative text, but it
may be somewhat brief.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 271 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 271 from 931

Sometimes there simply is no text that can do justice to an image. For
example, there is little that can be said to usefully describe a Rorschach inkblot
test. However, a description, even if brief, is still better than nothing:

<figure>
 <img src="/commons/a/a7/Rorschach1.jpg" alt="A shape with left-
right
 symmetry with indistinct edges, with a small gap in the center,
two
 larger gaps offset slightly from the center, with two similar
gaps
 under them. The outline is wider in the top half than the bottom
 half, with the sides extending upwards higher than the center,
and
 the center extending below the sides.">
 <legend>A black outline of the first of the ten cards
 in the Rorschach inkblot test.</legend>
</figure>

Note that the following would be a very bad use of alternative text:

<!-- This example is wrong. Do not copy it. -->
<figure>
 <img src="/commons/a/a7/Rorschach1.jpg" alt="A black outline
 of the first of the ten cards in the Rorschach inkblot test.">
 <legend>A black outline of the first of the ten cards
 in the Rorschach inkblot test.</legend>
</figure>

Including the caption in the alternative text like this isn't useful because it
effectively duplicates the caption for users who don't have images, taunting
them twice yet not helping them any more than if they had only read or heard
the caption once.

Another example of an image that defies full description is a fractal, which, by
definition, is infinite in complexity.

The following example shows one possible way of providing alternative text for
the full view of an image of the Mandelbrot set.

<img src="ms1.jpeg" alt="The Mandelbrot set appears as a cardioid
with
its cusp on the real axis in the positive direction, with a
smaller
bulb aligned along the same center line, touching it in the
negative
direction, and with these two shapes being surrounded by smaller
bulbs
of various sizes.">

Images whose contents are not known
In some unfortunate cases, there might be no alternative text available at all, either
because the image is obtained in some automated fashion without any associated
alternative text (e.g. a Webcam), or because the page is being generated by a
script using user-provided images where the user did not provide suitable or usable
alternative text (e.g. photograph sharing sites), or because the author does not
himself know what the images represent (e.g. a blind photographer sharing an
image on his blog).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 272 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 272 from 931

In such cases, the alt attribute's value may be omitted, but one of the following
conditions must be met as well:

• The title attribute is present and has a non-empty value.
• The img element is in a figure element that contains a legend element that

contains content other than inter-element whitespace.
• The img element is part of the only paragraph directly in its section, and is

the only img element without an alt attribute in its section, and its section
has an associated heading.

Such cases are to be kept to an absolute minimum. If there is even the
slightest possibility of the author having the ability to provide real alternative
text, then it would not be acceptable to omit the alt attribute.

A photo on a photo-sharing site, if the site received the image with no
metadata other than the caption:

<figure>

 <legend>Bubbles traveled everywhere with us.</legend>
</figure>

It could also be marked up like this:

<article>
 <h1>Bubbles traveled everywhere with us.</h1>

</article>

In either case, though, it would be better if a detailed description of the
important parts of the image obtained from the user and included on the page.

A blind user's blog in which a photo taken by the user is shown. Initially, the
user might not have any idea what the photo he took shows:

<article>
 <h1>I took a photo</h1>
 <p>I went out today and took a photo!</p>
 <figure>

 <legend>A photograph taken blindly from my front porch.</legend>
 </figure>
</article>

Eventually though, the user might obtain a description of the image from his
friends and could then include alternative text:

<article>
 <h1>I took a photo</h1>
 <p>I went out today and took a photo!</p>
 <figure>
 <img src="photo2.jpeg" alt="The photograph shows my hummingbird
 feeder hanging from the edge of my roof. It is half full, but
there
 are no birds around. In the background, out-of-focus trees fill
the
 shot. The feeder is made of wood with a metal grate, and it
contains
 peanuts. The edge of the roof is wooden too, and is painted
white

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 273 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 273 from 931

 with light blue streaks.">
 <legend>A photograph taken blindly from my front porch.</legend>
 </figure>
</article>

Sometimes the entire point of the image is that a textual description is not
available, and the user is to provide the description. For instance, the point of a
CAPTCHA image is to see if the user can literally read the graphic. Here is one
way to mark up a CAPTCHA (note the title attribute):

<p><label>What does this image say?

<input type=text name=captcha></label>
(If you cannot see the image, you can use an audio test instead.)</p>

Another example would be software that displays images and asks for
alternative text precisely for the purpose of then writing a page with correct
alternative text. Such a page could have a table of images, like this:

<table>
 <thead>
 <tr> <th> Image <th> Description
 <tbody>
 <tr>
 <td> <img src="2421.png" title="Image 640 by 100, filename
'banner.gif'">
 <td> <input name="alt2421">
 <tr>
 <td> <img src="2422.png" title="Image 200 by 480, filename
'ad3.gif'">
 <td> <input name="alt2422">
</table>

Notice that even in this example, as much useful information as possible is still
included in the title attribute.

Since some users cannot use images at all (e.g. because they have a very
slow connection, or because they are using a text-only browser, or because
they are listening to the page being read out by a hands-free automobile
voice Web browser, or simply because they are blind), the alt attribute is
only allowed to be omitted rather than being provided with replacement text
when no alternative text is available and none can be made available, as in
the above examples. Lack of effort from the part of the author is not an
acceptable reason for omitting the alt attribute.

4.8.2.1.10 An image not intended for the user

Generally authors should avoid using img elements for purposes other than showing
images.

If an img element is being used for purposes other than showing an image, e.g. as part of
a service to count page views, then the alt attribute must be the empty string.

In such cases, the width and height attributes should both be set to zero.

4.8.2.1.11 An image in an e-mail or private document intended for a specific person who is known to
be able to view images

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 274 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 274 from 931

This section does not apply to documents that are publicly accessible, or whose target
audience is not necessarily personally known to the author, such as documents on a Web
site, e-mails sent to public mailing lists, or software documentation.

When an image is included in a private communication (such as an HTML e-mail) aimed
at a specific person who is known to be able to view images, the alt attribute may be
omitted. However, even in such cases it is strongly recommended that alternative text be
included (as appropriate according to the kind of image involved, as described in the
above entries), so that the e-mail is still usable should the user use a mail client that does
not support images, or should the document be forwarded on to other users whose
abilities might not include easily seeing images.

4.8.2.1.12 General guidelines

The most general rule to consider when writing alternative text is the following: the intent
is that replacing every image with the text of its alt attribute not change the
meaning of the page.

So, in general, alternative text can be written by considering what one would have written
had one not been able to include the image.

A corollary to this is that the alt attribute's value should never contain text that could be
considered the image's caption, title, or legend. It is supposed to contain replacement text
that could be used by users instead of the image; it is not meant to supplement the image.
The title attribute can be used for supplemental information.

One way to think of alternative text is to think about how you would read the page
containing the image to someone over the phone, without mentioning that there is
an image present. Whatever you say instead of the image is typically a good start
for writing the alternative text.

4.8.2.1.13 Guidance for markup generators

Markup generators (such as WYSIWYG authoring tools) should, wherever possible, obtain
alternative text from their users. However, it is recognized that in many cases, this will not
be possible.

For images that are the sole contents of links, markup generators should examine the link
target to determine the title of the target, or the URL of the target, and use information
obtained in this manner as the alternative text.

As a last resort, implementors should either set the alt attribute to the empty string, under
the assumption that the image is a purely decorative image that doesn't add any
information but is still specific to the surrounding content, or omit the alt attribute
altogether, under the assumption that the image is a key part of the content.

Markup generators should generally avoid using the image's own file name as the
alternative text.

4.8.2.1.14 Guidance for conformance checkers

Conformance checkers must report the lack of an alt attribute as an error unless the
conditions listed above for images whose contents are not known or they have been

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 275 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 275 from 931

configured to assume that the document is an e-mail or document intended for a specific
person who is known to be able to view images.

4.8.3 The iframe element

Status: Working draft

Categories
Flow content.
Phrasing content.
Embedded content.
Interactive content.

Contexts in which this element may be used:
Where embedded content is expected.

Content model:
Text that conforms to the requirements given in the prose.

Content attributes:
Global attributes
src
name
sandbox
seamless
width
height

DOM interface:
interface HTMLIFrameElement : HTMLElement {

 attribute DOMString src;

 attribute DOMString name;

 attribute DOMString sandbox;

 attribute boolean seamless;

 attribute DOMString width;

 attribute DOMString height;

 readonly attribute Document contentDocument;

 readonly attribute WindowProxy contentWindow;

};

The iframe element represents a nested browsing context.

The src attribute gives the address of a page that the nested browsing context is to
contain. The attribute, if present, must be a valid URL. When the browsing context is
created, if the attribute is present, the user agent must resolve the value of that attribute,
relative to the element, and if that is successful, must then navigate the element's
browsing context to the resulting absolute URL, with replacement enabled, and with the
iframe element's document's browsing context as the source browsing context. If the user
navigates away from this page, the iframe's corresponding WindowProxy object will proxy
new Window objects for new Document objects, but the src attribute will not change.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 276 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 276 from 931

Whenever the src attribute is set, the user agent must resolve the value of that attribute,
relative to the element, and if that is successful, the nested browsing context must be
navigated to the resulting absolute URL, with the iframe element's document's browsing
context as the source browsing context.

If the src attribute is not set when the element is created, or if its value cannot be
resolved, the browsing context will remain at the initial about:blank page.

The name attribute, if present, must be a valid browsing context name. The given value is
used to name the nested browsing context. When the browsing context is created, if the
attribute is present, the browsing context name must be set to the value of this attribute;
otherwise, the browsing context name must be set to the empty string.

Whenever the name attribute is set, the nested browsing context's name must be changed
to the new value. If the attribute is removed, the browsing context name must be set to the
empty string.

When content loads in an iframe, after any load events are fired within the content itself,
the user agent must fire a simple event called load at the iframe element. When content
fails to load (e.g. due to a network error), then the user agent must fire a simple event
called error at the element instead.

When there is an active parser in the iframe, and when anything in the iframe is delaying
the load event of the iframe's browsing context's active document, the iframe must delay
the load event of its document.

If, during the handling of the load event, the browsing context in the iframe is again
navigated, that will further delay the load event.

The sandbox attribute, when specified, enables a set of extra restrictions on any content
hosted by the iframe. Its value must be an unordered set of unique space-separated
tokens. The allowed values are allow-same-origin, allow-forms, and allow-scripts.
When the attribute is set, the content is treated as being from a unique origin, forms and
scripts are disabled, links are prevented from targeting other browsing contexts, and
plugins are disabled. The allow-same-origin token allows the content to be treated as
being from the same origin instead of forcing it into a unique origin, and the allow-forms
and allow-scripts tokens re-enable forms and scripts respectively (though scripts are still
prevented from creating popups).

While the sandbox attribute is specified, the iframe element's nested browsing context,
and all the browsing contexts nested within it (either directly or indirectly through other
nested browsing contexts) must have the following flags set:

The sandboxed navigation browsing context flag
This flag prevents content from navigating browsing contexts other than the
sandboxed browsing context itself (or browsing contexts further nested inside it).

This flag also prevents content from creating new auxiliary browsing contexts, e.g.
using the target attribute or the window.open() method.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 277 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 277 from 931

The sandboxed plugins browsing context flag
This flag prevents content from instantiating plugins, whether using the embed
element, the object element, the applet element, or through navigation of a nested
browsing context.

The sandboxed origin browsing context flag, unless the sandbox attribute's value,
when split on spaces, is found to have the allow-same-origin keyword set

This flag forces content into a unique origin for the purposes of the same-origin
policy.

This flag also prevents script from reading the document.cookie DOM attribute.

The allow-same-origin attribute is intended for two cases.

First, it can be used to allow content from the same site to be sandboxed to
disable scripting, while still allowing access to the DOM of the sandboxed
content.

Second, it can be used to embed content from a third-party site, sandboxed
to prevent that site from opening popup windows, etc, without preventing the
embedded page from communicating back to its originating site, using the
database APIs to store data, etc.

This flag only takes effect when the nested browsing context of the iframe is
navigated.

The sandboxed forms browsing context flag, unless the sandbox attribute's value,
when split on spaces, is found to have the allow-forms keyword set

This flag blocks form submission.

The sandboxed scripts browsing context flag, unless the sandbox attribute's value,
when split on spaces, is found to have the allow-scripts keyword set

This flag blocks script execution.

If the sandbox attribute is dynamically added after the iframe has loaded a
page, scripts already compiled by that page (whether in script elements, or in
event handler attributes, or elsewhere) will continue to run. Only new scripts
will be prevented from executing by this flag.

These flags must not be set unless the conditions listed above define them as being set.

In this example, some completely-unknown, potentially hostile, user-provided HTML
content is embedded in a page. Because it is sandboxed, it is treated by the user agent as
being from a unique origin, despite the content being served from the same site. Thus it is
affected by all the normal cross-site restrictions. In addition, the embedded page has
scripting disabled, plugins disabled, forms disabled, and it cannot navigate any frames or
windows other than itself (or any frames or windows it itself embeds).

<p>We're not scared of you! Here is your content, unedited:</p>
<iframe sandbox src="getusercontent.cgi?id=12193"></iframe>

Note that cookies are still sent to the server in the getusercontent.cgi request, though
they are not visible in the document.cookie DOM attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 278 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 278 from 931

In this example, a gadget from another site is embedded. The gadget has scripting and
forms enabled, and the origin sandbox restrictions are lifted, allowing the gadget to
communicate with its originating server. The sandbox is still useful, however, as it disables
plugins and popups, thus reducing the risk of the user being exposed to malware and
other annoyances.

<iframe sandbox="allow-same-origin allow-forms allow-scripts"
 src="http://maps.example.com/embedded.html"></iframe>

The seamless attribute is a boolean attribute. When specified, it indicates that the iframe
element's browsing context is to be rendered in a manner that makes it appear to be part
of the containing document (seamlessly included in the parent document). Specifically,
when the attribute is set on an element and while the browsing context's active document
has the same origin as the iframe element's document, or the browsing context's active
document's address has the same origin as the iframe element's document, the following
requirements apply:

• The user agent must set the seamless browsing context flag to true for that
browsing context. This will cause links to open in the parent browsing context.

• In a CSS-supporting user agent: the user agent must add all the style sheets that
apply to the iframe element to the cascade of the active document of the iframe
element's nested browsing context, at the appropriate cascade levels, before any
style sheets specified by the document itself.

• In a CSS-supporting user agent: the user agent must, for the purpose of CSS
property inheritance only, treat the root element of the active document of the
iframe element's nested browsing context as being a child of the iframe element.
(Thus inherited properties on the root element of the document in the iframe will
inherit the computed values of those properties on the iframe element instead of
taking their initial values.)

• In visual media, in a CSS-supporting user agent: the user agent should set the
intrinsic width of the iframe to the width that the element would have if it was a non-
replaced block-level element with 'width: auto'.

• In visual media, in a CSS-supporting user agent: the user agent should set the
intrinsic height of the iframe to the height of the bounding box around the content
rendered in the iframe at its current width (as given in the previous bullet point), as
it would be if the scrolling position was such that the top of the viewport for the
content rendered in the iframe was aligned with the origin of that content's canvas.

• In visual media, in a CSS-supporting user agent: the user agent must force the
height of the initial containing block of the active document of the nested browsing
context of the iframe to zero.

This is intended to get around the otherwise circular dependency of
percentage dimensions that depend on the height of the containing block,
thus affecting the height of the document's bounding box, thus affecting the
height of the viewport, thus affecting the size of the initial containing block.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 279 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 279 from 931

• In speech media, the user agent should render the nested browsing context without
announcing that it is a separate document.

• User agents should, in general, act as if the active document of the iframe's nested
browsing context was part of the document that the iframe is in.

For example if the user agent supports listing all the links in a document, links
in "seamlessly" nested documents would be included in that list without being
significantly distinguished from links in the document itself.

If the attribute is not specified, or if the origin conditions listed above are not met, then the
user agent should render the nested browsing context in a manner that is clearly
distinguishable as a separate browsing context, and the seamless browsing context flag
must be set to false for that browsing context.

It is important that user agents recheck the above conditions whenever the active
document of the nested browsing context of the iframe changes, such that the
seamless browsing context flag gets unset if the nested browsing context is
navigated to another origin.

The attribute can be set or removed dynamically, with the rendering updating in
tandem.

In this example, the site's navigation is embedded using a client-side include using an
iframe. Any links in the iframe will, in new user agents, be automatically opened in the
iframe's parent browsing context; for legacy user agents, the site could also include a
base element with a target attribute with the value _parent. Similarly, in new user agents
the styles of the parent page will be automatically applied to the contents of the frame, but
to support legacy user agents authors might wish to include the styles explicitly.

<nav><iframe seamless src="nav.include.html"></iframe></nav>

The iframe element supports dimension attributes for cases where the embedded content
has specific dimensions (e.g. ad units have well-defined dimensions).

An iframe element never has fallback content, as it will always create a nested browsing
context, regardless of whether the specified initial contents are successfully used.

Descendants of iframe elements represent nothing. (In legacy user agents that do not
support iframe elements, the contents would be parsed as markup that could act as
fallback content.)

When used in HTML documents, the allowed content model of iframe elements is text,
except that invoking the HTML fragment parsing algorithm with the iframe element as the
context element and the text contents as the input must result in a list of nodes that are all
phrasing content, with no parse errors having occurred, with no script elements being
anywhere in the list or as descendants of elements in the list, and with all the elements in
the list (including their descendants) being themselves conforming.

The iframe element must be empty in XML documents.

The HTML parser treats markup inside iframe elements as text.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 280 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 280 from 931

The DOM attributes src, name, sandbox, and seamless must reflect the respective content
attributes of the same name.

The contentDocument DOM attribute must return the Document object of the active
document of the iframe element's nested browsing context.

The contentWindow DOM attribute must return the WindowProxy object of the iframe
element's nested browsing context.

4.8.4 The embed element

Status: Working draft

Categories
Flow content.
Phrasing content.
Embedded content.
Interactive content.

Contexts in which this element may be used:
Where embedded content is expected.

Content model:
Empty.

Content attributes:
Global attributes
src
type
width
height
Any other attribute that has no namespace (see prose).

DOM interface:
interface HTMLEmbedElement : HTMLElement {

 attribute DOMString src;

 attribute DOMString type;

 attribute DOMString width;

 attribute DOMString height;

};

Depending on the type of content instantiated by the embed element, the node may
also support other interfaces.

The embed element represents an integration point for an external (typically non-HTML)
application or interactive content.

The src attribute gives the address of the resource being embedded. The attribute, if
present, must contain a valid URL.

The type attribute, if present, gives the MIME type of the plugin to instantiate. The value
must be a valid MIME type, optionally with parameters. If both the type attribute and the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 281 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 281 from 931

src attribute are present, then the type attribute must specify the same type as the explicit
Content-Type metadata of the resource given by the src attribute.

When the element is created with neither a src attribute nor a type attribute, and when
attributes are removed such that neither attribute is present on the element anymore, and
when the element has a media element ancestor, and when the element has an ancestor
object element that is not showing its fallback content, any plugins instantiated for the
element must be removed, and the embed element represents nothing.

When the sandboxed plugins browsing context flag is set on the browsing context for
which the embed element's document is the active document, then the user agent must
render the embed element in a manner that conveys that the plugin was disabled. The user
agent may offer the user the option to override the sandbox and instantiate the plugin
anyway; if the user invokes such an option, the user agent must act as if the sandboxed
plugins browsing context flag was not set for the purposes of this element.

Plugins are disabled in sandboxed browsing contexts because they might not
honor the restrictions imposed by the sandbox (e.g. they might allow scripting even
when scripting in the sandbox is disabled). User agents should convey the danger
of overriding the sandbox to the user if an option to do so is provided.

When the element is created with a src attribute, and whenever the src attribute is
subsequently set, and whenever the type attribute is set or removed while the element
has a src attribute, if the element is not in a sandboxed browsing context, not a
descendant of a media element, and not a descendant of an object element that is not
showing its fallback content, the user agent must resolve the value of the attribute, relative
to the element, and if that is successful, should fetch the resulting absolute URL. The task
that is queued by the networking task source once the resource has been fetched must
find and instantiate an appropriate plugin based on the content's type, and hand that
plugin the content of the resource, replacing any previously instantiated plugin for the
element.

Fetching the resource must delay the load event of the element's document.

The type of the content being embedded is defined as follows:

1. If the element has a type attribute, and that attribute's value is a type that a plugin
supports, then the value of the type attribute is the content's type.

2. Otherwise, if the <path> component of the URL of the specified resource (after any
redirects) matches a pattern that a plugin supports, then the content's type is the
type that that plugin can handle.

For example, a plugin might say that it can handle resources with <path>
components that end with the four character string ".swf".

3. Otherwise, if the specified resource has explicit Content-Type metadata, then that
is the content's type.

4. Otherwise, the content has no type and there can be no appropriate plugin for it.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 282 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 282 from 931

Whether the resource is fetched successfully or not (e.g. whether the response code was
a 2xx code or equivalent) must be ignored when determining the resource's type and
when handing the resource to the plugin.

This allows servers to return data for plugins even with error responses (e.g. HTTP
500 Internal Server Error codes can still contain plugin data).

When the element is created with a type attribute and no src attribute, and whenever the
type attribute is subsequently set, so long as no src attribute is set, and whenever the src
attribute is removed when the element has a type attribute, if the element is not in a
sandboxed browsing context, user agents should find and instantiate an appropriate
plugin based on the value of the type attribute.

Any (namespace-less) attribute may be specified on the embed element, so long as its
name is XML-compatible and contains no characters in the range U+0041 .. U+005A
(LATIN CAPITAL LETTER A LATIN CAPITAL LETTER Z).

All attributes in HTML documents get lowercased automatically, so the restriction
on uppercase letters doesn't affect such documents.

The user agent should pass the names and values of all the attributes of the embed
element that have no namespace to the plugin used, when it is instantiated.

If the plugin instantiated for the embed element supports a scriptable interface, the
HTMLEmbedElement object representing the element should expose that interface while the
element is instantiated.

The embed element has no fallback content. If the user agent can't find a suitable plugin,
then the user agent must use a default plugin. (This default could be as simple as saying
"Unsupported Format".)

The embed element supports dimension attributes.

The DOM attributes src and type each must reflect the respective content attributes of the
same name.

4.8.5 The object element

Status: Working draft

Categories
Flow content.
Phrasing content.
Embedded content.
If the element has a usemap attribute: Interactive content.
Listed, submittable, form-associated element.

Contexts in which this element may be used:
Where embedded content is expected.

Content model:
Zero or more param elements, then, transparent.

Content attributes:
Global attributes
data

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 283 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 283 from 931

type
name
usemap
form
width
height

DOM interface:
interface HTMLObjectElement : HTMLElement {

 attribute DOMString data;

 attribute DOMString type;

 attribute DOMString name;

 attribute DOMString useMap;

 readonly attribute HTMLFormElement form;

 attribute DOMString width;

 attribute DOMString height;

 readonly attribute Document contentDocument;

 readonly attribute WindowProxy contentWindow;

};

Depending on the type of content instantiated by the object element, the node also
supports other interfaces.

The object element can represent an external resource, which, depending on the type of
the resource, will either be treated as an image, as a nested browsing context, or as an
external resource to be processed by a plugin.

The data attribute, if present, specifies the address of the resource. If present, the
attribute must be a valid URL.

The type attribute, if present, specifies the type of the resource. If present, the attribute
must be a valid MIME type, optionally with parameters.

One or both of the data and type attributes must be present.

The name attribute, if present, must be a valid browsing context name. The given value is
used to name the nested browsing context, if applicable.

When the element is created, and subsequently whenever the classid attribute changes
or is removed, or, if the classid attribute is not present, whenever the data attribute
changes or is removed, or, if neither classid attribute nor the data attribute are present,
whenever the type attribute changes or is removed, the user agent must run the following
steps to determine what the object element represents:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 284 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 284 from 931

1. If the element has an ancestor media element, or has an ancestor object element
that is not showing its fallback content, then jump to the last step in the overall set
of steps (fallback).

2. If the classid attribute is present, and has a value that isn't the empty string, then:
if the user agent can find a plugin suitable according to the value of the classid
attribute, and plugins aren't being sandboxed, then that plugin should be used, and
the value of the data attribute, if any, should be passed to the plugin. If no suitable
plugin can be found, or if the plugin reports an error, jump to the last step in the
overall set of steps (fallback).

3. If the data attribute is present, then:

1. If the type attribute is present and its value is not a type that the user agent
supports, and is not a type that the user agent can find a plugin for, then the
user agent may jump to the last step in the overall set of steps (fallback)
without fetching the content to examine its real type.

2. Resolve the URL specified by the data attribute, relative to the element.

If that is successful, fetch the resulting absolute URL.

Fetching the resource must delay the load event of the element's document
until the task that is queued by the networking task source once the resource
has been fetched (defined next) has been run.

3. If the resource is not yet available (e.g. because the resource was not
available in the cache, so that loading the resource required making a
request over the network), then jump to the last step in the overall set of
steps (fallback). The task that is queued by the networking task source once
the resource is available must restart this algorithm from this step.
Resources can load incrementally; user agents may opt to consider a
resource "available" whenever enough data has been obtained to begin
processing the resource.

4. If the load failed (e.g. the URL could not be resolved, there was an HTTP
404 error, there was a DNS error), fire a simple event called error at the
element, then jump to the last step in the overall set of steps (fallback).

5. Determine the resource type, as follows:

1. Let the resource type be unknown.

2. If the resource has associated Content-Type metadata, then let the
resource type be the type specified in the resource's Content-Type
metadata.

3. If the resource type is unknown or "application/octet-stream" and
there is a type attribute present on the object element, then change
the resource type to instead be the type specified in that type
attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 285 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 285 from 931

Otherwise, if the resource type is "application/octet-stream" but
there is no type attribute on the object element, then change the
resource type to be unknown, so that the sniffing rules in the next
step are invoked.

4. If the resource type is still unknown, then change the resource type to
instead be the sniffed type of the resource.

6. Handle the content as given by the first of the following cases that matches:

If the resource type can be handled by a plugin and plugins aren't
being sandboxed

The user agent should use that plugin and pass the content of the resource to that
plugin. If the plugin reports an error, then jump to the last step in the overall set of
steps (fallback).

If the resource type is an XML MIME type, or if the resource type does
not start with "image/"

The object element must be associated with a nested browsing context, if it does
not already have one. The element's nested browsing context must then be
navigated to the given resource, with replacement enabled, and with the object
element's document's browsing context as the source browsing context. (The data
attribute of the object element doesn't get updated if the browsing context gets
further navigated to other locations.)

The object element represents the nested browsing context.

If the name attribute is present, the browsing context name must be set to the value
of this attribute; otherwise, the browsing context name must be set to the empty
string.

It's possible that the navigation of the browsing context will actually obtain
the resource from a different application cache. Even if the resource is then
found to have a different type, it is still used as part of a nested browsing
context; this algorithm doesn't restart with the new resource.

If the resource type starts with "image/", and support for images has
not been disabled

Apply the image sniffing rules to determine the type of the image.

The object element represents the specified image. The image is not a nested
browsing context.

If the image cannot be rendered, e.g. because it is malformed or in an unsupported
format, jump to the last step in the overall set of steps (fallback).

Otherwise
The given resource type is not supported. Jump to the last step in the overall set of
steps (fallback).

7. The element's contents are not part of what the object element represents.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 286 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 286 from 931

8. Once the resource is completely loaded, queue a task to fire a simple event
called load at the element.

The task source for this task is the DOM manipulation task source.

4. If the data attribute is absent but the type attribute is present, plugins aren't being
sandboxed, and the user agent can find a plugin suitable according to the value of
the type attribute, then that plugin should be used. If no suitable plugin can be
found, or if the plugin reports an error, jump to the next step (fallback).

5. (Fallback.) The object element represents the element's children, ignoring any
leading param element children. This is the element's fallback content.

When the algorithm above instantiates a plugin, the user agent should pass the names
and values of all the attributes on the element, and all the names and values of
parameters given by param elements that are children of the object element, in tree order,
to the plugin used. If the plugin supports a scriptable interface, the HTMLObjectElement
object representing the element should expose that interface. The object element
represents the plugin. The plugin is not a nested browsing context.

If the sandboxed plugins browsing context flag is set on the browsing context for which the
object element's document is the active document, then the steps above must always act
as if they had failed to find a plugin, even if one would otherwise have been used.

Due to the algorithm above, the contents of object elements act as fallback content, used
only when referenced resources can't be shown (e.g. because it returned a 404 error).
This allows multiple object elements to be nested inside each other, targeting multiple
user agents with different capabilities, with the user agent picking the first one it supports.

Whenever the name attribute is set, if the object element has a nested browsing context,
its name must be changed to the new value. If the attribute is removed, if the object
element has a browsing context, the browsing context name must be set to the empty
string.

The usemap attribute, if present while the object element represents an image, can
indicate that the object has an associated image map. The attribute must be ignored if the
object element doesn't represent an image.

The form attribute is used to explicitly associate the object element with its form owner.

Constraint validation: object elements are always barred from constraint validation.

The object element supports dimension attributes.

The DOM attributes data, type, name, and useMap each must reflect the respective content
attributes of the same name.

The contentDocument DOM attribute must return the Document object of the active
document of the object element's nested browsing context, if it has one; otherwise, it
must return null.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 287 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 287 from 931

The contentWindow DOM attribute must return the WindowProxy object of the object
element's nested browsing context, if it has one; otherwise, it must return null.

In the following example, a Java applet is embedded in a page using the object element.
(Generally speaking, it is better to avoid using applets like these and instead use native
JavaScript and HTML to provide the functionality, since that way the application will work
on all Web browsers without requiring a third-party plugin. Many devices, especially
embedded devices, do not support third-party technologies like Java.)

<figure>
 <object type="application/x-java-applet">
 <param name="code" value="MyJavaClass">
 <p>You do not have Java available, or it is disabled.</p>
 </object>
 <legend>My Java Clock</legend>
</figure>

In this example, an HTML page is embedded in another using the object element.

<figure>
 <object data="clock.html"></object>
 <legend>My HTML Clock</legend>
</figure>

4.8.6 The param element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
As a child of an object element, before any flow content.

Content model:
Empty.

Content attributes:
Global attributes
name
value

DOM interface:
interface HTMLParamElement : HTMLElement {

 attribute DOMString name;

 attribute DOMString value;

};

The param element defines parameters for plugins invoked by object elements. It does not
represent anything on its own.

The name attribute gives the name of the parameter.

The value attribute gives the value of the parameter.

Both attributes must be present. They may have any value.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 288 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 288 from 931

If both attributes are present, and if the parent element of the param is an object element,
then the element defines a parameter with the given name/value pair.

The DOM attributes name and value must both reflect the respective content attributes of
the same name.

4.8.7 The video element

Status: Last call for comments. ISSUE-7 (video-codecs), ISSUE-9 (video-synchronization)
and ISSUE-10 (video-smil) block progress to Last Call

Categories
Flow content.
Phrasing content.
Embedded content.
If the element has a controls attribute: Interactive content.

Contexts in which this element may be used:
Where embedded content is expected.

Content model:
If the element has a src attribute: transparent, but with no media element
descendants.
If the element does not have a src attribute: one or more source elements, then,
transparent, but with no media element descendants.

Content attributes:
Global attributes
src
poster
autobuffer
autoplay
loop
controls
width
height

DOM interface:
interface HTMLVideoElement : HTMLMediaElement {

 attribute DOMString width;

 attribute DOMString height;

 readonly attribute unsigned long videoWidth;

 readonly attribute unsigned long videoHeight;

 attribute DOMString poster;

};

A video element represents a video or movie.

Content may be provided inside the video element. User agents should not show this
content to the user; it is intended for older Web browsers which do not support video, so
that legacy video plugins can be tried, or to show text to the users of these older browsers
informing them of how to access the video contents.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 289 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 289 from 931

In particular, this content is not fallback content intended to address accessibility
concerns. To make video content accessible to the blind, deaf, and those with other
physical or cognitive disabilities, authors are expected to provide alternative media
streams and/or to embed accessibility aids (such as caption or subtitle tracks) into
their media streams.

The video element is a media element whose media data is ostensibly video data,
possibly with associated audio data.

The src, autobuffer, autoplay, loop, and controls attributes are the attributes common
to all media elements.

The poster attribute gives the address of an image file that the user agent can show while
no video data is available. The attribute, if present, must contain a valid URL. If the
specified resource is to be used, then, when the element is created or when the poster
attribute is set, its value must be resolved relative to the element, and if that is successful,
the resulting absolute URL must be fetched; this must delay the load event of the
element's document. The poster frame is then the image obtained from that resource, if
any.

The image given by the poster attribute, the poster frame, is intended to be a
representative frame of the video (typically one of the first non-blank frames) that
gives the user an idea of what the video is like.

The poster DOM attribute must reflect the poster content attribute.

When no video data is available (the element's readyState attribute is either
HAVE_NOTHING, or HAVE_METADATA but no video data has yet been obtained at all), the video
element represents either the poster frame, or nothing.

When a video element is paused and the current playback position is the first frame of
video, the element represents either the frame of video corresponding to the current
playback position or the poster frame, at the discretion of the user agent.

Notwithstanding the above, the poster frame should be preferred over nothing, but the
poster frame should not be shown again after a frame of video has been shown.

When a video element is paused at any other position, the element represents the frame
of video corresponding to the current playback position, or, if that is not yet available (e.g.
because the video is seeking or buffering), the last frame of the video to have been
rendered.

When a video element is potentially playing, it represents the frame of video at the
continuously increasing "current" position. When the current playback position changes
such that the last frame rendered is no longer the frame corresponding to the current
playback position in the video, the new frame must be rendered. Similarly, any audio
associated with the video must, if played, be played synchronized with the current
playback position, at the specified volume with the specified mute state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 290 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 290 from 931

When a video element is neither potentially playing nor paused (e.g. when seeking or
stalled), the element represents the last frame of the video to have been rendered.

Which frame in a video stream corresponds to a particular playback position is
defined by the video stream's format.

In addition to the above, the user agent may provide messages to the user (such as
"buffering", "no video loaded", "error", or more detailed information) by overlaying text or
icons on the video or other areas of the element's playback area, or in another appropriate
manner.

User agents that cannot render the video may instead make the element represent a link
to an external video playback utility or to the video data itself.

video . videoWidth
video . videoHeight

These attributes return the intrinsic dimensions of the video, or zero if the
dimensions are not known.

The intrinsic width and intrinsic height of the media resource are the dimensions of the
resource in CSS pixels after taking into account the resource's dimensions, aspect ratio,
clean aperture, resolution, and so forth, as defined for the format used by the resource.

The videoWidth DOM attribute must return the intrinsic width of the video in CSS pixels.
The videoHeight DOM attribute must return the intrinsic height of the video in CSS pixels.
If the element's readyState attribute is HAVE_NOTHING, then the attributes must return 0.

The video element supports dimension attributes.

Video content should be rendered inside the element's playback area such that the video
content is shown centered in the playback area at the largest possible size that fits
completely within it, with the video content's aspect ratio being preserved. Thus, if the
aspect ratio of the playback area does not match the aspect ratio of the video, the video
will be shown letterboxed or pillarboxed. Areas of the element's playback area that do not
contain the video represent nothing.

The intrinsic width of a video element's playback area is the intrinsic width of the video
resource, if that is available; otherwise it is the intrinsic width of the poster frame, if that is
available; otherwise it is 300 CSS pixels.

The intrinsic height of a video element's playback area is the intrinsic height of the video
resource, if that is available; otherwise it is the intrinsic height of the poster frame, if that is
available; otherwise it is 150 CSS pixels.

User agents should provide controls to enable or disable the display of closed captions
associated with the video stream, though such features should, again, not interfere with
the page's normal rendering.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 291 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 291 from 931

User agents may allow users to view the video content in manners more suitable to the
user (e.g. full-screen or in an independent resizable window). As for the other user
interface features, controls to enable this should not interfere with the page's normal
rendering unless the user agent is exposing a user interface. In such an independent
context, however, user agents may make full user interfaces visible, with, e.g., play,
pause, seeking, and volume controls, even if the controls attribute is absent.

User agents may allow video playback to affect system features that could interfere with
the user's experience; for example, user agents could disable screensavers while video
playback is in progress.

User agents should not provide a public API to cause videos to be shown full-
screen. A script, combined with a carefully crafted video file, could trick the user
into thinking a system-modal dialog had been shown, and prompt the user for a
password. There is also the danger of "mere" annoyance, with pages launching full-
screen videos when links are clicked or pages navigated. Instead, user-agent
specific interface features may be provided to easily allow the user to obtain a full-
screen playback mode.

4.8.8 The audio element

Status: Last call for comments

Categories
Flow content.
Phrasing content.
Embedded content.
If the element has a controls attribute: Interactive content.

Contexts in which this element may be used:
Where embedded content is expected.

Content model:
If the element has a src attribute: transparent, but with no media element
descendants.
If the element does not have a src attribute: one or more source elements, then,
transparent, but with no media element descendants.

Content attributes:
Global attributes
src
autobuffer
autoplay
loop
controls

DOM interface:
[NamedConstructor=Audio(),

 NamedConstructor=Audio(in DOMString src)]

interface HTMLAudioElement : HTMLMediaElement {};

An audio element represents a sound or audio stream.

Content may be provided inside the audio element. User agents should not show this
content to the user; it is intended for older Web browsers which do not support audio, so

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 292 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 292 from 931

that legacy audio plugins can be tried, or to show text to the users of these older browsers
informing them of how to access the audio contents.

In particular, this content is not fallback content intended to address accessibility
concerns. To make audio content accessible to the deaf or to those with other
physical or cognitive disabilities, authors are expected to provide alternative media
streams and/or to embed accessibility aids (such as transcriptions) into their media
streams.

The audio element is a media element whose media data is ostensibly audio data.

The src, autobuffer, autoplay, loop, and controls attributes are the attributes common
to all media elements.

When an audio element is potentially playing, it must have its audio data played
synchronized with the current playback position, at the specified volume with the specified
mute state.

When an audio element is not potentially playing, audio must not play for the element.

audio = new Audio([url])
Returns a new audio element, with the src attribute set to the value passed in the
argument, if applicable.

Two constructors are provided for creating HTMLAudioElement objects (in addition to the
factory methods from DOM Core such as createElement()): Audio() and Audio(src).
When invoked as constructors, these must return a new HTMLAudioElement object (a new
audio element). The element must have its autobuffer attribute set to the literal value
"autobuffer". If the src argument is present, the object created must have its src content
attribute set to the provided value, and the user agent must invoke the object's resource
selection algorithm before returning.

4.8.9 The source element

Status: Last call for comments

Categories
None.

Contexts in which this element may be used:
As a child of a media element, before any flow content.

Content model:
Empty.

Content attributes:
Global attributes
src
type
media

DOM interface:
interface HTMLSourceElement : HTMLElement {

 attribute DOMString src;

 attribute DOMString type;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 293 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 293 from 931

 attribute DOMString media;

};

The source element allows authors to specify multiple media resources for media
elements. It does not represent anything on its own.

The src attribute gives the address of the media resource. The value must be a valid URL.
This attribute must be present.

The type attribute gives the type of the media resource, to help the user agent determine
if it can play this media resource before fetching it. If specified, its value must be a valid
MIME type. The codecs parameter may be specified and might be necessary to specify
exactly how the resource is encoded. [RFC4281]

The following list shows some examples of how to use the codecs= MIME parameter in the
type attribute.

H.264 Simple baseline profile video (main and extended video compatible) level 3
and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E,
mp4a.40.2"'>

H.264 Extended profile video (baseline-compatible) level 3 and Low-Complexity
AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.58A01E,
mp4a.40.2"'>

H.264 Main profile video level 3 and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="avc1.4D401E,
mp4a.40.2"'>

H.264 'High' profile video (incompatible with main, baseline, or extended profiles)
level 3 and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.64001E,
mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and Low-Complexity AAC audio in MP4
container

<source src='video.mp4' type='video/mp4; codecs="mp4v.20.8,
mp4a.40.2"'>

MPEG-4 Advanced Simple Profile Level 0 video and Low-Complexity AAC audio in
MP4 container

<source src='video.mp4' type='video/mp4; codecs="mp4v.20.240,
mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and AMR audio in 3GPP container
<source src='video.3gp' type='video/3gpp; codecs="mp4v.20.8,
samr"'>

Theora video and Vorbis audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'>

Theora video and Speex audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="theora, speex"'>

Vorbis audio alone in Ogg container
<source src='audio.ogg' type='audio/ogg; codecs=vorbis'>

Speex audio alone in Ogg container
<source src='audio.spx' type='audio/ogg; codecs=speex'>

FLAC audio alone in Ogg container
<source src='audio.oga' type='audio/ogg; codecs=flac'>

Dirac video and Vorbis audio in Ogg container

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 294 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 294 from 931

<source src='video.ogv' type='video/ogg; codecs="dirac, vorbis"'>

Theora video and Vorbis audio in Matroska container
<source src='video.mkv' type='video/x-matroska; codecs="theora,
vorbis"'>

The media attribute gives the intended media type of the media resource, to help the user
agent determine if this media resource is useful to the user before fetching it. Its value
must be a valid media query. [MQ]

If a source element is inserted as a child of a media element that is in a Document and
whose networkState has the value NETWORK_EMPTY, the user agent must invoke the media
element's resource selection algorithm.

The DOM attributes src, type, and media must reflect the respective content attributes of
the same name.

4.8.10 Media elements

Status: Last call for comments

Media elements implement the following interface:

interface HTMLMediaElement : HTMLElement {

 // error state
 readonly attribute MediaError error;

 // network state
 attribute DOMString src;
 readonly attribute DOMString currentSrc;
 const unsigned short NETWORK_EMPTY = 0;
 const unsigned short NETWORK_IDLE = 1;
 const unsigned short NETWORK_LOADING = 2;
 const unsigned short NETWORK_LOADED = 3;
 const unsigned short NETWORK_NO_SOURCE = 4;
 readonly attribute unsigned short networkState;
 attribute boolean autobuffer;
 readonly attribute TimeRanges buffered;
 void load();
 DOMString canPlayType(in DOMString type);

 // ready state
 const unsigned short HAVE_NOTHING = 0;
 const unsigned short HAVE_METADATA = 1;
 const unsigned short HAVE_CURRENT_DATA = 2;
 const unsigned short HAVE_FUTURE_DATA = 3;
 const unsigned short HAVE_ENOUGH_DATA = 4;
 readonly attribute unsigned short readyState;
 readonly attribute boolean seeking;

 // playback state
 attribute float currentTime;
 readonly attribute float startTime;
 readonly attribute float duration;
 readonly attribute boolean paused;
 attribute float defaultPlaybackRate;
 attribute float playbackRate;
 readonly attribute TimeRanges played;
 readonly attribute TimeRanges seekable;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 295 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 295 from 931

 readonly attribute boolean ended;
 attribute boolean autoplay;
 attribute boolean loop;
 void play();
 void pause();

 // controls
 attribute boolean controls;
 attribute float volume;
 attribute boolean muted;
};

The media element attributes, src, autobuffer, autoplay, loop, and controls, apply to
all media elements. They are defined in this section.

Media elements are used to present audio data, or video and audio data, to the user. This
is referred to as media data in this section, since this section applies equally to media
elements for audio or for video. The term media resource is used to refer to the complete
set of media data, e.g. the complete video file, or complete audio file.

Unless otherwise specified, the task source for all the tasks queued in this section and its
subsections is the media element event task source.

4.8.10.1 Error codes
media . error

Returns a MediaError object representing the current error state of the element.
Returns null if there is no error.

All media elements have an associated error status, which records the last error the
element encountered since its resource selection algorithm was last invoked. The error
attribute, on getting, must return the MediaError object created for this last error, or null if
there has not been an error.

interface MediaError {
 const unsigned short MEDIA_ERR_ABORTED = 1;
 const unsigned short MEDIA_ERR_NETWORK = 2;
 const unsigned short MEDIA_ERR_DECODE = 3;
 const unsigned short MEDIA_ERR_SRC_NOT_SUPPORTED = 4;
 readonly attribute unsigned short code;
};

media . error . code
Returns the current error's error code, from the list below.

The code attribute of a MediaError object must return the code for the error, which must be
one of the following:

MEDIA_ERR_ABORTED (numeric value 1)
The fetching process for the media resource was aborted by the user agent at the
user's request.

MEDIA_ERR_NETWORK (numeric value 2)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 296 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 296 from 931

A network error of some description caused the user agent to stop fetching the
media resource, after the resource was established to be usable.

MEDIA_ERR_DECODE (numeric value 3)
An error of some description occurred while decoding the media resource, after the
resource was established to be usable.

MEDIA_ERR_SRC_NOT_SUPPORTED (numeric value 4)
The media resource indicated by the src attribute was not suitable.

4.8.10.2 Location of the media resource

The src content attribute on media elements gives the address of the media resource
(video, audio) to show. The attribute, if present, must contain a valid URL.

If a src attribute of a media element that is in a Document and whose networkState has the
value NETWORK_EMPTY is set or changed, the user agent must invoke the media element's
resource selection algorithm.

The src DOM attribute on media elements must reflect the respective content attribute of
the same name.

media . currentSrc
Returns the address of the current media resource.
Returns the empty string when there is no media resource.

The currentSrc DOM attribute is initially the empty string. Its value is changed by the
resource selection algorithm defined below.

There are two ways to specify a media resource, the src attribute, or source
elements. The attribute overrides the elements.

4.8.10.3 MIME types

A media resource can be described in terms of its type, specifically a MIME type,
optionally with a codecs parameter. [RFC4281].

Types are usually somewhat incomplete descriptions; for example "video/mpeg" doesn't
say anything except what the container type is, and even a type like "video/mp4;
codecs="avc1.42E01E, mp4a.40.2"" doesn't include information like the actual bitrate (only
the maximum bitrate). Thus, given a type, a user agent can often only know whether it
might be able to play media of that type (with varying levels of confidence), or whether it
definitely cannot play media of that type.

A type that the user agent knows it cannot render is one that describes a resource that
the user agent definitely does not support, for example because it doesn't recognize the
container type, or it doesn't support the listed codecs.

The MIME type "application/octet-stream" is never a type that the user agent knows it
cannot render. User agents must treat that type as equivalent to the lack of any explicit
Content-Type metadata when it is used to label a potential media resource.

media . canPlayType(type)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 297 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 297 from 931

Returns the empty string (a negative response), "maybe", or "probably" based on
how confident the user agent is that it can play media resources of the given type.

The canPlayType(type) method must return the empty string if type is a type that the user
agent knows it cannot render; it must return "probably" if the user agent is confident that
the type represents a media resource that it can render if used in with this audio or video
element; and it must return "maybe" otherwise. Implementors are encouraged to return
"maybe" unless the type can be confidently established as being supported or not.
Generally, a user agent should never return "probably" if the type doesn't have a codecs
parameter.

This script tests to see if the user agent supports a (fictional) new format to dynamically
decide whether to use a video element or a plugin:

<section id="video">
 <p>Download video</p>
</section>
<script>
 var videoSection = document.getElementById('video');
 var videoElement = document.createElement('video');
 var support = videoElement.canPlayType('video/x-new-fictional-
format;codecs="kittens,bunnies"');
 if (support != "probably" && "New Fictional Video Plug-in" in
navigator.plugins) {
 // not confident of browser support
 // but we have a plugin
 // so use plugin instead
 videoElement = document.createElement("embed");
 } else if (support == "") {
 // no support from browser and no plugin
 // do nothing
 videoElement = null;
 }
 if (videoElement) {
 while (videoSection.hasChildNodes())
 videoSection.removeChild(videoSection.firstChild);
 videoElement.setAttribute("src", "playing-cats.nfv");
 videoSection.appendChild(videoElement);
 }
</script>

The type attribute of the source element allows the user agent to avoid downloading
resources that use formats it cannot render.

4.8.10.4 Network states
media . networkState

Returns the current state of network activity for the element, from the codes in the
list below.

As media elements interact with the network, their current network activity is represented
by the networkState attribute. On getting, it must return the current network state of the
element, which must be one of the following values:

NETWORK_EMPTY (numeric value 0)
The element has not yet been initialized. All attributes are in their initial states.

NETWORK_IDLE (numeric value 1)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 298 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 298 from 931

The element's resource selection algorithm is active and has selected a resource,
but it is not actually using the network at this time.

NETWORK_LOADING (numeric value 2)
The user agent is actively trying to download data.

NETWORK_LOADED (numeric value 3)
The entire media resource has been obtained and is available to the user agent
locally. Network connectivity could be lost without affecting the media playback.

NETWORK_NO_SOURCE (numeric value 4)
The element's resource selection algorithm is active, but it has failed to find a
resource to use.

The resource selection algorithm defined below describes exactly when the networkState
attribute changes value and what events fire to indicate changes in this state.

Some resources, e.g. streaming Web radio, can never reach the NETWORK_LOADED
state.

4.8.10.5 Loading the media resource
media . load()

Causes the element to reset and start selecting and loading a new media resource
from scratch.

All media elements have an autoplaying flag, which must begin in the true state, and a
delaying-the-load-event flag, which must begin in the false state. While the delaying-the-
load-event flag is true, the element must delay the load event of its document.

When the load() method on a media element is invoked, the user agent must run the
following steps. Note that this algorithm might get aborted, e.g. if the load() method itself
is invoked again.

1. If the load() method for this element is already being invoked, then abort these
steps.

2. Abort any already-running instance of the resource selection algorithm for this
element.

3. If there are any tasks from the media element's media element event task source in
one of the task queues, then remove those tasks.

Basically, pending events and callbacks for the media element are discarded
when the media element starts loading a new resource.

4. If the media element's networkState is set to NETWORK_LOADING or NETWORK_IDLE, set
the error attribute to a new MediaError object whose code attribute is set to
MEDIA_ERR_ABORTED, fire a progress event called abort at the media element, in the
context of the fetching process that is in progress for the element, and fire a
progress event called loadend at the media element, in the context of the same
fetching process.

5. Set the error attribute to null and the autoplaying flag to true.

6. Set the playbackRate attribute to the value of the defaultPlaybackRate attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 299 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 299 from 931

7. If the media element's networkState is not set to NETWORK_EMPTY, then run these
substeps:

1. If a fetching process is in progress for the media element, the user agent
should stop it.

2. Set the networkState attribute to NETWORK_EMPTY.
3. If readyState is not set to HAVE_NOTHING, then set it to that state.
4. If the paused attribute is false, then set to true.
5. If seeking is true, set it to false.
6. Set the current playback position to 0.
7. Fire a simple event called emptied at the media element.

8. Invoke the media element's resource selection algorithm.

9. Playback of any previously playing media resource for this element stops.

The resource selection algorithm for a media element is as follows. This algorithm is
always invoked synchronously, but one of the first steps in the algorithm is to return and
continue running the remaining steps asynchronously, meaning that it runs in the
background with scripts and other tasks running in parallel.

1. Set the networkState to NETWORK_NO_SOURCE.

2. Asynchronously await a stable state, allowing the task that invoked this algorithm to
continue. The synchronous section consists of all the remaining steps of this
algorithm until the algorithm says the synchronous section has ended. (Steps in
synchronous sections are marked with �.)

3. � If the media element has a src attribute, then let mode be attribute.

� Otherwise, if the media element does not have a src attribute but has a source
element child, then let mode be children and let candidate be the first such source
element child in tree order.

� Otherwise the media element has neither a src attribute nor a source element
child: set the networkState to NETWORK_EMPTY, and abort these steps; the
synchronous section ends.

4. � Set the media element's delaying-the-load-event flag to true (this delays the load
event), and set its networkState to NETWORK_LOADING.

5. � Queue a task to fire a progress event called loadstart at the media element,
with no relevant fetching process.

6. If mode is attribute, then run these substeps:

1. � Let absolute URL be the absolute URL that would have resulted from
resolving the URL specified by the src attribute's value relative to the media
element when the src attribute was last changed.

2. End the synchronous section, continuing the remaining steps
asynchronously.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 300 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 300 from 931

3. If absolute URL was obtained successfully, run the resource fetch algorithm
with absolute URL. If that algorithm returns without aborting this one, then
the load failed.

4. Reaching this step indicates that the media resource failed to load or that the
given URL could not be resolved. Set the error attribute to a new
MediaError object whose code attribute is set to
MEDIA_ERR_SRC_NOT_SUPPORTED.

5. Set the element's networkState attribute to the NETWORK_NO_SOURCE
value.

6. Queue a task to fire a progress event called error at the media element, in
the context of the fetching process that was used to try to obtain the media
resource in the resource fetch algorithm.

7. Queue a task to fire a progress event called loadend at the media element,
in the context of the fetching process that was used to try to obtain the
media resource in the resource fetch algorithm.

8. Set the element's delaying-the-load-event flag to false. This stops delaying
the load event.

9. Abort these steps. Until the load() method is invoked, the element won't
attempt to load another resource.

Otherwise, the source elements will be used; run these substeps:

10. � Let pointer be a position defined by two adjacent nodes in the media
element's child list, treating the start of the list (before the first child in the list,
if any) and end of the list (after the last child in the list, if any) as nodes in
their own right. One node is the node before pointer, and the other node is
the node after pointer. Initially, let pointer be the position between the
candidate node and the next node, if there are any, or the end of the list, if it
is the last node.

As elements are inserted and removed into the media element, pointer must
be updated as follows:

If a new element is inserted between the two nodes that define pointer
Let pointer be the point between the node before pointer and the new node. In
other words, insertions at pointer go after pointer.

If the node before pointer is removed
Let pointer be the point between the node after pointer and the node before the
node after pointer. In other words, pointer doesn't move relative to the remaining
nodes.

If the node after pointer is removed
Let pointer be the point between the node before pointer and the node after the
node before pointer. Just as with the previous case, pointer doesn't move relative to
the remaining nodes.

Other changes don't affect pointer.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 301 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 301 from 931

11. � Process candidate: If candidate does not have a src attribute, then end
the synchronous section, and jump down to the failed step below.

12. � Let absolute URL be the absolute URL that would have resulted from
resolving the URL specified by candidate's src attribute's value relative to
the candidate when the src attribute was last changed.

13. � If absolute URL was not obtained successfully, then end the synchronous
section, and jump down to the failed step below.

14. � If candidate has a type attribute whose value, when parsed as a MIME
type (including any codecs described by the codec parameter), represents a
type that the user agent knows it cannot render, then end the synchronous
section, and jump down to the failed step below.

15. � If candidate has a media attribute whose value, when processed according
to the rules for media queries, does not match the current environment, then
end the synchronous section, and jump down to the failed step below. [MQ]

16. End the synchronous section, continuing the remaining steps
asynchronously.

17. Run the resource fetch algorithm with absolute URL. If that algorithm returns
without aborting this one, then the load failed.

18. Failed: Queue a task to fire a simple event called error at the candidate
element, in the context of the fetching process that was used to try to obtain
candidate's corresponding media resource in the resource fetch algorithm.

19. Asynchronously await a stable state. The synchronous section consists of all
the remaining steps of this algorithm until the algorithm says the
synchronous section has ended. (Steps in synchronous sections are marked
with �.)

20. � Find next candidate: Let candidate be null.

21. � Search loop: If the node after pointer is the end of the list, then jump to the
waiting step below.

22. � If the node after pointer is a source element, let candidate be that element.

23. � Advance pointer so that the node before pointer is now the node that was
after pointer, and the node after pointer is the node after the node that used
to be after pointer, if any.

24. � If candidate is null, jump back to the search loop step. Otherwise, jump
back to the process candidate step.

25. � Waiting: Set the element's networkState attribute to the
NETWORK_NO_SOURCE value.

26. � Set the element's delaying-the-load-event flag to false. This stops delaying
the load event.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 302 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 302 from 931

27. End the synchronous section, continuing the remaining steps
asynchronously.

28. Wait until the node after pointer is a node other than the end of the list. (This
step might wait forever.)

29. Asynchronously await a stable state. The synchronous section consists of all
the remaining steps of this algorithm until the algorithm says the
synchronous section has ended. (Steps in synchronous sections are marked
with �.)

30. � Set the element's delaying-the-load-event flag back to true (this delays the
load event again, in case it hasn't been fired yet).

31. � Set the networkState back to NETWORK_LOADING.

32. � Jump back to the find next candidate step above.

The resource fetch algorithm for a media element and a given absolute URL is as
follows:

1. Let the current media resource be the resource given by the absolute URL passed
to this algorithm. This is now the element's media resource.

2. Set the currentSrc attribute to the absolute URL of the current media resource.

3. Begin to fetch the current media resource.

Every 350ms (±200ms) or for every byte received, whichever is least frequent,
queue a task to fire a progress event called progress at the element, in the context
of the fetching process started by this instance of this algorithm.

If at any point the user agent has received no data for more than about three
seconds, then queue a task to fire a progress event called stalled at the element,
in the context of the fetching process started by this instance of this algorithm.

User agents may allow users to selectively block or slow media data downloads.
When a media element's download has been blocked altogether, the user agent
must act as if it was stalled (as opposed to acting as if the connection was closed).
The rate of the download may also be throttled automatically by the user agent, e.g.
to balance the download with other connections sharing the same bandwidth.

User agents may decide to not download more content at any time, e.g. after
buffering five minutes of a one hour media resource, while waiting for the user to
decide whether to play the resource or not, or while waiting for user input in an
interactive resource. When a media element's download has been suspended, the
user agent must set the networkState to NETWORK_IDLE and queue a task to fire a
progress event called suspend at the element, in the context of the fetching process
started by this instance of this algorithm. If and when downloading of the resource
resumes, the user agent must set the networkState to NETWORK_LOADING.

The autobuffer attribute provides a hint that the author expects that downloading
the entire resource optimistically will be worth it, even in the absence of the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 303 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 303 from 931

autoplay attribute. In the absence of either attribute, the user agent is likely to find
that waiting until the user starts playback before downloading any further content
leads to a more efficient use of the network resources.

When a user agent decides to completely stall a download, e.g. if it is waiting until
the user starts playback before downloading any further content, the element's
delaying-the-load-event flag must be set to false. This stops delaying the load
event.

The user agent may use whatever means necessary to fetch the resource (within
the constraints put forward by this and other specifications); for example,
reconnecting to the server in the face of network errors, using HTTP partial range
requests, or switching to a streaming protocol. The user agent must consider a
resource erroneous only if it has given up trying to fetch it.

The networking task source tasks to process the data as it is being fetched must,
when appropriate, include the relevant substeps from the following list:

If the media data cannot be fetched at all, due to network errors, causing the
user agent to give up trying to fetch the resource
If the media resource is found to have Content-Type metadata that, when
parsed as a MIME type (including any codecs described by the codec
parameter), represents a type that the user agent knows it cannot render
(even if the actual media data is in a supported format)
If the media data can be fetched but is found by inspection to be in an
unsupported format, or can otherwise not be rendered at all
DNS errors, HTTP 4xx and 5xx errors (and equivalents in other protocols), and
other fatal network errors that occur before the user agent has established whether
the current media resource is usable, as well as the file using an unsupported
container format, or using unsupported codecs for all the data, must cause the user
agent to execute the following steps:

1. The user agent should cancel the fetching process.

2. Abort this subalgorithm, returning to the resource selection algorithm.

Once enough of the media data has been fetched to determine the duration of
the media resource, its dimensions, and other metadata
This indicates that the resource is usable. The user agent must follow these
substeps:

3. Set the current playback position to the earliest possible position.

4. Set the readyState attribute to HAVE_METADATA.

5. For video elements, set the videoWidth and videoHeight attributes.

6. Set the duration attribute to the duration of the resource.

The user agent will queue a task to fire a simple event called
durationchange at the element at this point.

7. Queue a task to fire a simple event called loadedmetadata at the element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 304 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 304 from 931

Before this task is run, sa part of the event loop mechanism, the
rendering will have been updated to resize the video element if
appropriate.

8. If either the media resource or the address of the current media resource
indicate a particular start time, then seek to that time. Ignore any resulting
exceptions (if the position is out of range, it is effectively ignored).

For example, a fragment identifier could be used to indicate a start
position.

9. Once the readyState attribute reaches HAVE_CURRENT_DATA, after the
loadeddata event has been fired, set the element's delaying-the-load-event
flag to false. This stops delaying the load event.

A user agent that is attempting to reduce network usage while still
fetching the metadata for each media resource would also stop
buffering at this point, causing the networkState attribute to switch to
the NETWORK_IDLE value, if the media element did not have an autobuffer
or autoplay attribute.

The user agent is required to determine the duration of the media resource
and go through this step before playing.

Once the entire media resource has been fetched (but potentially before any
of it has been decoded)
Queue a task to fire a progress event called progress at the media element, in the
context of the fetching process started by this instance of this algorithm.

If the connection is interrupted, causing the user agent to give up trying to
fetch the resource
Fatal network errors that occur after the user agent has established whether the
current media resource is usable must cause the user agent to execute the
following steps:

10. The user agent should cancel the fetching process.

11. Set the error attribute to a new MediaError object whose code attribute is
set to MEDIA_ERR_NETWORK.

12. Queue a task to fire a progress event called error at the media element, in
the context of the fetching process started by this instance of this algorithm.

13. Queue a task to fire a progress event called loadend at the media element,
in the context of the fetching process started by this instance of this
algorithm.

14. Set the element's networkState attribute to the NETWORK_EMPTY value
and queue a task to fire a simple event called emptied at the element.

15. Set the element's delaying-the-load-event flag to false. This stops delaying
the load event.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 305 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 305 from 931

16. Abort the overall resource selection algorithm.

If the media data is corrupted
Fatal errors in decoding the media data that occur after the user agent has
established whether the current media resource is usable must cause the user
agent to execute the following steps:

17. The user agent should cancel the fetching process.

18. Set the error attribute to a new MediaError object whose code attribute is
set to MEDIA_ERR_DECODE.

19. Queue a task to fire a progress event called error at the media element, in
the context of the fetching process started by this instance of this algorithm.

20. Queue a task to fire a progress event called loadend at the media element,
in the context of the fetching process started by this instance of this
algorithm.

21. Set the element's networkState attribute to the NETWORK_EMPTY value
and queue a task to fire a simple event called emptied at the element.

22. Set the element's delaying-the-load-event flag to false. This stops delaying
the load event.

23. Abort the overall resource selection algorithm.

If the media data fetching process is aborted by the user
The fetching process is aborted by the user, e.g. because the user navigated the
browsing context to another page, the user agent must execute the following steps.
These steps are not followed if the load() method itself is invoked while these
steps are running, as the steps above handle that particular kind of abort.

24. The user agent should cancel the fetching process.

25. Set the error attribute to a new MediaError object whose code attribute is
set to MEDIA_ERR_ABORT.

26. Queue a task to fire a progress event called abort at the media element, in
the context of the fetching process started by this instance of this algorithm.

27. Queue a task to fire a progress event called loadend at the media element,
in the context of the fetching process started by this instance of this
algorithm.

28. If the media element's readyState attribute has a value equal to
HAVE_NOTHING, set the element's networkState attribute to the
NETWORK_EMPTY value and queue a task to fire a simple event called
emptied at the element. Otherwise, set the element's networkState attribute
to the NETWORK_IDLE value.

29. Set the element's delaying-the-load-event flag to false. This stops delaying
the load event.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 306 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 306 from 931

30. Abort the overall resource selection algorithm.

If the media data can be fetched but has non-fatal errors or uses, in part,
codecs that are unsupported, preventing the user agent from rendering the
content completely correctly but not preventing playback altogether
The server returning data that is partially usable but cannot be optimally rendered
must cause the user agent to render just the bits it can handle, and ignore the rest.

When the networking task source has queued the last task as part of fetching the
media resource (i.e. once the download has completed), if the fetching process
completes without errors, including decoding the media data, then, the user agent
must move on to the next step. This might never happen, e.g. when streaming an
infinite resource such as Web radio.

4. Set the networkState attribute to NETWORK_LOADED.

5. Queue a task to fire a progress event called load at the media element, in the
context of the fetching process started by this instance of this algorithm.

6. Queue a task to fire a progress event called loadend at the media element, in the
context of the fetching process started by this instance of this algorithm.

7. Finally, abort the overall resource selection algorithm.

If a media element whose networkState has the value NETWORK_EMPTY is inserted into a
document, the user agent must invoke the media element's resource selection algorithm.

The autobuffer attribute is a boolean attribute. Its presence hints to the user agent that
the author believes that the media element will likely be used, even though the element
does not have an autoplay attribute. (The attribute has no effect if used in conjunction
with the autoplay attribute, though including both is not an error.) This attribute may be
ignored altogether. The attribute must be ignored if the autoplay attribute is present.

The autobuffer DOM attribute must reflect the content attribute of the same name.

media . buffered
Returns a TimeRanges object that represents the ranges of the media resource that
the user agent has buffered.

The buffered attribute must return a new static normalized TimeRanges object that
represents the ranges of the media resource, if any, that the user agent has buffered, at
the time the attribute is evaluated. Users agents must accurately determine the ranges
available, even for media streams where this can only be determined by tedious
inspection.

Typically this will be a single range anchored at the zero point, but if, e.g. the user
agent uses HTTP range requests in response to seeking, then there could be
multiple ranges.

User agents may discard previously buffered data.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 307 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 307 from 931

Thus, a time position included within a range of the objects return by the buffered
attribute at one time can end up being not included in the range(s) of objects
returned by the same attribute at later times.

4.8.10.6 Offsets into the media resource

Status: Being considered for removal

media . duration
Returns the length of the media resource, in seconds.
Returns NaN if the duration isn't available.
Returns Infinity for unbounded streams.

media . currentTime [= value]
Returns the current playback position, in seconds.
Can be set, to seek to the given time.

Will throw an INVALID_STATE_ERR exception if there is no selected media resource.
Will throw an INDEX_SIZE_ERR exception if the given time is not within the ranges to
which the user agent can seek.

media . startTime
Returns the earliest possible position, in seconds. This is the time for the start of
the current clip. It might not be zero if the clip's timeline is not zero-based, or if the
resource is a streaming resource (in which case it gives the earliest time that the
user agent is able to seek back to).

The duration attribute must return the length of the media resource, in seconds. If no
media data is available, then the attributes must return the Not-a-Number (NaN) value. If
the media resource is known to be unbounded (e.g. a streaming radio), then the attribute
must return the positive Infinity value.

The user agent must determine the duration of the media resource before playing any part
of the media data and before setting readyState to a value equal to or greater than
HAVE_METADATA, even if doing so requires seeking to multiple parts of the resource.

When the length of the media resource changes (e.g. from being unknown to known, or
from a previously established length to a new length) the user agent must queue a task to
fire a simple event called durationchange at the media element.

If an "infinite" stream ends for some reason, then the duration would change from
positive Infinity to the time of the last frame or sample in the stream, and the
durationchange event would be fired. Similarly, if the user agent initially estimated the
media resource's duration instead of determining it precisely, and later revises the
estimate based on new information, then the duration would change and the
durationchange event would be fired.

Media elements have a current playback position, which must initially be zero. The
current position is a time.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 308 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 308 from 931

The currentTime attribute must, on getting, return the current playback position,
expressed in seconds. On setting, the user agent must seek to the new value (which
might raise an exception).

If the media resource is a streaming resource, then the user agent might be unable to
obtain certain parts of the resource after it has expired from its buffer. Similarly, some
media resources might have a timeline that doesn't start at zero. The earliest possible
position is the earliest position in the stream or resource that the user agent can ever
obtain again.

The startTime attribute must, on getting, return the earliest possible position, expressed
in seconds.

When the earliest possible position changes, then: if the current playback position is
before the earliest possible position, the user agent must seek to the earliest possible
position; otherwise, if the user agent has not fired a timeupdate event at the element in the
past 15 to 250ms, then the user agent must queue a task to fire a simple event called
timeupdate at the element.

User agents must act as if the timeline of the media resource increases linearly starting
from the earliest possible position, even if the underling media data has out-of-order or
even overlapping time codes.

For example, if two clips have been concatenated into one video file, but the video
format exposes the original times for the two clips, the video data might expose a
timeline that goes, say, 00:15..00:29 and then 00:05..00:38. However, the user agent
would not expose those times; it would instead expose the times as 00:15..00:29 and
00:29..01:02, as a single video.

The loop attribute is a boolean attribute that, if specified, indicates that the media element
is to seek back to the start of the media resource upon reaching the end.

The loop DOM attribute must reflect the content attribute of the same name.

4.8.10.7 The ready states
media . readyState

Returns a value that expresses the current state of the element with respect to
rendering the current playback position, from the codes in the list below.

Media elements have a ready state, which describes to what degree they are ready to be
rendered at the current playback position. The possible values are as follows; the ready
state of a media element at any particular time is the greatest value describing the state of
the element:

HAVE_NOTHING (numeric value 0)
No information regarding the media resource is available. No data for the current
playback position is available. Media elements whose networkState attribute is
NETWORK_EMPTY are always in the HAVE_NOTHING state.

HAVE_METADATA (numeric value 1)
Enough of the resource has been obtained that the duration of the resource is
available. In the case of a video element, the dimensions of the video are also

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 309 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 309 from 931

available. The API will no longer raise an exception when seeking. No media data
is available for the immediate current playback position.

HAVE_CURRENT_DATA (numeric value 2)
Data for the immediate current playback position is available, but either not enough
data is available that the user agent could successfully advance the current
playback position in the direction of playback at all without immediately reverting to
the HAVE_METADATA state, or there is no more data to obtain in the direction of
playback. For example, in video this corresponds to the user agent having data
from the current frame, but not the next frame; and to when playback has ended.

HAVE_FUTURE_DATA (numeric value 3)
Data for the immediate current playback position is available, as well as enough
data for the user agent to advance the current playback position in the direction of
playback at least a little without immediately reverting to the HAVE_METADATA state.
For example, in video this corresponds to the user agent having data for at least
the current frame and the next frame. The user agent cannot be in this state if
playback has ended, as the current playback position can never advanced in this
case.

HAVE_ENOUGH_DATA (numeric value 4)
All the conditions described for the HAVE_FUTURE_DATA state are met, and, in
addition, the user agent estimates that data is being fetched at a rate where the
current playback position, if it were to advance at the rate given by the
defaultPlaybackRate attribute, would not overtake the available data before
playback reaches the end of the media resource.

When the ready state of a media element whose networkState is not NETWORK_EMPTY
changes, the user agent must follow the steps given below:

If the previous ready state was HAVE_NOTHING, and the new ready state is
HAVE_METADATA

A loadedmetadata DOM event will be fired as part of the load() algorithm.

If the previous ready state was HAVE_METADATA and the new ready state is
HAVE_CURRENT_DATA or greater

If this is the first time this occurs for this media element since the load() algorithm
was last invoked, the user agent must queue a task to fire a simple event called
loadeddata at the element.

If the new ready state is HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA, then the relevant
steps below must then be run also.

If the previous ready state was HAVE_FUTURE_DATA or more, and the new ready state is
HAVE_CURRENT_DATA or less

A waiting DOM event can be fired, depending on the current state of
playback.

If the previous ready state was HAVE_CURRENT_DATA or less, and the new ready state is
HAVE_FUTURE_DATA

The user agent must queue a task to fire a simple event called canplay.

If the element is potentially playing, the user agent must queue a task to fire a
simple event called playing.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 310 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 310 from 931

If the new ready state is HAVE_ENOUGH_DATA
If the previous ready state was HAVE_CURRENT_DATA or less, the user agent must
queue a task to fire a simple event called canplay, and, if the element is also
potentially playing, queue a task to fire a simple event called playing.

If the autoplaying flag is true, and the paused attribute is true, and the media
element has an autoplay attribute specified, then the user agent may also set the
paused attribute to false, queue a task to fire a simple event called play, and queue
a task to fire a simple event called playing.

User agents are not required to autoplay, and it is suggested that user agents
honor user preferences on the matter. Authors are urged to use the autoplay
attribute rather than using script to force the video to play, so as to allow the
user to override the behavior if so desired.

In any case, the user agent must finally queue a task to fire a simple event called
canplaythrough.

It is possible for the ready state of a media element to jump between these states
discontinuously. For example, the state of a media element can jump straight from
HAVE_METADATA to HAVE_ENOUGH_DATA without passing through the HAVE_CURRENT_DATA
and HAVE_FUTURE_DATA states.

The readyState DOM attribute must, on getting, return the value described above that
describes the current ready state of the media element.

The autoplay attribute is a boolean attribute. When present, the user agent (as described
in the algorithm described herein) will automatically begin playback of the media resource
as soon as it can do so without stopping.

Authors are urged to use the autoplay attribute rather than using script to trigger
automatic playback, as this allows the user to override the automatic playback
when it is not desired, e.g. when using a screen reader. Authors are also
encouraged to consider not using the automatic playback behavior at all, and
instead to let the user agent wait for the user to start playback explicitly.

The autoplay DOM attribute must reflect the content attribute of the same name.

4.8.10.8 Playing the media resource
media . paused

Returns true if playback is paused; false otherwise.
media . ended

Returns true if playback has reached the end of the media resource.
media . defaultPlaybackRate [= value]

Returns the default rate of playback, for when the user is not fast-forwarding or
reversing through the media resource.
Can be set, to change the default rate of playback.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 311 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 311 from 931

The default rate has no direct effect on playback, but if the user switches to a fast-
forward mode, when they return to the normal playback mode, it is expected that
the rate of playback will be returned to the default rate of playback.

media . playbackRate [= value]
Returns the current rate playback, where 1.0 is normal speed.
Can be set, to change the rate of playback.

media . played
Returns a TimeRanges object that represents the ranges of the media resource that
the user agent has played.

media . play()
Sets the paused attribute to false, loading the media resource and beginning
playback if necessary. If the playback had ended, will restart it from the start.

media . pause()
Sets the paused attribute to true, loading the media resource if necessary.

The paused attribute represents whether the media element is paused or not. The attribute
must initially be true.

A media element is said to be potentially playing when its paused attribute is false, the
readyState attribute is either HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA, the element has not
ended playback, playback has not stopped due to errors, and the element has not paused
for user interaction.

A media element is said to have ended playback when the element's readyState attribute
is HAVE_METADATA or greater, and either the current playback position is the end of the
media resource and the direction of playback is forwards and the media element does not
have a loop attribute specified, or the current playback position is the earliest possible
position and the direction of playback is backwards.

The ended attribute must return true if the media element has ended playback and the
direction of playback is forwards, and false otherwise.

A media element is said to have stopped due to errors when the element's readyState
attribute is HAVE_METADATA or greater, and the user agent encounters a non-fatal error
during the processing of the media data, and due to that error, is not able to play the
content at the current playback position.

A media element is said to have paused for user interaction when its paused attribute is
false, the readyState attribute is either HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA and the
user agent has reached a point in the media resource where the user has to make a
selection for the resource to continue.

It is possible for a media element to have both ended playback and paused for user
interaction at the same time.

When a media element that is potentially playing stops playing because it has paused for
user interaction, the user agent must queue a task to fire a simple event called timeupdate
at the element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 312 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 312 from 931

When a media element that is potentially playing stops playing because its readyState
attribute changes to a value lower than HAVE_FUTURE_DATA, without the element having
ended playback, or playback having stopped due to errors, or playback having paused for
user interaction, or the seeking algorithm being invoked, the user agent must queue a task
to fire a simple event called timeupdate at the element, and queue a task to fire a simple
event called waiting at the element.

When the current playback position reaches the end of the media resource when the
direction of playback is forwards, then the user agent must follow these steps:

1. If the media element has a loop attribute specified, then seek to the earliest
possible position of the media resource and abort these steps.

2. Stop playback.

The ended attribute becomes true.

3. The user agent must queue a task to fire a simple event called timeupdate at the
element.

4. The user agent must queue a task to fire a simple event called ended at the
element.

When the current playback position reaches the earliest possible position of the media
resource when the direction of playback is backwards, then the user agent must follow
these steps:

1. Stop playback.

2. The user agent must queue a task to fire a simple event called timeupdate at the
element.

The defaultPlaybackRate attribute gives the desired speed at which the media resource
is to play, as a multiple of its intrinsic speed. The attribute is mutable: on getting it must
return the last value it was set to, or 1.0 if it hasn't yet been set; on setting the attribute
must be set to the new value.

The playbackRate attribute gives the speed at which the media resource plays, as a
multiple of its intrinsic speed. If it is not equal to the defaultPlaybackRate, then the
implication is that the user is using a feature such as fast forward or slow motion playback.
The attribute is mutable: on getting it must return the last value it was set to, or 1.0 if it
hasn't yet been set; on setting the attribute must be set to the new value, and the playback
must change speed (if the element is potentially playing).

If the playbackRate is positive or zero, then the direction of playback is forwards.
Otherwise, it is backwards.

The "play" function in a user agent's interface must set the playbackRate attribute to the
value of the defaultPlaybackRate attribute before invoking the play() method's steps.
Features such as fast-forward or rewind must be implemented by only changing the
playbackRate attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 313 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 313 from 931

When the defaultPlaybackRate or playbackRate attributes change value (either by being
set by script or by being changed directly by the user agent, e.g. in response to user
control) the user agent must queue a task to fire a simple event called ratechange at the
media element.

The played attribute must return a new static normalized TimeRanges object that
represents the ranges of the media resource, if any, that the user agent has so far
rendered, at the time the attribute is evaluated.

When the play() method on a media element is invoked, the user agent must run the
following steps.

1. If the media element's networkState attribute has the value NETWORK_EMPTY, then
the user agent must invoke the media element's resource selection algorithm.

2. If the playback has ended, then the user agent must seek to the earliest possible
position of the media resource.

This will cause the user agent to queue a task to fire a simple event called
timeupdate at the media element.

3. If the media element's paused attribute is true, it must be set to false.

If this changed the value of paused, the user agent must run the following substeps:

1. Queue a task to fire a simple event called play at the element.

2. If the media element's readyState attribute has the value HAVE_NOTHING,
HAVE_METADATA, or HAVE_CURRENT_DATA, queue a task to fire a simple event
called waiting at the element.

3. Otherwise, the media element's readyState attribute has the value
HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA; queue a task to fire a simple event
called playing at the element.

4. The media element's autoplaying flag must be set to false.

5. The method must then return.

When the pause() method is invoked, the user agent must run the following steps:

1. If the media element's networkState attribute has the value NETWORK_EMPTY, then
the user agent must invoke the media element's resource selection algorithm.

2. If the media element's paused attribute is false, it must be set to true.

3. The media element's autoplaying flag must be set to false.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 314 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 314 from 931

4. If the second step above changed the value of paused, then the user agent must
queue a task to fire a simple event called timeupdate at the element, and queue a
task to fire a simple event called pause at the element.

When a media element is potentially playing and its Document is an active document, its
current playback position must increase monotonically at playbackRate units of media
time per unit time of wall clock time.

This specification doesn't define how the user agent achieves the appropriate
playback rate — depending on the protocol and media available, it is plausible that
the user agent could negotiate with the server to have the server provide the media
data at the appropriate rate, so that (except for the period between when the rate is
changed and when the server updates the stream's playback rate) the client doesn't
actually have to drop or interpolate any frames.

When the playbackRate is negative (playback is backwards), any corresponding audio
must be muted. When the playbackRate is so low or so high that the user agent cannot
play audio usefully, the corresponding audio must also be muted. If the playbackRate is
not 1.0, the user agent may apply pitch adjustments to the audio as necessary to render it
faithfully.

The playbackRate can be 0.0, in which case the current playback position doesn't move,
despite playback not being paused (paused doesn't become true, and the pause event
doesn't fire).

Media elements that are potentially playing while not in a Document must not play any
video, but should play any audio component. Media elements must not stop playing just
because all references to them have been removed; only once a media element to which
no references exist has reached a point where no further audio remains to be played for
that element (e.g. because the element is paused, or because the end of the clip has been
reached, or because its playbackRate is 0.0) may the element be garbage collected.

When the current playback position of a media element changes (e.g. due to playback or
seeking), the user agent must run the following steps. If the current playback position
changes while the steps are running, then the user agent must wait for the steps to
complete, and then must immediately rerun the steps. (These steps are thus run as often
as possible or needed — if one iteration takes a long time, this can cause certain ranges
to be skipped over as the user agent rushes ahead to "catch up".)

1. If the time was reached through the usual monotonic increase of the current
playback position during normal playback, and if the user agent has not fired a
timeupdate event at the element in the past 15 to 250ms, then the user agent must
queue a task to fire a simple event called timeupdate at the element. (In the other
cases, such as explicit seeks, relevant events get fired as part of the overall
process of changing the current playback position.)

The event thus is not to be fired faster than about 66Hz or slower than 4Hz.
User agents are encouraged to vary the frequency of the event based on the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 315 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 315 from 931

system load and the average cost of processing the event each time, so that
the UI updates are not any more frequent than the user agent can comfortably
handle while decoding the video.

When a media element is removed from a Document, if the media element's networkState
attribute has a value other than NETWORK_EMPTY then the user agent must act as if the
pause() method had been invoked.

If the media element's Document stops being a fully active document, then the
playback will stop until the document is active again.

4.8.10.9 Seeking
media . seeking

Returns true if the user agent is currently seeking.
media . seekable

Returns a TimeRanges object that represents the ranges of the media resource to
which it is possible for the user agent to seek.

The seeking attribute must initially have the value false.

When the user agent is required to seek to a particular new playback position in the media
resource, it means that the user agent must run the following steps:

1. If the media element's readyState is HAVE_NOTHING, then the user agent must raise
an INVALID_STATE_ERR exception (if the seek was in response to a DOM method
call or setting of a DOM attribute), and abort these steps.

2. If the new playback position is later than the end of the media resource, then let it
be the end of the media resource instead.

3. If the new playback position is less than the earliest possible position, let it be that
position instead.

4. If the (possibly now changed) new playback position is not in one of the ranges
given in the seekable attribute, then the user agent must raise an INDEX_SIZE_ERR
exception (if the seek was in response to a DOM method call or setting of a DOM
attribute), and abort these steps.

5. The current playback position must be set to the given new playback position.

6. The seeking DOM attribute must be set to true.

7. The user agent must queue a task to fire a simple event called timeupdate at the
element.

8. If the media element was potentially playing immediately before it started seeking,
but seeking caused its readyState attribute to change to a value lower than
HAVE_FUTURE_DATA, the user agent must queue a task to fire a simple event called
waiting at the element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 316 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 316 from 931

9. If, when it reaches this step, the user agent has still not established whether or not
the media data for the new playback position is available, and, if it is, decoded
enough data to play back that position, the user agent must queue a task to fire a
simple event called seeking at the element.

10. If the seek was in response to a DOM method call or setting of a DOM attribute,
then continue the script. The remainder of these steps must be run asynchronously.

11. The user agent must wait until it has established whether or not the media data for
the new playback position is available, and, if it is, until it has decoded enough data
to play back that position.

12. The seeking DOM attribute must be set to false.

13. The user agent must queue a task to fire a simple event called seeked at the
element.

The seekable attribute must return a new static normalized TimeRanges object that
represents the ranges of the media resource, if any, that the user agent is able to seek to,
at the time the attribute is evaluated.

If the user agent can seek to anywhere in the media resource, e.g. because it a
simple movie file and the user agent and the server support HTTP Range requests,
then the attribute would return an object with one range, whose start is the time of
the first frame (typically zero), and whose end is the same as the time of the first
frame plus the duration attribute's value (which would equal the time of the last
frame).

The range might be continuously changing, e.g. if the user agent is buffering a
sliding window on an infinite stream. This is the behavior seen with DVRs viewing
live TV, for instance.

Media resources might be internally scripted or interactive. Thus, a media element could
play in a non-linear fashion. If this happens, the user agent must act as if the algorithm for
seeking was used whenever the current playback position changes in a discontinuous
fashion (so that the relevant events fire).

4.8.10.10 User interface

The controls attribute is a boolean attribute. If present, it indicates that the author has not
provided a scripted controller and would like the user agent to provide its own set of
controls.

If the attribute is present, or if scripting is disabled for the media element, then the user
agent should expose a user interface to the user. This user interface should include
features to begin playback, pause playback, seek to an arbitrary position in the content (if
the content supports arbitrary seeking), change the volume, and show the media content
in manners more suitable to the user (e.g. full-screen video or in an independent resizable
window). Other controls may also be made available.

If the attribute is absent, then the user agent should avoid making a user interface
available that could conflict with an author-provided user interface. User agents may make
the following features available, however, even when the attribute is absent:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 317 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 317 from 931

User agents may provide controls to affect playback of the media resource (e.g. play,
pause, seeking, and volume controls), but such features should not interfere with the
page's normal rendering. For example, such features could be exposed in the media
element's context menu.

Where possible (specifically, for starting, stopping, pausing, and unpausing playback, for
muting or changing the volume of the audio, and for seeking), user interface features
exposed by the user agent must be implemented in terms of the DOM API described
above, so that, e.g., all the same events fire.

The controls DOM attribute must reflect the content attribute of the same name.

media . volume [= value]

Returns the current playback volume, as a number in the range 0.0 to 1.0, where
0.0 is the quietest and 1.0 the loudest.
Can be set, to change the volume.

Throws an INDEX_SIZE_ERR if the new value is not in the range 0.0 .. 1.0.

media . muted [= value]
Returns true if audio is muted, overriding the volume attribute, and false if the
volume attribute is being honored.
Can be set, to change whether the audio is muted or not.

The volume attribute must return the playback volume of any audio portions of the media
element, in the range 0.0 (silent) to 1.0 (loudest). Initially, the volume must be 1.0, but
user agents may remember the last set value across sessions, on a per-site basis or
otherwise, so the volume may start at other values. On setting, if the new value is in the
range 0.0 to 1.0 inclusive, the attribute must be set to the new value and the playback
volume must be correspondingly adjusted as soon as possible after setting the attribute,
with 0.0 being silent, and 1.0 being the loudest setting, values in between increasing in
loudness. The range need not be linear. The loudest setting may be lower than the
system's loudest possible setting; for example the user could have set a maximum
volume. If the new value is outside the range 0.0 to 1.0 inclusive, then, on setting, an
INDEX_SIZE_ERR exception must be raised instead.

The muted attribute must return true if the audio channels are muted and false otherwise.
Initially, the audio channels should not be muted (false), but user agents may remember
the last set value across sessions, on a per-site basis or otherwise, so the muted state
may start as muted (true). On setting, the attribute must be set to the new value; if the new
value is true, audio playback for this media resource must then be muted, and if false,
audio playback must then be enabled.

Whenever either the muted or volume attributes are changed, the user agent must queue a
task to fire a simple event called volumechange at the media element.

4.8.10.11 Time ranges

Objects implementing the TimeRanges interface represent a list of ranges (periods) of time.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 318 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 318 from 931

interface TimeRanges {
 readonly attribute unsigned long length;
 float start(in unsigned long index);
 float end(in unsigned long index);
};

media . length
Returns the number of ranges in the object.

time = media . start(index)
Returns the time for the start of the range with the given index.

Throws an INDEX_SIZE_ERR if the index is out of range.

time = media . end(index)
Returns the time for the end of the range with the given index.

Throws an INDEX_SIZE_ERR if the index is out of range.

The length DOM attribute must return the number of ranges represented by the object.

The start(index) method must return the position of the start of the indexth range
represented by the object, in seconds measured from the start of the timeline that the
object covers.

The end(index) method must return the position of the end of the indexth range
represented by the object, in seconds measured from the start of the timeline that the
object covers.

These methods must raise INDEX_SIZE_ERR exceptions if called with an index argument
greater than or equal to the number of ranges represented by the object.

When a TimeRanges object is said to be a normalized TimeRanges object, the ranges it
represents must obey the following criteria:

• The start of a range must be greater than the end of all earlier ranges.
• The start of a range must be less than the end of that same range.

In other words, the ranges in such an object are ordered, don't overlap, aren't empty, and
don't touch (adjacent ranges are folded into one bigger range).

The timelines used by the objects returned by the buffered, seekable and played DOM
attributes of media elements must be the same as that element's media resource's
timeline.

4.8.10.12 Event summary

The following events fire on media elements as part of the processing model described
above:

Event name Interface Dispatched when... Preconditions
loadstart ProgressEvent

[PROGRESS]
The user agent begins
looking for media data, as

networkState equals
NETWORK_LOADING

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 319 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 319 from 931

Event name Interface Dispatched when... Preconditions
part of the resource selection
algorithm.

progress ProgressEvent
[PROGRESS]

The user agent is fetching
media data.

networkState equals
NETWORK_LOADING

suspend ProgressEvent
[PROGRESS]

The user agent is
intentionally not currently
fetching media data, but
does not have the entire
media resource downloaded.

networkState equals
NETWORK_IDLE

load ProgressEvent
[PROGRESS]

The user agent finishes
fetching the entire media
resource.

networkState equals
NETWORK_LOADED

abort ProgressEvent
[PROGRESS]

The user agent stops
fetching the media data
before it is completely
downloaded.

error is an object with the
code MEDIA_ERR_ABORTED.
networkState equals either
NETWORK_EMPTY or
NETWORK_LOADED,
depending on when the
download was aborted.

error ProgressEvent
[PROGRESS]

An error occurs while
fetching the media data.

error is an object with the
code MEDIA_ERR_NETWORK or
higher. networkState
equals either
NETWORK_EMPTY or
NETWORK_LOADED,
depending on when the
download was aborted.

loadend ProgressEvent
[PROGRESS]

The user agent stops
fetching the media data, for
whatever reason.

One of load, abort, or
error has just fired.

emptied Event A media element whose
networkState was previously
not in the NETWORK_EMPTY
state has just switched to
that state (either because of
a fatal error during load
that's about to be reported,
or because the load()
method was invoked while
the resource selection
algorithm was already
running, in which case it is
fired synchronously during
the load() method call).

networkState is
NETWORK_EMPTY; all the
DOM attributes are in their
initial states.

stalled ProgressEvent The user agent is trying to
fetch media data, but data is

networkState is
NETWORK_LOADING.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 320 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 320 from 931

Event name Interface Dispatched when... Preconditions
unexpectedly not
forthcoming.

play Event Playback has begun. Fired
after the play() method has
returned.

paused is newly false.

pause Event Playback has been paused.
Fired after the pause method
has returned.

paused is newly true.

loadedmetadata Event The user agent has just
determined the duration and
dimensions of the media
resource.

readyState is newly equal
to HAVE_METADATA or
greater for the first time.

loadeddata Event The user agent can render
the media data at the current
playback position for the first
time.

readyState newly
increased to
HAVE_CURRENT_DATA or
greater for the first time.

waiting Event Playback has stopped
because the next frame is
not available, but the user
agent expects that frame to
become available in due
course.

readyState is newly equal
to or less than
HAVE_CURRENT_DATA, and
paused is false. Either
seeking is true, or the
current playback position is
not contained in any of the
ranges in buffered. It is
possible for playback to
stop for two other reasons
without paused being false,
but those two reasons do
not fire this event: maybe
playback ended, or
playback stopped due to
errors.

playing Event Playback has started. readyState is newly equal
to or greater than
HAVE_FUTURE_DATA, paused
is false, seeking is false, or
the current playback
position is contained in one
of the ranges in buffered.

canplay Event The user agent can resume
playback of the media data,
but estimates that if playback
were to be started now, the
media resource could not be
rendered at the current
playback rate up to its end
without having to stop for

readyState newly
increased to
HAVE_FUTURE_DATA or
greater.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 321 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 321 from 931

Event name Interface Dispatched when... Preconditions
further buffering of content.

canplaythrough Event The user agent estimates
that if playback were to be
started now, the media
resource could be rendered
at the current playback rate
all the way to its end without
having to stop for further
buffering.

readyState is newly equal
to HAVE_ENOUGH_DATA.

seeking Event The seeking DOM attribute
changed to true and the
seek operation is taking long
enough that the user agent
has time to fire the event.

seeked Event The seeking DOM attribute
changed to false.

timeupdate Event The current playback
position changed as part of
normal playback or in an
especially interesting way,
for example discontinuously.

ended Event Playback has stopped
because the end of the
media resource was
reached.

currentTime equals the
end of the media resource;
ended is true.

ratechange Event Either the
defaultPlaybackRate or the
playbackRate attribute has
just been updated.

durationchange Event The duration attribute has
just been updated.

volumechange Event Either the volume attribute or
the muted attribute has
changed. Fired after the
relevant attribute's setter has
returned.

4.8.10.13 Security and privacy considerations

The main security and privacy implications of the video and audio elements come from
the ability to embed media cross-origin. There are two directions that threats can flow:
from hostile content to a victim page, and from a hostile page to victim content.

If a victim page embeds hostile content, the threat is that the content might contain
scripted code that attempts to interact with the Document that embeds the content. To

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 322 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 322 from 931

avoid this, user agents must ensure that there is no access from the content to the
embedding page. In the case of media content that uses DOM concepts, the embedded
content must be treated as if it was in its own unrelated top-level browsing context.

For instance, if an SVG animation was embedded in a video element, the user agent
would not give it access to the DOM of the outer page. From the perspective of
scripts in the SVG resource, the SVG file would appear to be in a lone top-level
browsing context with no parent.

If a hostile page embeds victim content, the threat is that the embedding page could
obtain information from the content that it would not otherwise have access to. The API
does expose some information: the existence of the media, its type, its duration, its size,
and the performance characteristics of its host. Such information is already potentially
problematic, but in practice the same information can more or less be obtained using the
img element, and so it has been deemed acceptable.

However, significantly more sensitive information could be obtained if the user agent
further exposes metadata within the content such as subtitles or chapter titles. This
version of the API does not expose such information. Future extensions to this API will
likely reuse a mechanism such as CORS to check that the embedded content's site has
opted in to exposing such information. [CORS]

An attacker could trick a user running within a corporate network into visiting a site
that attempts to load a video from a previously leaked location on the corporation's
intranet. If such a video included confidential plans for a new product, then being able
to read the subtitles would present a confidentiality breach.

4.8.11 The canvas element

Status: Implemented and widely deployed. ISSUE-74 (canvas-accessibility) blocks
progress to Last Call

Categories
Flow content.
Phrasing content.
Embedded content.

Contexts in which this element may be used:
Where embedded content is expected.

Content model:
Transparent.

Content attributes:
Global attributes
width
height

DOM interface:
interface HTMLCanvasElement : HTMLElement {

 attribute unsigned long width;

 attribute unsigned long height;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 323 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 323 from 931

 DOMString toDataURL(optional in DOMString type, in any... args);

 Object getContext(in DOMString contextId);

};

The canvas element represents a resolution-dependent bitmap canvas, which can be used
for rendering graphs, game graphics, or other visual images on the fly.

Authors should not use the canvas element in a document when a more suitable element
is available. For example, it is inappropriate to use a canvas element to render a page
heading: if the desired presentation of the heading is graphically intense, it should be
marked up using appropriate elements (typically h1) and then styled using CSS and
supporting technologies such as XBL.

When authors use the canvas element, they must also provide content that, when
presented to the user, conveys essentially the same function or purpose as the bitmap
canvas. This content may be placed as content of the canvas element. The contents of the
canvas element, if any, are the element's fallback content.

In interactive visual media, if scripting is enabled for the canvas element, the canvas
element represents an embedded element with a dynamically created image.

In non-interactive, static, visual media, if the canvas element has been previously painted
on (e.g. if the page was viewed in an interactive visual medium and is now being printed,
or if some script that ran during the page layout process painted on the element), then the
canvas element represents embedded content with the current image and size. Otherwise,
the element represents its fallback content instead.

In non-visual media, and in visual media if scripting is disabled for the canvas element, the
canvas element represents its fallback content instead.

The canvas element has two attributes to control the size of the coordinate space: width
and height. These attributes, when specified, must have values that are valid non-
negative integers. The rules for parsing non-negative integers must be used to obtain their
numeric values. If an attribute is missing, or if parsing its value returns an error, then the
default value must be used instead. The width attribute defaults to 300, and the height
attribute defaults to 150.

The intrinsic dimensions of the canvas element equal the size of the coordinate space,
with the numbers interpreted in CSS pixels. However, the element can be sized arbitrarily
by a style sheet. During rendering, the image is scaled to fit this layout size.

The size of the coordinate space does not necessarily represent the size of the actual
bitmap that the user agent will use internally or during rendering. On high-definition
displays, for instance, the user agent may internally use a bitmap with two device pixels
per unit in the coordinate space, so that the rendering remains at high quality throughout.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 324 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 324 from 931

Whenever the width and height attributes are set (whether to a new value or to the
previous value), the bitmap and any associated contexts must be cleared back to their
initial state and reinitialized with the newly specified coordinate space dimensions.

The width and height DOM attributes must reflect the respective content attributes of the
same name.

Only one square appears to be drawn in the following example:

 // canvas is a reference to a <canvas> element
 var context = canvas.getContext('2d');
 context.fillRect(0,0,50,50);
 canvas.setAttribute('width', '300'); // clears the canvas
 context.fillRect(0,100,50,50);
 canvas.width = canvas.width; // clears the canvas
 context.fillRect(100,0,50,50); // only this square remains

When the canvas is initialized it must be set to fully transparent black.

To draw on the canvas, authors must first obtain a reference to a context using the
getContext(contextId) method of the canvas element.

context = canvas . getContext(contextId)
Returns an object that exposes an API for drawing on the canvas.
Returns null if the given context ID is not supported.

This specification only defines one context, with the name "2d". If getContext() is called
with that exact string for its contextId argument, then the UA must return a reference to an
object implementing CanvasRenderingContext2D. Other specifications may define their own
contexts, which would return different objects.

Vendors may also define experimental contexts using the syntax vendorname-context, for
example, moz-3d.

When the UA is passed an empty string or a string specifying a context that it does not
support, then it must return null. String comparisons must be case-sensitive.

A future version of this specification will probably define a 3d context (probably
based on the OpenGL ES API).

url = canvas . toDataURL([type, ...])

Returns a data: URL for the image in the canvas.
The first argument, if provided, controls the type of the image to be returned (e.g.
PNG or JPEG). The default is image/png; that type is also used if the given type
isn't supported. The other arguments are specific to the type, and control the way
that the image is generated, as given in the table below.

The toDataURL() method must, when called with no arguments, return a data: URL
containing a representation of the image as a PNG file. [PNG].

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 325 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 325 from 931

If the canvas has no pixels (i.e. either its horizontal dimension or its vertical dimension is
zero) then the method must return the string "data:,". (This is the shortest data: URL; it
represents the empty string in a text/plain resource.)

When the toDataURL(type) method, when called with one or more arguments, must return
a data: URL containing a representation of the image in the format given by type. The
possible values are MIME types with no parameters, for example image/png, image/jpeg,
or even maybe image/svg+xml if the implementation actually keeps enough information to
reliably render an SVG image from the canvas.

For image types that do not support an alpha channel, the image must be composited
onto a solid black background using the source-over operator, and the resulting image
must be the one used to create the data: URL.

Only support for image/png is required. User agents may support other types. If the user
agent does not support the requested type, it must return the image using the PNG
format.

User agents must convert the provided type to ASCII lowercase before establishing if they
support that type and before creating the data: URL.

When trying to use types other than image/png, authors can check if the image was
really returned in the requested format by checking to see if the returned string
starts with one the exact strings "data:image/png," or "data:image/png;". If it does,
the image is PNG, and thus the requested type was not supported. (The one
exception to this is if the canvas has either no height or no width, in which case the
result might simply be "data:,".)

If the method is invoked with the first argument giving a type corresponding to one of the
types given in the first column of the following table, and the user agent supports that type,
then the subsequent arguments, if any, must be treated as described in the second cell of
that row.

Type Other arguments
image/jpeg The second argument, if it is a number between 0.0 and 1.0, must be treated

as the desired quality level. If it is not a number or is outside that range, the
user agent must use its default value, as if the argument had been omitted.

Other arguments must be ignored and must not cause the user agent to raise an
exception. A future version of this specification will probably define other parameters to be
passed to toDataURL() to allow authors to more carefully control compression settings,
image metadata, etc.

4.8.11.1 The 2D context

Status: Implemented and widely deployed

When the getContext() method of a canvas element is invoked with 2d as the argument, a
CanvasRenderingContext2D object is returned.

There is only one CanvasRenderingContext2D object per canvas, so calling the
getContext() method with the 2d argument a second time must return the same object.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 326 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 326 from 931

The 2D context represents a flat Cartesian surface whose origin (0,0) is at the top left
corner, with the coordinate space having x values increasing when going right, and y
values increasing when going down.

interface CanvasRenderingContext2D {

 // back-reference to the canvas
 readonly attribute HTMLCanvasElement canvas;

 // state
 void save(); // push state on state stack
 void restore(); // pop state stack and restore state

 // transformations (default transform is the identity matrix)
 void scale(in float x, in float y);
 void rotate(in float angle);
 void translate(in float x, in float y);
 void transform(in float m11, in float m12, in float m21, in float m22, in
float dx, in float dy);
 void setTransform(in float m11, in float m12, in float m21, in float m22,
in float dx, in float dy);

 // compositing
 attribute float globalAlpha; // (default 1.0)
 attribute DOMString globalCompositeOperation; // (default source-
over)

 // colors and styles
 attribute any strokeStyle; // (default black)
 attribute any fillStyle; // (default black)
 CanvasGradient createLinearGradient(in float x0, in float y0, in float x1,
in float y1);
 CanvasGradient createRadialGradient(in float x0, in float y0, in float r0,
in float x1, in float y1, in float r1);
 CanvasPattern createPattern(in HTMLImageElement image, in DOMString
repetition);
 CanvasPattern createPattern(in HTMLCanvasElement image, in DOMString
repetition);
 CanvasPattern createPattern(in HTMLVideoElement image, in DOMString
repetition);

 // line caps/joins
 attribute float lineWidth; // (default 1)
 attribute DOMString lineCap; // "butt", "round", "square"
(default "butt")
 attribute DOMString lineJoin; // "round", "bevel", "miter"
(default "miter")
 attribute float miterLimit; // (default 10)

 // shadows
 attribute float shadowOffsetX; // (default 0)
 attribute float shadowOffsetY; // (default 0)
 attribute float shadowBlur; // (default 0)
 attribute DOMString shadowColor; // (default transparent black)

 // rects
 void clearRect(in float x, in float y, in float w, in float h);
 void fillRect(in float x, in float y, in float w, in float h);
 void strokeRect(in float x, in float y, in float w, in float h);

 // path API

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 327 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 327 from 931

 void beginPath();
 void closePath();
 void moveTo(in float x, in float y);
 void lineTo(in float x, in float y);
 void quadraticCurveTo(in float cpx, in float cpy, in float x, in float y);
 void bezierCurveTo(in float cp1x, in float cp1y, in float cp2x, in float
cp2y, in float x, in float y);
 void arcTo(in float x1, in float y1, in float x2, in float y2, in float
radius);
 void rect(in float x, in float y, in float w, in float h);
 void arc(in float x, in float y, in float radius, in float startAngle, in
float endAngle, in boolean anticlockwise);
 void fill();
 void stroke();
 void clip();
 boolean isPointInPath(in float x, in float y);

 // text
 attribute DOMString font; // (default 10px sans-serif)
 attribute DOMString textAlign; // "start", "end", "left",
"right", "center" (default: "start")
 attribute DOMString textBaseline; // "top", "hanging", "middle",
"alphabetic", "ideographic", "bottom" (default: "alphabetic")
 void fillText(in DOMString text, in float x, in float y, optional in float
maxWidth);
 void strokeText(in DOMString text, in float x, in float y, optional in
float maxWidth);
 TextMetrics measureText(in DOMString text);

 // drawing images
 void drawImage(in HTMLImageElement image, in float dx, in float dy,
optional in float dw, in float dh);
 void drawImage(in HTMLImageElement image, in float sx, in float sy, in
float sw, in float sh, in float dx, in float dy, in float dw, in float dh);
 void drawImage(in HTMLCanvasElement image, in float dx, in float dy,
optional in float dw, in float dh);
 void drawImage(in HTMLCanvasElement image, in float sx, in float sy, in
float sw, in float sh, in float dx, in float dy, in float dw, in float dh);
 void drawImage(in HTMLVideoElement image, in float dx, in float dy,
optional in float dw, in float dh);
 void drawImage(in HTMLVideoElement image, in float sx, in float sy, in
float sw, in float sh, in float dx, in float dy, in float dw, in float dh);

 // pixel manipulation
 ImageData createImageData(in float sw, in float sh);
 ImageData createImageData(in ImageData imagedata);
 ImageData getImageData(in float sx, in float sy, in float sw, in float
sh);
 void putImageData(in ImageData imagedata, in float dx, in float dy,
optional in float dirtyX, in float dirtyY, in float dirtyWidth, in float
dirtyHeight);
};

interface CanvasGradient {
 // opaque object
 void addColorStop(in float offset, in DOMString color);
};

interface CanvasPattern {
 // opaque object
};

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 328 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 328 from 931

interface TextMetrics {
 readonly attribute float width;
};

interface ImageData {
 readonly attribute unsigned long width;
 readonly attribute unsigned long height;
 readonly attribute CanvasPixelArray data;
};

interface CanvasPixelArray {
 readonly attribute unsigned long length;
 getter octet (in unsigned long index);
 setter void (in unsigned long index, in octet value);
};

context . canvas
Returns the canvas element.

The canvas attribute must return the canvas element that the context paints on.

Unless otherwise stated, for the 2D context interface, any method call with a numeric
argument whose value is infinite or a NaN value must be ignored.

Whenever the CSS value currentColor is used as a color in this API, the "computed value
of the 'color' property" for the purposes of determining the computed value of the
currentColor keyword is the computed value of the 'color' property on the element in
question at the time that the color is specified (e.g. when the appropriate attribute is set, or
when the method is called; not when the color is rendered or otherwise used). If the
computed value of the 'color' property is undefined for a particular case (e.g. because the
element is not in a Document), then the "computed value of the 'color' property" for the
purposes of determining the computed value of the currentColor keyword is fully opaque
black. [CSSCOLOR]

4.8.11.1.1 The canvas state

Each context maintains a stack of drawing states. Drawing states consist of:

• The current transformation matrix.
• The current clipping region.
• The current values of the following attributes: strokeStyle, fillStyle,

globalAlpha, lineWidth, lineCap, lineJoin, miterLimit, shadowOffsetX,
shadowOffsetY, shadowBlur, shadowColor, globalCompositeOperation, font,
textAlign, textBaseline.

The current path and the current bitmap are not part of the drawing state. The
current path is persistent, and can only be reset using the beginPath() method. The
current bitmap is a property of the canvas, not the context.

context . save()
Pushes the current state onto the stack.

context . restore()
Pops the top state on the stack, restoring the context to that state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 329 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 329 from 931

The save() method must push a copy of the current drawing state onto the drawing state
stack.

The restore() method must pop the top entry in the drawing state stack, and reset the
drawing state it describes. If there is no saved state, the method must do nothing.

4.8.11.1.2 Transformations

Status: Awaiting implementation feedback

The transformation matrix is applied to coordinates when creating shapes and paths.

When the context is created, the transformation matrix must initially be the identity
transform. It may then be adjusted using the transformation methods.

The transformations must be performed in reverse order. For instance, if a scale
transformation that doubles the width is applied, followed by a rotation transformation that
rotates drawing operations by a quarter turn, and a rectangle twice as wide as it is tall is
then drawn on the canvas, the actual result will be a square.

context . scale(x, y)
Changes the transformation matrix to apply a scaling transformation with the given
characteristics.

context . rotate(angle)
Changes the transformation matrix to apply a rotation transformation with the given
characteristics.

context . translate(x, y)
Changes the transformation matrix to apply a translation transformation with the
given characteristics.

context . transform(m11, m12, m21, m22, dx, dy)
Changes the transformation matrix to apply the matrix given by the arguments as
described below.

context . setTransform(m11, m12, m21, m22, dx, dy)
Changes the transformation matrix to the matrix given by the arguments as
described below.

The scale(x, y) method must add the scaling transformation described by the arguments
to the transformation matrix. The x argument represents the scale factor in the horizontal
direction and the y argument represents the scale factor in the vertical direction. The
factors are multiples.

The rotate(angle) method must add the rotation transformation described by the
argument to the transformation matrix. The angle argument represents a clockwise
rotation angle expressed in radians.

The translate(x, y) method must add the translation transformation described by the
arguments to the transformation matrix. The x argument represents the translation

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 330 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 330 from 931

distance in the horizontal direction and the y argument represents the translation distance
in the vertical direction. The arguments are in coordinate space units.

The transform(m11, m12, m21, m22, dx, dy) method must multiply the current
transformation matrix with the matrix described by:

m11 m21 dx
m12 m22 dy

0 0 1

The setTransform(m11, m12, m21, m22, dx, dy) method must reset the current
transform to the identity matrix, and then invoke the transform(m11, m12, m21, m22, dx,
dy) method with the same arguments.

4.8.11.1.3 Compositing

Status: Awaiting implementation feedback

context . globalAlpha [= value]
Returns the current alpha value applied to rendering operations.
Can be set, to change the alpha value. Values outside of the range 0.0 .. 1.0 are
ignored.

context . globalCompositeOperation [= value]
Returns the current composition operation, from the list below.
Can be set, to change the composition operation. Unknown values are ignored.

All drawing operations are affected by the global compositing attributes, globalAlpha and
globalCompositeOperation.

The globalAlpha attribute gives an alpha value that is applied to shapes and images
before they are composited onto the canvas. The value must be in the range from 0.0
(fully transparent) to 1.0 (no additional transparency). If an attempt is made to set the
attribute to a value outside this range, including Infinity and Not-a-Number (NaN) values,
the attribute must retain its previous value. When the context is created, the globalAlpha
attribute must initially have the value 1.0.

The globalCompositeOperation attribute sets how shapes and images are drawn onto the
existing bitmap, once they have had globalAlpha and the current transformation matrix
applied. It must be set to a value from the following list. In the descriptions below, the
source image, A, is the shape or image being rendered, and the destination image, B, is
the current state of the bitmap.

source-atop
A atop B. Display the source image wherever both images are opaque. Display the
destination image wherever the destination image is opaque but the source image
is transparent. Display transparency elsewhere.

source-in
A in B. Display the source image wherever both the source image and destination
image are opaque. Display transparency elsewhere.

source-out

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 331 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 331 from 931

A out B. Display the source image wherever the source image is opaque and the
destination image is transparent. Display transparency elsewhere.

source-over (default)
A over B. Display the source image wherever the source image is opaque. Display
the destination image elsewhere.

destination-atop
B atop A. Same as source-atop but using the destination image instead of the
source image and vice versa.

destination-in
B in A. Same as source-in but using the destination image instead of the source
image and vice versa.

destination-out
B out A. Same as source-out but using the destination image instead of the source
image and vice versa.

destination-over
B over A. Same as source-over but using the destination image instead of the
source image and vice versa.

lighter
A plus B. Display the sum of the source image and destination image, with color
values approaching 1 as a limit.

copy
A (B is ignored). Display the source image instead of the destination image.

xor
A xor B. Exclusive OR of the source image and destination image.

vendorName-operationName
Vendor-specific extensions to the list of composition operators should use this
syntax.

These values are all case-sensitive — they must be used exactly as shown. User agents
must not recognize values that are not a case-sensitive match for one of the values given
above.

The operators in the above list must be treated as described by the Porter-Duff operator
given at the start of their description (e.g. A over B). [PORTERDUFF]

On setting, if the user agent does not recognize the specified value, it must be ignored,
leaving the value of globalCompositeOperation unaffected.

When the context is created, the globalCompositeOperation attribute must initially have
the value source-over.

4.8.11.1.4 Colors and styles

Status: Awaiting implementation feedback

context . strokeStyle [= value]
Returns the current style used for stroking shapes.
Can be set, to change the stroke style.

The style can be either a string containing a CSS color, or a CanvasGradient or
CanvasPattern object. Invalid values are ignored.

context . fillStyle [= value]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 332 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 332 from 931

Returns the current style used for filling shapes.
Can be set, to change the fill style.

The style can be either a string containing a CSS color, or a CanvasGradient or
CanvasPattern object. Invalid values are ignored.

The strokeStyle attribute represents the color or style to use for the lines around shapes,
and the fillStyle attribute represents the color or style to use inside the shapes.

Both attributes can be either strings, CanvasGradients, or CanvasPatterns. On setting,
strings must be parsed as CSS <color> values and the color assigned, and
CanvasGradient and CanvasPattern objects must be assigned themselves. [CSSCOLOR]
If the value is a string but is not a valid color, or is neither a string, a CanvasGradient, nor a
CanvasPattern, then it must be ignored, and the attribute must retain its previous value.

On getting, if the value is a color, then the serialization of the color must be returned.
Otherwise, if it is not a color but a CanvasGradient or CanvasPattern, then the respective
object must be returned. (Such objects are opaque and therefore only useful for assigning
to other attributes or for comparison to other gradients or patterns.)

The serialization of a color for a color value is a string, computed as follows: if it has
alpha equal to 1.0, then the string is a lowercase six-digit hex value, prefixed with a "#"
character (U+0023 NUMBER SIGN), with the first two digits representing the red
component, the next two digits representing the green component, and the last two digits
representing the blue component, the digits being in the range 0-9 a-f (U+0030 to U+0039
and U+0061 to U+0066). Otherwise, the color value has alpha less than 1.0, and the
string is the color value in the CSS rgba() functional-notation format: the literal string rgba
(U+0072 U+0067 U+0062 U+0061) followed by a U+0028 LEFT PARENTHESIS, a base-
ten integer in the range 0-255 representing the red component (using digits 0-9, U+0030
to U+0039, in the shortest form possible), a literal U+002C COMMA and U+0020 SPACE,
an integer for the green component, a comma and a space, an integer for the blue
component, another comma and space, a U+0030 DIGIT ZERO, a U+002E FULL STOP
(representing the decimal point), one or more digits in the range 0-9 (U+0030 to U+0039)
representing the fractional part of the alpha value, and finally a U+0029 RIGHT
PARENTHESIS.

When the context is created, the strokeStyle and fillStyle attributes must initially have
the string value #000000.

There are two types of gradients, linear gradients and radial gradients, both represented
by objects implementing the opaque CanvasGradient interface.

Once a gradient has been created (see below), stops are placed along it to define how the
colors are distributed along the gradient. The color of the gradient at each stop is the color
specified for that stop. Between each such stop, the colors and the alpha component must
be linearly interpolated over the RGBA space without premultiplying the alpha value to find
the color to use at that offset. Before the first stop, the color must be the color of the first
stop. After the last stop, the color must be the color of the last stop. When there are no
stops, the gradient is transparent black.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 333 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 333 from 931

gradient . addColorStop(offset, color)
Adds a color stop with the given color to the gradient at the given offset. 0.0 is the
offset at one end of the gradient, 1.0 is the offset at the other end.

Throws an INDEX_SIZE_ERR exception if the offset it out of range. Throws a
SYNTAX_ERR exception if the color cannot be parsed.

gradient = context . createLinearGradient(x0, y0, x1, y1)
Returns a CanvasGradient object that represents a linear gradient that paints along
the line given by the coordinates represented by the arguments.

If any of the arguments are not finite numbers, throws a NOT_SUPPORTED_ERR
exception.

gradient = context . createRadialGradient(x0, y0, r0, x1, y1, r1)
Returns a CanvasGradient object that represents a radial gradient that paints along
the cone given by the circles represented by the arguments.

If any of the arguments are not finite numbers, throws a NOT_SUPPORTED_ERR
exception. If either of the radii are negative throws an INDEX_SIZE_ERR exception.

The addColorStop(offset, color) method on the CanvasGradient interface adds a new
stop to a gradient. If the offset is less than 0, greater than 1, infinite, or NaN, then an
INDEX_SIZE_ERR exception must be raised. If the color cannot be parsed as a CSS color,
then a SYNTAX_ERR exception must be raised. Otherwise, the gradient must have a new
stop placed, at offset offset relative to the whole gradient, and with the color obtained by
parsing color as a CSS <color> value. If multiple stops are added at the same offset on a
gradient, they must be placed in the order added, with the first one closest to the start of
the gradient, and each subsequent one infinitesimally further along towards the end point
(in effect causing all but the first and last stop added at each point to be ignored).

The createLinearGradient(x0, y0, x1, y1) method takes four arguments that represent
the start point (x0, y0) and end point (x1, y1) of the gradient. If any of the arguments to
createLinearGradient() are infinite or NaN, the method must raise a NOT_SUPPORTED_ERR
exception. Otherwise, the method must return a linear CanvasGradient initialized with the
specified line.

Linear gradients must be rendered such that all points on a line perpendicular to the line
that crosses the start and end points have the color at the point where those two lines
cross (with the colors coming from the interpolation and extrapolation described above).
The points in the linear gradient must be transformed as described by the current
transformation matrix when rendering.

If x0 = x1 and y0 = y1, then the linear gradient must paint nothing.

The createRadialGradient(x0, y0, r0, x1, y1, r1) method takes six arguments, the
first three representing the start circle with origin (x0, y0) and radius r0, and the last three
representing the end circle with origin (x1, y1) and radius r1. The values are in coordinate
space units. If any of the arguments are infinite or NaN, a NOT_SUPPORTED_ERR exception
must be raised. If either of r0 or r1 are negative, an INDEX_SIZE_ERR exception must be
raised. Otherwise, the method must return a radial CanvasGradient initialized with the two
specified circles.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 334 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 334 from 931

Radial gradients must be rendered by following these steps:

1. If x0 = x1 and y0 = y1 and r0 = r1, then the radial gradient must paint nothing. Abort
these steps.

2. Let x(ω) = (x1-x0)ω + x0

Let y(ω) = (y1-y0)ω + y0

Let r(ω) = (r1-r0)ω + r0

Let the color at ω be the color at that position on the gradient (with the colors
coming from the interpolation and extrapolation described above).

3. For all values of ω where r(ω) > 0, starting with the value of ω nearest to positive
infinity and ending with the value of ω nearest to negative infinity, draw the
circumference of the circle with radius r(ω) at position (x(ω), y(ω)), with the color at
ω, but only painting on the parts of the canvas that have not yet been painted on by
earlier circles in this step for this rendering of the gradient.

This effectively creates a cone, touched by the two circles defined in the creation of
the gradient, with the part of the cone before the start circle (0.0) using the color of
the first offset, the part of the cone after the end circle (1.0) using the color of the
last offset, and areas outside the cone untouched by the gradient (transparent
black).

Gradients must be painted only where the relevant stroking or filling effects requires that
they be drawn.

The points in the radial gradient must be transformed as described by the current
transformation matrix when rendering.

Patterns are represented by objects implementing the opaque CanvasPattern interface.

pattern = context . createPattern(image, repetition)
Returns a CanvasPattern object that uses the given image and repeats in the
direction(s) given by the repetition argument.

The allowed values for repeat are repeat (both directions), repeat-x (horizontal
only), repeat-y (vertical only), and no-repeat (neither). If the repetition argument is
empty or null, the value repeat is used.

If the first argument isn't an img, canvas, or video element, throws a
TYPE_MISMATCH_ERR exception. If the image is not fully decoded yet, or has no
image data, throws an INVALID_STATE_ERR exception. If the second argument isn't
one of the allowed values, throws a SYNTAX_ERR exception.

To create objects of this type, the createPattern(image, repetition) method is used.
The first argument gives the image to use as the pattern (either an HTMLImageElement or
an HTMLCanvasElement). Modifying this image after calling the createPattern() method
must not affect the pattern. The second argument must be a string with one of the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 335 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 335 from 931

following values: repeat, repeat-x, repeat-y, no-repeat. If the empty string or null is
specified, repeat must be assumed. If an unrecognized value is given, then the user agent
must raise a SYNTAX_ERR exception. User agents must recognize the four values described
above exactly (e.g. they must not do case folding). The method must return a
CanvasPattern object suitably initialized.

The image argument is an instance of either HTMLImageElement, HTMLCanvasElement, or
HTMLVideoElement. If the image is of the wrong type or null, the implementation must raise
a TYPE_MISMATCH_ERR exception.

If the image argument is an HTMLImageElement object whose complete attribute is false,
then the implementation must raise an INVALID_STATE_ERR exception.

If the image argument is an HTMLVideoElement object whose readyState attribute is either
HAVE_NOTHING or HAVE_METADATA, then the implementation must raise an
INVALID_STATE_ERR exception.

If the image argument is an HTMLCanvasElement object with either a horizontal dimension
or a vertical dimension equal to zero, then the implementation must raise an
INVALID_STATE_ERR exception.

Patterns must be painted so that the top left of the first image is anchored at the origin of
the coordinate space, and images are then repeated horizontally to the left and right (if the
repeat-x string was specified) or vertically up and down (if the repeat-y string was
specified) or in all four directions all over the canvas (if the repeat string was specified).
The images are not scaled by this process; one CSS pixel of the image must be painted
on one coordinate space unit. Of course, patterns must actually be painted only where the
stroking or filling effect requires that they be drawn, and are affected by the current
transformation matrix.

When the createPattern() method is passed an animated image as its image argument,
the user agent must use the poster frame of the animation, or, if there is no poster frame,
the first frame of the animation.

When the image argument is an HTMLVideoElement, then the frame at the current playback
position must be used as the source image.

4.8.11.1.5 Line styles

Status: Awaiting implementation feedback

context . lineWidth [= value]
Returns the current line width.
Can be set, to change the line width. Values that are not finite values greater than
zero are ignored.

context . lineCap [= value]
Returns the current line cap style.
Can be set, to change the line cap style.

The possible line cap styles are butt, round, and square. Other values are ignored.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 336 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 336 from 931

context . lineJoin [= value]
Returns the current line join style.
Can be set, to change the line join style.

The possible line join styles are bevel, round, and miter. Other values are ignored.

context . miterLimit [= value]
Returns the current miter limit ratio.
Can be set, to change the miter limit ratio. Values that are not finite values greater
than zero are ignored.

The lineWidth attribute gives the width of lines, in coordinate space units. On getting, it
must return the current value. On setting, zero, negative, infinite, and NaN values must be
ignored, leaving the value unchanged; other values must change the current value to the
new value.

When the context is created, the lineWidth attribute must initially have the value 1.0.

The lineCap attribute defines the type of endings that UAs will place on the end of lines.
The three valid values are butt, round, and square. The butt value means that the end of
each line has a flat edge perpendicular to the direction of the line (and that no additional
line cap is added). The round value means that a semi-circle with the diameter equal to
the width of the line must then be added on to the end of the line. The square value means
that a rectangle with the length of the line width and the width of half the line width, placed
flat against the edge perpendicular to the direction of the line, must be added at the end of
each line.

On getting, it must return the current value. On setting, if the new value is one of the literal
strings butt, round, and square, then the current value must be changed to the new value;
other values must ignored, leaving the value unchanged.

When the context is created, the lineCap attribute must initially have the value butt.

The lineJoin attribute defines the type of corners that UAs will place where two lines
meet. The three valid values are bevel, round, and miter.

On getting, it must return the current value. On setting, if the new value is one of the literal
strings bevel, round, and miter, then the current value must be changed to the new value;
other values must be ignored, leaving the value unchanged.

When the context is created, the lineJoin attribute must initially have the value miter.

A join exists at any point in a subpath shared by two consecutive lines. When a subpath is
closed, then a join also exists at its first point (equivalent to its last point) connecting the
first and last lines in the subpath.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 337 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 337 from 931

In addition to the point where the join occurs, two additional points are relevant to each
join, one for each line: the two corners found half the line width away from the join point,
one perpendicular to each line, each on the side furthest from the other line.

A filled triangle connecting these two opposite corners with a straight line, with the third
point of the triangle being the join point, must be rendered at all joins. The lineJoin
attribute controls whether anything else is rendered. The three aforementioned values
have the following meanings:

The bevel value means that this is all that is rendered at joins.

The round value means that a filled arc connecting the two aforementioned corners of the
join, abutting (and not overlapping) the aforementioned triangle, with the diameter equal to
the line width and the origin at the point of the join, must be rendered at joins.

The miter value means that a second filled triangle must (if it can given the miter length)
be rendered at the join, with one line being the line between the two aforementioned
corners, abutting the first triangle, and the other two being continuations of the outside
edges of the two joining lines, as long as required to intersect without going over the miter
length.

The miter length is the distance from the point where the join occurs to the intersection of
the line edges on the outside of the join. The miter limit ratio is the maximum allowed ratio
of the miter length to half the line width. If the miter length would cause the miter limit ratio
to be exceeded, this second triangle must not be rendered.

The miter limit ratio can be explicitly set using the miterLimit attribute. On getting, it must
return the current value. On setting, zero, negative, infinite, and NaN values must be
ignored, leaving the value unchanged; other values must change the current value to the
new value.

When the context is created, the miterLimit attribute must initially have the value 10.0.

4.8.11.1.6 Shadows

Status: Last call for comments

All drawing operations are affected by the four global shadow attributes.

context . shadowColor [= value]
Returns the current shadow color.
Can be set, to change the shadow color. Values that cannot be parsed as CSS
colors are ignored.

context . shadowOffsetX [= value]
context . shadowOffsetY [= value]

Returns the current shadow offset.
Can be set, to change the shadow offset. Values that are not finite numbers are
ignored.

context . shadowBlur [= value]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 338 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 338 from 931

Returns the current level of blur applied to shadows.
Can be set, to change the blur level. Values that are not finite numbers greater than
or equal to zero are ignored.

The shadowColor attribute sets the color of the shadow.

When the context is created, the shadowColor attribute initially must be fully-transparent
black.

On getting, the serialization of the color must be returned.

On setting, the new value must be parsed as a CSS <color> value and the color assigned.
If the value is not a valid color, then it must be ignored, and the attribute must retain its
previous value. [CSSCOLOR]

The shadowOffsetX and shadowOffsetY attributes specify the distance that the shadow will
be offset in the positive horizontal and positive vertical distance respectively. Their values
are in coordinate space units. They are not affected by the current transformation matrix.

When the context is created, the shadow offset attributes must initially have the value 0.

On getting, they must return their current value. On setting, the attribute being set must be
set to the new value, except if the value is infinite or NaN, in which case the new value
must be ignored.

The shadowBlur attribute specifies the size of the blurring effect. (The units do not map to
coordinate space units, and are not affected by the current transformation matrix.)

When the context is created, the shadowBlur attribute must initially have the value 0.

On getting, the attribute must return its current value. On setting the attribute must be set
to the new value, except if the value is negative, infinite or NaN, in which case the new
value must be ignored.

Shadows are only drawn if the opacity component of the alpha component of the color
of shadowColor is non-zero and either the shadowBlur is non-zero, or the shadowOffsetX is
non-zero, or the shadowOffsetY is non-zero.

When shadows are drawn, they must be rendered as follows:

1. Let A be the source image for which a shadow is being created.

2. Let B be an infinite transparent black bitmap, with a coordinate space and an origin
identical to A.

3. Copy the alpha channel of A to B, offset by shadowOffsetX in the positive x
direction, and shadowOffsetY in the positive y direction.

4. If shadowBlur is greater than 0:

1. If shadowBlur is less than 8, let σ be half the value of shadowBlur; otherwise,
let σ be the square root of multiplying the value of shadowBlur by 2.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 339 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 339 from 931

2. Perform a 2D Gaussian Blur on B, using σ as the standard deviation.

User agents may limit values of σ to an implementation-specific maximum value to
avoid exceeding hardware limitations during the Gaussian blur operation.

5. Set the red, green, and blue components of every pixel in B to the red, green, and
blue components (respectively) of the color of shadowColor.

6. Multiply the alpha component of every pixel in B by the alpha component of the
color of shadowColor.

7. The shadow is in the bitmap B, and is rendered as part of the drawing model
described below.

4.8.11.1.7 Simple shapes (rectangles)

There are three methods that immediately draw rectangles to the bitmap. They each take
four arguments; the first two give the x and y coordinates of the top left of the rectangle,
and the second two give the width w and height h of the rectangle, respectively.

The current transformation matrix must be applied to the following four coordinates, which
form the path that must then be closed to get the specified rectangle: (x, y), (x+w, y), (x+w,
y+h), (x, y+h).

Shapes are painted without affecting the current path, and are subject to the clipping
region, and, with the exception of clearRect(), also shadow effects, global alpha, and
global composition operators.

context . clearRect(x, y, w, h)
Clears all pixels on the canvas in the given rectangle to transparent black.

context . fillRect(x, y, w, h)
Paints the given rectangle onto the canvas, using the current fill style.

context . strokeRect(x, y, w, h)
Paints the box that outlines the given rectangle onto the canvas, using the current
stroke style.

The clearRect(x, y, w, h) method must clear the pixels in the specified rectangle that
also intersect the current clipping region to a fully transparent black, erasing any previous
image. If either height or width are zero, this method has no effect.

The fillRect(x, y, w, h) method must paint the specified rectangular area using the
fillStyle. If either height or width are zero, this method has no effect.

The strokeRect(x, y, w, h) method must stroke the specified rectangle's path using the
strokeStyle, lineWidth, lineJoin, and (if appropriate) miterLimit attributes. If both
height and width are zero, this method has no effect, since there is no path to stroke (it's a
point). If only one of the two is zero, then the method will draw a line instead (the path for
the outline is just a straight line along the non-zero dimension).

4.8.11.1.8 Complex shapes (paths)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 340 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 340 from 931

The context always has a current path. There is only one current path, it is not part of the
drawing state.

A path has a list of zero or more subpaths. Each subpath consists of a list of one or more
points, connected by straight or curved lines, and a flag indicating whether the subpath is
closed or not. A closed subpath is one where the last point of the subpath is connected to
the first point of the subpath by a straight line. Subpaths with fewer than two points are
ignored when painting the path.

context . beginPath()
Resets the current path.

context . moveTo(x, y)
Creates a new subpath with the given point.

context . closePath()
Marks the current subpath as closed, and starts a new subpath with a point the
same as the start and end of the newly closed subpath.

context . lineTo(x, y)
Adds the given point to the current subpath, connected to the previous one by a
straight line.

context . quadraticCurveTo(cpx, cpy, x, y)
Adds the given point to the current path, connected to the previous one by a
quadratic Bézier curve with the given control point.

context . bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y)
Adds the given point to the current path, connected to the previous one by a cubic
Bézier curve with the given control points.

context . arcTo(x1, y1, x2, y2, radius)
Adds a point to the current path, connected to the previous one by a straight line,
then adds a second point to the current path, connected to the previous one by an
arc whose properties are described by the arguments.

Throws an INDEX_SIZE_ERR exception if the given radius is negative.

context . arc(x, y, radius, startAngle, endAngle,
anticlockwise)

Adds points to the subpath such that the arc described by the circumference of the
circle described by the arguments, starting at the given start angle and ending at
the given end angle, going in the given direction, is added to the path, connected to
the previous point by a straight line.

Throws an INDEX_SIZE_ERR exception if the given radius is negative.

context . rect(x, y, w, h)
Adds a new closed subpath to the path, representing the given rectangle.

context . fill()
Fills the subpaths with the current fill style.

context . stroke()

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 341 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 341 from 931

Strokes the subpaths with the current stroke style.
context . clip()

Further constrains the clipping region to the given path.
context . isPointInPath(x, y)

Returns true if the given point is in the current path.

Initially, the context's path must have zero subpaths.

The points and lines added to the path by these methods must be transformed according
to the current transformation matrix as they are added.

The beginPath() method must empty the list of subpaths so that the context once again
has zero subpaths.

The moveTo(x, y) method must create a new subpath with the specified point as its first
(and only) point.

When the user agent is to ensure there is a subpath for a coordinate (x, y), the user
agent must check to see if the context has any subpaths, and if it does not, then the user
agent must create a new subpath with the point (x, y) as its first (and only) point, as if the
moveTo() method had been called.

The closePath() method must do nothing if the context has no subpaths. Otherwise, it
must mark the last subpath as closed, create a new subpath whose first point is the same
as the previous subpath's first point, and finally add this new subpath to the path.

If the last subpath had more than one point in its list of points, then this is
equivalent to adding a straight line connecting the last point back to the first point,
thus "closing" the shape, and then repeating the last (possibly implied) moveTo()
call.

New points and the lines connecting them are added to subpaths using the methods
described below. In all cases, the methods only modify the last subpath in the context's
paths.

The lineTo(x, y) method must ensure there is a subpath for (x, y) if the context has no
subpaths. Otherwise, it must connect the last point in the subpath to the given point (x, y)
using a straight line, and must then add the given point (x, y) to the subpath.

The quadraticCurveTo(cpx, cpy, x, y) method must ensure there is a subpath for (cpx,
cpy), and then must connect the last point in the subpath to the given point (x, y) using a
quadratic Bézier curve with control point (cpx, cpy), and must then add the given point (x,
y) to the subpath. [BEZIER]

The bezierCurveTo(cp1x, cp1y, cp2x, cp2y, x, y) method must ensure there is a
subpath for (cp1x, cp1y), and then must connect the last point in the subpath to the given
point (x, y) using a cubic Bézier curve with control points (cp1x, cp1y) and (cp2x, cp2y).
Then, it must add the point (x, y) to the subpath. [BEZIER]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 342 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 342 from 931

The arcTo(x1, y1, x2, y2, radius) method must first ensure there is a subpath for (x1,
y1). Then, the behavior depends on the arguments and the last point in the subpath, as
described below.

Negative values for radius must cause the implementation to raise an INDEX_SIZE_ERR
exception.

Let the point (x0, y0) be the last point in the subpath.

If the point (x0, y0) is equal to the point (x1, y1), or if the point (x1, y1) is equal to the point
(x2, y2), or if the radius radius is zero, then the method must add the point (x1, y1) to the
subpath, and connect that point to the previous point (x0, y0) by a straight line.

Otherwise, if the points (x0, y0), (x1, y1), and (x2, y2) all lie on a single straight line, then
the method must add the point (x1, y1) to the subpath, and connect that point to the
previous point (x0, y0) by a straight line.

Otherwise, let The Arc be the shortest arc given by circumference of the circle that has
radius radius, and that has one point tangent to the half-infinite line that crosses the point
(x0, y0) and ends at the point (x1, y1), and that has a different point tangent to the half-
infinite line that ends at the point (x1, y1) and crosses the point (x2, y2). The points at
which this circle touches these two lines are called the start and end tangent points
respectively. The method must connect the point (x0, y0) to the start tangent point by a
straight line, adding the start tangent point to the subpath, and then must connect the start
tangent point to the end tangent point by The Arc, adding the end tangent point to the
subpath.

The arc(x, y, radius, startAngle, endAngle, anticlockwise) method draws an arc. If
the context has any subpaths, then the method must add a straight line from the last point
in the subpath to the start point of the arc. In any case, it must draw the arc between the
start point of the arc and the end point of the arc, and add the start and end points of the
arc to the subpath. The arc and its start and end points are defined as follows:

Consider a circle that has its origin at (x, y) and that has radius radius. The points at
startAngle and endAngle along this circle's circumference, measured in radians clockwise
from the positive x-axis, are the start and end points respectively.

If the anticlockwise argument is false and endAngle-startAngle is equal to or greater than
2π, or, if the anticlockwise argument is true and startAngle-endAngle is equal to or greater
than 2π, then the arc is the whole circumference of this circle.

Otherwise, the arc is the path along the circumference of this circle from the start point to
the end point, going anti-clockwise if the anticlockwise argument is true, and clockwise
otherwise. Since the points are on the circle, as opposed to being simply angles from
zero, the arc can never cover an angle greater than 2π radians. If the two points are the
same, or if the radius is zero, then the arc is defined as being of zero length in both
directions.

Negative values for radius must cause the implementation to raise an INDEX_SIZE_ERR
exception.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 343 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 343 from 931

The rect(x, y, w, h) method must create a new subpath containing just the four points
(x, y), (x+w, y), (x+w, y+h), (x, y+h), with those four points connected by straight lines, and
must then mark the subpath as closed. It must then create a new subpath with the point
(x, y) as the only point in the subpath.

The fill() method must fill all the subpaths of the current path, using fillStyle, and
using the non-zero winding number rule. Open subpaths must be implicitly closed when
being filled (without affecting the actual subpaths).

Thus, if two overlapping but otherwise independent subpaths have opposite
windings, they cancel out and result in no fill. If they have the same winding, that
area just gets painted once.

The stroke() method must calculate the strokes of all the subpaths of the current path,
using the lineWidth, lineCap, lineJoin, and (if appropriate) miterLimit attributes, and
then fill the combined stroke area using the strokeStyle attribute.

Since the subpaths are all stroked as one, overlapping parts of the paths in one
stroke operation are treated as if their union was what was painted.

Paths, when filled or stroked, must be painted without affecting the current path, and must
be subject to shadow effects, global alpha, the clipping region, and global composition
operators. (Transformations affect the path when the path is created, not when it is
painted, though the stroke style is still affected by the transformation during painting.)

Zero-length line segments must be pruned before stroking a path. Empty subpaths must
be ignored.

The clip() method must create a new clipping region by calculating the intersection of
the current clipping region and the area described by the current path, using the non-zero
winding number rule. Open subpaths must be implicitly closed when computing the
clipping region, without affecting the actual subpaths. The new clipping region replaces
the current clipping region.

When the context is initialized, the clipping region must be set to the rectangle with the top
left corner at (0,0) and the width and height of the coordinate space.

The isPointInPath(x, y) method must return true if the point given by the x and y
coordinates passed to the method, when treated as coordinates in the canvas coordinate
space unaffected by the current transformation, is inside the current path as determined
by the non-zero winding number rule; and must return false otherwise. Points on the path
itself are considered to be inside the path. If either of the arguments is infinite or NaN,
then the method must return false.

4.8.11.1.9 Text

Status: Last call for comments

context . font [= value]
Returns the current font settings.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 344 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 344 from 931

Can be set, to change the font. The syntax is the same as for the CSS 'font'
property; values that cannot be parsed as CSS font values are ignored.

Relative keywords and lengths are computed relative to the font of the canvas
element.

context . textAlign [= value]
Returns the current text alignment settings.

Can be set, to change the alignment. The possible values are start, end, left,
right, and center. The default is start. Other values are ignored.

context . textBaseline [= value]
Returns the current baseline alignment settings.
Can be set, to change the baseline alignment. The possible values and their
meanings are given below. The default is alphabetic. Other values are ignored.

context . fillText(text, x, y [, maxWidth])
context . strokeText(text, x, y [, maxWidth])

Fills or strokes (respectively) the given text at the given position. If a maximum
width is provided, the text will be scaled to fit that width if necessary.

metrics = context . measureText(text)
Returns a TextMetrics object with the metrics of the given text in the current font.

metrics . width
Returns the advance width of the text that was passed to the measureText()
method.

The font DOM attribute, on setting, must be parsed the same way as the 'font' property of
CSS (but without supporting property-independent stylesheet syntax like 'inherit'), and the
resulting font must be assigned to the context, with the 'line-height' component forced to
'normal', with the 'font-size' component converted to CSS pixels, and with system fonts
being computed to explicit values. If the new value is syntactically incorrect (including
using property-independent stylesheet syntax like 'inherit' or 'initial'), then it must be
ignored, without assigning a new font value. [CSS]

Font names must be interpreted in the context of the canvas element's stylesheets; any
fonts embedded using @font-face must therefore be available once they are loaded. (If a
font is referenced before it is fully loaded, then it must be treated as if it was an unknown
font, falling back to another as described by the relevant CSS specifications.)
[CSSFONTS]

Only vector fonts should be used by the user agent; if a user agent were to use bitmap
fonts then transformations would likely make the font look very ugly.

On getting, the font attribute must return the serialized form of the current font of the
context (with no 'line-height' component). [CSSOM]

For example, after the following statement:

context.font = 'italic 400 12px/2 Unknown Font, sans-serif';

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 345 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 345 from 931

...the expression context.font would evaluate to the string
"italic 12px "Unknown Font", sans-serif". The "400" font-weight doesn't appear
because that is the default value. The line-height doesn't appear because it is forced to
"normal", the default value.

When the context is created, the font of the context must be set to 10px sans-serif. When
the 'font-size' component is set to lengths using percentages, 'em' or 'ex' units, or the
'larger' or 'smaller' keywords, these must be interpreted relative to the computed value of
the 'font-size' property of the corresponding canvas element at the time that the attribute is
set. When the 'font-weight' component is set to the relative values 'bolder' and 'lighter',
these must be interpreted relative to the computed value of the 'font-weight' property of the
corresponding canvas element at the time that the attribute is set. If the computed values
are undefined for a particular case (e.g. because the canvas element is not in a Document),
then the relative keywords must be interpreted relative to the normal-weight 10px sans-
serif default.

The textAlign DOM attribute, on getting, must return the current value. On setting, if the
value is one of start, end, left, right, or center, then the value must be changed to the
new value. Otherwise, the new value must be ignored. When the context is created, the
textAlign attribute must initially have the value start.

The textBaseline DOM attribute, on getting, must return the current value. On setting, if
the value is one of top, hanging, middle, alphabetic, ideographic, or bottom, then the
value must be changed to the new value. Otherwise, the new value must be ignored.
When the context is created, the textBaseline attribute must initially have the value
alphabetic.

The textBaseline attribute's allowed keywords correspond to alignment points in the font:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 346 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 346 from 931

The keywords map to these alignment points as follows:

top
The top of the em square

hanging
The hanging baseline

middle
The middle of the em square

alphabetic
The alphabetic baseline

ideographic
The ideographic baseline

bottom
The bottom of the em square

The fillText() and strokeText() methods take three or four arguments, text, x, y, and
optionally maxWidth, and render the given text at the given (x, y) coordinates ensuring
that the text isn't wider than maxWidth if specified, using the current font, textAlign, and
textBaseline values. Specifically, when the methods are called, the user agent must run
the following steps:

1. Let font be the current font of the context, as given by the font attribute.

2. Replace all the space characters in text with U+0020 SPACE characters.

3. Form a hypothetical infinitely wide CSS line box containing a single inline box
containing the text text, with all the properties at their initial values except the 'font'
property of the inline box set to font and the 'direction' property of the inline box set
to the directionality of the canvas element. [CSS]

4. If the maxWidth argument was specified and the hypothetical width of the inline box
in the hypothetical line box is greater than maxWidth CSS pixels, then change font
to have a more condensed font (if one is available or if a reasonably readable one
can be synthesized by applying a horizontal scale factor to the font) or a smaller
font, and return to the previous step.

5. Let the anchor point be a point on the inline box, determined by the textAlign and
textBaseline values, as follows:

Horizontal position:

If textAlign is left
If textAlign is start and the directionality of the canvas element is 'ltr'
If textAlign is end and the directionality of the canvas element is 'rtl'
Let the anchor point's horizontal position be the left edge of the inline box.
If textAlign is right
If textAlign is end and the directionality of the canvas element is 'ltr'
If textAlign is start and the directionality of the canvas element is 'rtl'
Let the anchor point's horizontal position be the right edge of the inline box.
If textAlign is center
Let the anchor point's horizontal position be half way between the left and right
edges of the inline box.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 347 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 347 from 931

Vertical position:

If textBaseline is top
Let the anchor point's vertical position be the top of the em box of the first available
font of the inline box.
If textBaseline is hanging
Let the anchor point's vertical position be the hanging baseline of the first available
font of the inline box.
If textBaseline is middle
Let the anchor point's vertical position be half way between the bottom and the top
of the em box of the first available font of the inline box.
If textBaseline is alphabetic
Let the anchor point's vertical position be the alphabetic baseline of the first
available font of the inline box.
If textBaseline is ideographic
Let the anchor point's vertical position be the ideographic baseline of the first
available font of the inline box.
If textBaseline is bottom
Let the anchor point's vertical position be the bottom of the em box of the first
available font of the inline box.

6. Paint the hypothetical inline box as the shape given by the text's glyphs, as
transformed by the current transformation matrix, and anchored and sized so that
before applying the current transformation matrix, the anchor point is at (x, y) and
each CSS pixel is mapped to one coordinate space unit.

For fillText() fillStyle must be applied to the glyphs and strokeStyle must be
ignored. For strokeText() the reverse holds and strokeStyle must be applied to
the glyph outlines and fillStyle must be ignored.

Text is painted without affecting the current path, and is subject to shadow effects,
global alpha, the clipping region, and global composition operators.

The measureText() method takes one argument, text. When the method is invoked, the
user agent must replace all the space characters in text with U+0020 SPACE characters,
and then must form a hypothetical infinitely wide CSS line box containing a single inline
box containing the text text, with all the properties at their initial values except the 'font'
property of the inline element set to the current font of the context, as given by the font
attribute, and must then return a new TextMetrics object with its width attribute set to the
width of that inline box, in CSS pixels. [CSS]

The TextMetrics interface is used for the objects returned from measureText(). It has one
attribute, width, which is set by the measureText() method.

Glyphs rendered using fillText() and strokeText() can spill out of the box given by
the font size (the em square size) and the width returned by measureText() (the text
width). This version of the specification does not provide a way to obtain the
bounding box dimensions of the text. If the text is to be rendered and removed, care
needs to be taken to replace the entire area of the canvas that the clipping region
covers, not just the box given by the em square height and measured text width.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 348 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 348 from 931

A future version of the 2D context API may provide a way to render fragments of
documents, rendered using CSS, straight to the canvas. This would be provided in
preference to a dedicated way of doing multiline layout.

4.8.11.1.10 Images

Status: Awaiting implementation feedback

To draw images onto the canvas, the drawImage method can be used.

This method can be invoked with three different sets of arguments:

• drawImage(image, dx, dy)
• drawImage(image, dx, dy, dw, dh)
• drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

Each of those three can take either an HTMLImageElement, an HTMLCanvasElement, or an
HTMLVideoElement for the image argument.

context . drawImage(image, dx, dy)
context . drawImage(image, dx, dy, dw, dh)
context . drawImage(image, sx, sy, sw, sh, dx, dy, dw, dh)

Draws the given image onto the canvas. The arguments are interpreted as follows:

If the first argument isn't an img, canvas, or video element, throws a
TYPE_MISMATCH_ERR exception. If the image is not fully decoded yet, or has no
image data, throws an INVALID_STATE_ERR exception. If the second argument isn't
one of the allowed values, throws a SYNTAX_ERR exception.

If not specified, the dw and dh arguments must default to the values of sw and sh,
interpreted such that one CSS pixel in the image is treated as one unit in the canvas
coordinate space. If the sx, sy, sw, and sh arguments are omitted, they must default to 0,

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 349 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 349 from 931

0, the image's intrinsic width in image pixels, and the image's intrinsic height in image
pixels, respectively.

The image argument is an instance of either HTMLImageElement, HTMLCanvasElement, or
HTMLVideoElement. If the image is of the wrong type or null, the implementation must raise
a TYPE_MISMATCH_ERR exception.

If the image argument is an HTMLImageElement object whose complete attribute is false,
then the implementation must raise an INVALID_STATE_ERR exception.

If the image argument is an HTMLVideoElement object whose readyState attribute is either
HAVE_NOTHING or HAVE_METADATA, then the implementation must raise an
INVALID_STATE_ERR exception.

If the image argument is an HTMLCanvasElement object with either a horizontal dimension
or a vertical dimension equal to zero, then the implementation must raise an
INVALID_STATE_ERR exception.

The source rectangle is the rectangle whose corners are the four points (sx, sy), (sx+sw,
sy), (sx+sw, sy+sh), (sx, sy+sh).

If the source rectangle is not entirely within the source image, or if one of the sw or sh
arguments is zero, the implementation must raise an INDEX_SIZE_ERR exception.

The destination rectangle is the rectangle whose corners are the four points (dx, dy),
(dx+dw, dy), (dx+dw, dy+dh), (dx, dy+dh).

When drawImage() is invoked, the region of the image specified by the source rectangle
must be painted on the region of the canvas specified by the destination rectangle, after
applying the current transformation matrix to the points of the destination rectangle.

The original image data of the source image must be used, not the image as it is rendered
(e.g. width and height attributes on the source element have no effect). The image data
must be processed in the original direction, even if the dimensions given are negative.

This specification does not define the algorithm to use when scaling the image, if
necessary.

When a canvas is drawn onto itself, the drawing model requires the source to be
copied before the image is drawn back onto the canvas, so it is possible to copy
parts of a canvas onto overlapping parts of itself.

When the drawImage() method is passed an animated image as its image argument, the
user agent must use the poster frame of the animation, or, if there is no poster frame, the
first frame of the animation.

When the image argument is an HTMLVideoElement, then the frame at the current playback
position must be used as the source image.

Images are painted without affecting the current path, and are subject to shadow effects,
global alpha, the clipping region, and global composition operators.

4.8.11.1.11 Pixel manipulation

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 350 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 350 from 931

Status: Awaiting implementation feedback

imagedata = context . createImageData(sw, sh)
Returns an ImageData object with the given dimensions in CSS pixels (which might
map to a different number of actual device pixels exposed by the object itself). All
the pixels in the returned object are transparent black.

imagedata = context . createImageData(imagedata)
Returns an ImageData object with the same dimensions as the argument. All the
pixels in the returned object are transparent black.

Throws a NOT_SUPPORTED_ERR exception if the argument is null.

imagedata = context . getImageData(sx, sy, sw, sh)
Returns an ImageData object containing the image data for the given rectangle of
the canvas.

Throws a NOT_SUPPORTED_ERR exception if any of the arguments are not finite.
Throws an INDEX_SIZE_ERR exception if the either of the width or height arguments
are zero.

imagedata . width
imagedata . height

Returns the actual dimensions of the data in the ImageData object, in device pixels.

imagedata . data
Returns the one-dimensional array containing the data.

context . putImageData(imagedata, dx, dy [, dirtyX, dirtyY,
dirtyWidth, dirtyHeight])

Paints the data from the given ImageData object onto the canvas. If a dirty rectangle
is provided, only the pixels from that rectangle are painted.

The globalAlpha and globalCompositeOperation attributes, as well as the shadow
attributes, are ignored for the purposes of this method call; pixels in the canvas are
replaced wholesale, with no composition, alpha blending, no shadows, etc.

If the first argument isn't an ImageData object, throws a TYPE_MISMATCH_ERR
exception. Throws a NOT_SUPPORTED_ERR exception if any of the other arguments
are not finite.

The createImageData() method is used to instantiate new blank ImageData objects. When
the method is invoked with two arguments sw and sh, it must return an ImageData object
representing a rectangle with a width in CSS pixels equal to the absolute magnitude of sw
and a height in CSS pixels equal to the absolute magnitude of sh. When invoked with a
single imagedata argument, it must return an ImageData object representing a rectangle
with the same dimensions as the ImageData object passed as the argument. The
ImageData object return must be filled with transparent black.

The getImageData(sx, sy, sw, sh) method must return an ImageData object representing
the underlying pixel data for the area of the canvas denoted by the rectangle whose
corners are the four points (sx, sy), (sx+sw, sy), (sx+sw, sy+sh), (sx, sy+sh), in canvas

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 351 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 351 from 931

coordinate space units. Pixels outside the canvas must be returned as transparent black.
Pixels must be returned as non-premultiplied alpha values.

If any of the arguments to createImageData() or getImageData() are infinite or NaN, or if
the createImageData() method is invoked with only one argument but that argument is
null, the method must instead raise a NOT_SUPPORTED_ERR exception. If either the sw or sh
arguments are zero, the method must instead raise an INDEX_SIZE_ERR exception.

ImageData objects must be initialized so that their width attribute is set to w, the number of
physical device pixels per row in the image data, their height attribute is set to h, the
number of rows in the image data, and their data attribute is initialized to a
CanvasPixelArray object holding the image data. At least one pixel's worth of image data
must be returned.

The CanvasPixelArray object provides ordered, indexed access to the color components
of each pixel of the image data. The data must be represented in left-to-right order, row by
row top to bottom, starting with the top left, with each pixel's red, green, blue, and alpha
components being given in that order for each pixel. Each component of each device pixel
represented in this array must be in the range 0..255, representing the 8 bit value for that
component. The components must be assigned consecutive indices starting with 0 for the
top left pixel's red component.

The CanvasPixelArray object thus represents h×w×4 integers. The length attribute of a
CanvasPixelArray object must return this number.

The object's indices of the supported indexed properties are the numbers in the range 0 ..
h×w×4-1.

When a CanvasPixelArray object is indexed to retrieve an indexed property index, the
value returned must be the value of the indexth component in the array.

When a CanvasPixelArray object is indexed to modify an indexed property index with
value value, the value of the indexth component in the array must be set to value. JS
undefined values must be converted to zero. Other values must first be converted to
numbers using JavaScript's ToNumber algorithm, and if the result is a NaN value, then the
value must be converted to zero. If the result is less than 0, it must be clamped to zero. If
the result is more than 255, it must be clamped to 255. If the number is not an integer, it
should be rounded to the nearest integer using the IEEE 754
convertToIntegerTiesToEven rounding mode. [ECMA262] [IEEE754]

The width and height (w and h) might be different from the sw and sh arguments to
the above methods, e.g. if the canvas is backed by a high-resolution bitmap, or if
the sw and sh arguments are negative.

The putImageData(imagedata, dx, dy, dirtyX, dirtyY, dirtyWidth, dirtyHeight)
method writes data from ImageData structures back to the canvas.

If any of the arguments to the method are infinite or NaN, the method must raise a
NOT_SUPPORTED_ERR exception.

If the first argument to the method is null or not an ImageData object then the
putImageData() method must raise a TYPE_MISMATCH_ERR exception.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 352 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 352 from 931

When the last four arguments are omitted, they must be assumed to have the values 0, 0,
the width member of the imagedata structure, and the height member of the imagedata
structure, respectively.

When invoked with arguments that do not, per the last few paragraphs, cause an
exception to be raised, the putImageData() method must act as follows:

1. Let dxdevice be the x-coordinate of the device pixel in the underlying pixel data of the
canvas corresponding to the dx coordinate in the canvas coordinate space.

Let dydevice be the y-coordinate of the device pixel in the underlying pixel data of the
canvas corresponding to the dy coordinate in the canvas coordinate space.

2. If dirtyWidth is negative, let dirtyX be dirtyX+dirtyWidth, and let dirtyWidth be equal
to the absolute magnitude of dirtyWidth.

If dirtyHeight is negative, let dirtyY be dirtyY+dirtyHeight, and let dirtyHeight be
equal to the absolute magnitude of dirtyHeight.

3. If dirtyX is negative, let dirtyWidth be dirtyWidth+dirtyX, and let dirtyX be zero.

If dirtyY is negative, let dirtyHeight be dirtyHeight+dirtyY, and let dirtyY be zero.

4. If dirtyX+dirtyWidth is greater than the width attribute of the imagedata argument,
let dirtyWidth be the value of that width attribute, minus the value of dirtyX.

If dirtyY+dirtyHeight is greater than the height attribute of the imagedata argument,
let dirtyHeight be the value of that height attribute, minus the value of dirtyY.

5. If, after those changes, either dirtyWidth or dirtyHeight is negative or zero, stop
these steps without affecting the canvas.

6. Otherwise, for all integer values of x and y where dirtyX ≤ x < dirtyX+dirtyWidth and
dirtyY ≤ y < dirtyY+dirtyHeight, copy the four channels of the pixel with coordinate
(x, y) in the imagedata data structure to the pixel with coordinate (dxdevice+x,
dydevice+y) in the underlying pixel data of the canvas.

The handling of pixel rounding when the specified coordinates do not exactly map to the
device coordinate space is not defined by this specification, except that the following must
result in no visible changes to the rendering:

context.putImageData(context.getImageData(x, y, w, h), p, q);

...for any value of x, y, w, and h and where p is the smaller of x and the sum of x and w,
and q is the smaller of y and the sum of y and h; and except that the following two calls:

context.createImageData(w, h);
context.getImageData(0, 0, w, h);

...must return ImageData objects with the same dimensions, for any value of w and h. In
other words, while user agents may round the arguments of these methods so that they
map to device pixel boundaries, any rounding performed must be performed consistently
for all of the createImageData(), getImageData() and putImageData() operations.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 353 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 353 from 931

Due to the lossy nature of converting to and from premultiplied alpha color values,
pixels that have just been set using putImageData() might be returned to an
equivalent getImageData() as different values.

The current path, transformation matrix, shadow attributes, global alpha, the clipping
region, and global composition operator must not affect the getImageData() and
putImageData() methods.

The data returned by getImageData() is at the resolution of the canvas backing store,
which is likely to not be one device pixel to each CSS pixel if the display used is a high
resolution display.

In the following example, the script generates an ImageData object so that it can draw onto
it.

// canvas is a reference to a <canvas> element
var context = canvas.getContext('2d');

// create a blank slate
var data = context.createImageData(canvas.width, canvas.height);

// create some plasma
FillPlasma(data, 'green'); // green plasma

// add a cloud to the plasma
AddCloud(data, data.width/2, data.height/2); // put a cloud in the
middle

// paint the plasma+cloud on the canvas
context.putImageData(data, 0, 0);

// support methods
function FillPlasma(data, color) { ... }
function AddCloud(data, x, y) { ... }

Here is an example of using getImageData() and putImageData() to implement an edge
detection filter.

<!DOCTYPE HTML>
<html>
 <head>
 <title>Edge detection demo</title>
 <script>
 var image = new Image();
 function init() {
 image.onload = demo;
 image.src = "image.jpeg";
 }
 function demo() {
 var canvas = document.getElementsByTagName('canvas')[0];
 var context = canvas.getContext('2d');

 // draw the image onto the canvas
 context.drawImage(image, 0, 0);

 // get the image data to manipulate
 var input = context.getImageData(0, 0, canvas.width,
canvas.height);

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 354 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 354 from 931

 // get an empty slate to put the data into
 var output = context.createImageData(canvas.width, canvas.height);

 // alias some variables for convenience
 // notice that we are using input.width and input.height here
 // as they might not be the same as canvas.width and canvas.height
 // (in particular, they might be different on high-res displays)
 var w = input.width, h = input.height;
 var inputData = input.data;
 var outputData = output.data;

 // edge detection
 for (var y = 1; y < h-1; y += 1) {
 for (var x = 1; x < w-1; x += 1) {
 for (var c = 0; c < 3; c += 1) {
 var i = (y*w + x)*4 + c;
 outputData[i] = 127 + -inputData[i - w*4 - 4] - inputData[i
- w*4] - inputData[i - w*4 + 4] +
 -inputData[i - 4] +
8*inputData[i] - inputData[i + 4] +
 -inputData[i + w*4 - 4] - inputData[i
+ w*4] - inputData[i + w*4 + 4];
 }
 outputData[(y*w + x)*4 + 3] = 255; // alpha
 }
 }

 // put the image data back after manipulation
 context.putImageData(output, 0, 0);
 }
 </script>
 </head>
 <body onload="init()">
 <canvas></canvas>
 </body>
</html>

4.8.11.1.12 Drawing model

When a shape or image is painted, user agents must follow these steps, in the order given
(or act as if they do):

1. Render the shape or image, creating image A, as described in the previous
sections. For shapes, the current fill, stroke, and line styles must be honored, and
the stroke must itself also be subjected to the current transformation matrix.

2. When shadows are drawn, render the shadow from image A, using the current
shadow styles, creating image B.

3. When shadows are drawn, multiply the alpha component of every pixel in B by
globalAlpha.

4. When shadows are drawn, composite B within the clipping region over the current
canvas bitmap using the current composition operator.

5. Multiply the alpha component of every pixel in A by globalAlpha.

6. Composite A within the clipping region over the current canvas bitmap using the
current composition operator.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 355 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 355 from 931

4.8.11.2 Color spaces and color correction

The canvas APIs must perform color correction at only two points: when rendering images
with their own gamma correction and color space information onto the canvas, to convert
the image to the color space used by the canvas (e.g. using the drawImage() method with
an HTMLImageElement object), and when rendering the actual canvas bitmap to the output
device.

Thus, in the 2D context, colors used to draw shapes onto the canvas will exactly
match colors obtained through the getImageData() method.

The toDataURL() method must not include color space information in the resource
returned. Where the output format allows it, the color of pixels in resources created by
toDataURL() must match those returned by the getImageData() method.

In user agents that support CSS, the color space used by a canvas element must match
the color space used for processing any colors for that element in CSS.

The gamma correction and color space information of images must be handled in such a
way that an image rendered directly using an img element would use the same colors as
one painted on a canvas element that is then itself rendered. Furthermore, the rendering of
images that have no color correction information (such as those returned by the
toDataURL() method) must be rendered with no color correction.

Thus, in the 2D context, calling the drawImage() method to render the output of the
toDataURL() method to the canvas, given the appropriate dimensions, has no visible
effect.

4.8.11.3 Security with canvas elements

Information leakage can occur if scripts from one origin can access information (e.g. read
pixels) from images from another origin (one that isn't the same).

To mitigate this, canvas elements are defined to have a flag indicating whether they are
origin-clean. All canvas elements must start with their origin-clean set to true. The flag
must be set to false if any of the following actions occur:

• The element's 2D context's drawImage() method is called with an HTMLImageElement
or an HTMLVideoElement whose origin is not the same as that of the Document object
that owns the canvas element.

• The element's 2D context's drawImage() method is called with an
HTMLCanvasElement whose origin-clean flag is false.

• The element's 2D context's fillStyle attribute is set to a CanvasPattern object that
was created from an HTMLImageElement or an HTMLVideoElement whose origin was
not the same as that of the Document object that owns the canvas element when the
pattern was created.

• The element's 2D context's fillStyle attribute is set to a CanvasPattern object that
was created from an HTMLCanvasElement whose origin-clean flag was false when
the pattern was created.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 356 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 356 from 931

• The element's 2D context's strokeStyle attribute is set to a CanvasPattern object
that was created from an HTMLImageElement or an HTMLVideoElement whose origin
was not the same as that of the Document object that owns the canvas element
when the pattern was created.

• The element's 2D context's strokeStyle attribute is set to a CanvasPattern object
that was created from an HTMLCanvasElement whose origin-clean flag was false
when the pattern was created.

Whenever the toDataURL() method of a canvas element whose origin-clean flag is set to
false is called, the method must raise a SECURITY_ERR exception.

Whenever the getImageData() method of the 2D context of a canvas element whose
origin-clean flag is set to false is called with otherwise correct arguments, the method
must raise a SECURITY_ERR exception.

Even resetting the canvas state by changing its width or height attributes doesn't
reset the origin-clean flag.

4.8.12 The map element

Status: Last call for comments

Categories
Flow content.
When the element only contains phrasing content: phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Transparent.

Content attributes:
Global attributes
name

DOM interface:
interface HTMLMapElement : HTMLElement {

 attribute DOMString name;

 readonly attribute HTMLCollection areas;

 readonly attribute HTMLCollection images;

};

The map element, in conjunction with any area element descendants, defines an image
map. The element represents its children.

The name attribute gives the map a name so that it can be referenced. The attribute must
be present and must have a non-empty value with no space characters. If the id attribute
is also specified, both attributes must have the same value.

map . areas

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 357 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 357 from 931

Returns an HTMLCollection of the area elements in the map.

map . images
Returns an HTMLCollection of the img and object elements that use the map.

The areas attribute must return an HTMLCollection rooted at the map element, whose filter
matches only area elements.

The images attribute must return an HTMLCollection rooted at the Document node, whose
filter matches only img and object elements that are associated with this map element
according to the image map processing model.

The DOM attribute name must reflect the content attribute of the same name.

4.8.13 The area element

Status: Last call for comments

Categories
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where phrasing content is expected, but only if there is a map element ancestor.

Content model:
Empty.

Content attributes:
Global attributes
alt
coords
shape
href
target
ping
rel
media
hreflang
type

DOM interface:
interface HTMLAreaElement : HTMLElement {

 attribute DOMString alt;

 attribute DOMString coords;

 attribute DOMString shape;

 stringifier attribute DOMString href;

 attribute DOMString target;

 attribute DOMString ping;

 attribute DOMString rel;

 readonly attribute DOMTokenList relList;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 358 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 358 from 931

 attribute DOMString media;

 attribute DOMString hreflang;

 attribute DOMString type;

 // URL decomposition attributes

 attribute DOMString protocol;

 attribute DOMString host;

 attribute DOMString hostname;

 attribute DOMString port;

 attribute DOMString pathname;

 attribute DOMString search;

 attribute DOMString hash;

};

The area element represents either a hyperlink with some text and a corresponding area
on an image map, or a dead area on an image map.

If the area element has an href attribute, then the area element represents a hyperlink. In
this case, the alt attribute must be present. It specifies the text of the hyperlink. Its value
must be text that, when presented with the texts specified for the other hyperlinks of the
image map, and with the alternative text of the image, but without the image itself,
provides the user with the same kind of choice as the hyperlink would when used without
its text but with its shape applied to the image. The alt attribute may be left blank if there
is another area element in the same image map that points to the same resource and has
a non-blank alt attribute.

If the area element has no href attribute, then the area represented by the element cannot
be selected, and the alt attribute must be omitted.

In both cases, the shape and coords attributes specify the area.

The shape attribute is an enumerated attribute. The following table lists the keywords
defined for this attribute. The states given in the first cell of the rows with keywords give
the states to which those keywords map. Some of the keywords are non-conforming, as
noted in the last column.

State Keywords Notes
circle Circle state
circ Non-conforming

Default state default
Polygon state poly

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 359 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 359 from 931

State Keywords Notes
 polygon Non-conforming

rect Rectangle state
rectangle Non-conforming

The attribute may be omitted. The missing value default is the rectangle state.

The coords attribute must, if specified, contain a valid list of integers. This attribute gives
the coordinates for the shape described by the shape attribute. The processing for this
attribute is described as part of the image map processing model.

In the circle state, area elements must have a coords attribute present, with three
integers, the last of which must be non-negative. The first integer must be the distance in
CSS pixels from the left edge of the image to the center of the circle, the second integer
must be the distance in CSS pixels from the top edge of the image to the center of the
circle, and the third integer must be the radius of the circle, again in CSS pixels.

In the default state state, area elements must not have a coords attribute. (The area is
the whole image.)

In the polygon state, area elements must have a coords attribute with at least six
integers, and the number of integers must be even. Each pair of integers must represent a
coordinate given as the distances from the left and the top of the image in CSS pixels
respectively, and all the coordinates together must represent the points of the polygon, in
order.

In the rectangle state, area elements must have a coords attribute with exactly four
integers, the first of which must be less than the third, and the second of which must be
less than the fourth. The four points must represent, respectively, the distance from the
left edge of the image to the left side of the rectangle, the distance from the top edge to
the top side, the distance from the left edge to the right side, and the distance from the top
edge to the bottom side, all in CSS pixels.

When user agents allow users to follow hyperlinks created using the area element, as
described in the next section, the href, target and ping attributes decide how the link is
followed. The rel, media, hreflang, and type attributes may be used to indicate to the
user the likely nature of the target resource before the user follows the link.

The target, ping, rel, media, hreflang, and type attributes must be omitted if the href
attribute is not present.

The activation behavior of area elements is to run the following steps:

1. If the DOMActivate event in question is not trusted (i.e. a click() method call was
the reason for the event being dispatched), and the area element's target attribute
is such that applying the rules for choosing a browsing context given a browsing
context name, using the value of the target attribute as the browsing context
name, would result in there not being a chosen browsing context, then raise an
INVALID_ACCESS_ERR exception and abort these steps.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 360 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 360 from 931

2. Otherwise, the user agent must follow the hyperlink defined by the area element, if
any.

The DOM attributes alt, coords, href, target, ping, rel, media, hreflang, and type, each
must reflect the respective content attributes of the same name.

The DOM attribute shape must reflect the shape content attribute, limited to only known
values.

The DOM attribute relList must reflect the rel content attribute.

The area element also supports the complement of URL decomposition attributes,
protocol, host, port, hostname, pathname, search, and hash. These must follow the rules
given for URL decomposition attributes, with the input being the result of resolving the
element's href attribute relative to the element, if there is such an attribute and resolving it
is successful, or the empty string otherwise; and the common setter action being the same
as setting the element's href attribute to the new output value.

4.8.14 Image maps

Status: Last call for comments

4.8.14.1 Authoring

An image map allows geometric areas on an image to be associated with hyperlinks.

An image, in the form of an img element or an object element representing an image, may
be associated with an image map (in the form of a map element) by specifying a usemap
attribute on the img or object element. The usemap attribute, if specified, must be a valid
hash-name reference to a map element.

Consider an image that looks as follows:

If we wanted just the colored areas to be clickable, we could do it as follows:

<p>
 Please select a shape:
 <img src="shapes.png" usemap="#shapes"
 alt="Four shapes are available: a red hollow box, a green circle,
a blue triangle, and a yellow four-pointed star.">
 <map name="shapes">
 <area shape=rect coords="50,50,100,100"> <!-- the hole in the red box
-->
 <area shape=rect coords="25,25,125,125" href="red.html" alt="Red
box.">

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 361 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 361 from 931

 <area shape=circle coords="200,75,50" href="green.html" alt="Green
circle.">
 <area shape=poly coords="325,25,262,125,388,125" href="blue.html"
alt="Blue triangle.">
 <area shape=poly
coords="450,25,435,60,400,75,435,90,450,125,465,90,500,75,465,60"
 href="yellow.html" alt="Yellow star.">
 </map>
</p>

4.8.14.2 Processing model

If an img element or an object element representing an image has a usemap attribute
specified, user agents must process it as follows:

1. First, rules for parsing a hash-name reference to a map element must be followed.
This will return either an element (the map) or null.

2. If that returned null, then abort these steps. The image is not associated with an
image map after all.

3. Otherwise, the user agent must collect all the area elements that are descendants
of the map. Let those be the areas.

Having obtained the list of area elements that form the image map (the areas), interactive
user agents must process the list in one of two ways.

If the user agent intends to show the text that the img element represents, then it must use
the following steps.

In user agents that do not support images, or that have images disabled, object
elements cannot represent images, and thus this section never applies (the fallback
content is shown instead). The following steps therefore only apply to img elements.

1. Remove all the area elements in areas that have no href attribute.

2. Remove all the area elements in areas that have no alt attribute, or whose alt
attribute's value is the empty string, if there is another area element in areas with
the same value in the href attribute and with a non-empty alt attribute.

3. Each remaining area element in areas represents a hyperlink. Those hyperlinks
should all be made available to the user in a manner associated with the text of the
img.

In this context, user agents may represent area and img elements with no specified
alt attributes, or whose alt attributes are the empty string or some other non-
visible text, in a user-agent-defined fashion intended to indicate the lack of suitable
author-provided text.

If the user agent intends to show the image and allow interaction with the image to select
hyperlinks, then the image must be associated with a set of layered shapes, taken from
the area elements in areas, in reverse tree order (so the last specified area element in the
map is the bottom-most shape, and the first element in the map, in tree order, is the top-
most shape).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 362 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 362 from 931

Each area element in areas must be processed as follows to obtain a shape to layer onto
the image:

1. Find the state that the element's shape attribute represents.

2. Use the rules for parsing a list of integers to parse the element's coords attribute, if
it is present, and let the result be the coords list. If the attribute is absent, let the
coords list be the empty list.

3. If the number of items in the coords list is less than the minimum number given for
the area element's current state, as per the following table, then the shape is
empty; abort these steps.

State Minimum number of items
Circle state 3
Default state 0
Polygon state 6
Rectangle state 4

4. Check for excess items in the coords list as per the entry in the following list
corresponding to the shape attribute's state:

Circle state
Drop any items in the list beyond the third.
Default state
Drop all items in the list.
Polygon state
Drop the last item if there's an odd number of items.
Rectangle state
Drop any items in the list beyond the fourth.

5. If the shape attribute represents the rectangle state, and the first number in the list
is numerically less than the third number in the list, then swap those two numbers
around.

6. If the shape attribute represents the rectangle state, and the second number in the
list is numerically less than the fourth number in the list, then swap those two
numbers around.

7. If the shape attribute represents the circle state, and the third number in the list is
less than or equal to zero, then the shape is empty; abort these steps.

8. Now, the shape represented by the element is the one described for the entry in the
list below corresponding to the state of the shape attribute:

Circle state
Let x be the first number in coords, y be the second number, and r be the third
number.

The shape is a circle whose center is x CSS pixels from the left edge of the image
and x CSS pixels from the top edge of the image, and whose radius is r pixels.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 363 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 363 from 931

Default state
The shape is a rectangle that exactly covers the entire image.

Polygon state
Let xi be the (2i)th entry in coords, and yi be the (2i+1)th entry in coords (the first
entry in coords being the one with index 0).

Let the coordinates be (xi, yi), interpreted in CSS pixels measured from the top left
of the image, for all integer values of i from 0 to (N/2)-1, where N is the number of
items in coords.

The shape is a polygon whose vertices are given by the coordinates, and whose
interior is established using the even-odd rule. [GRAPHICS]

Rectangle state
Let x1 be the first number in coords, y1 be the second number, x2 be the third
number, and y2 be the fourth number.

The shape is a rectangle whose top-left corner is given by the coordinate (x1, y1)
and whose bottom right corner is given by the coordinate (x2, y2), those
coordinates being interpreted as CSS pixels from the top left corner of the image.

For historical reasons, the coordinates must be interpreted relative to the displayed
image, even if it stretched using CSS or the image element's width and height
attributes.

Mouse clicks on an image associated with a set of layered shapes per the above
algorithm must be dispatched to the top-most shape covering the point that the pointing
device indicated (if any), and then, must be dispatched again (with a new Event object) to
the image element itself. User agents may also allow individual area elements
representing hyperlinks to be selected and activated (e.g. using a keyboard); events from
this are not also propagated to the image.

Because a map element (and its area elements) can be associated with multiple img
and object elements, it is possible for an area element to correspond to multiple
focusable areas of the document.

Image maps are live; if the DOM is mutated, then the user agent must act as if it had rerun
the algorithms for image maps.

4.8.15 MathML

Status: Last call for comments. ISSUE-37 (html-svg-mathml) blocks progress to Last Call

The math element from the MathML namespace falls into the embedded content category
for the purposes of the content models in this specification.

User agents must handle text other than inter-element whitespace found in MathML
elements whose content models do not allow straight text by pretending for the purposes
of MathML content models, layout, and rendering that that text is actually wrapped in an
mtext element in the MathML namespace. (Such text is not, however, conforming.)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 364 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 364 from 931

User agents must act as if any MathML element whose contents does not match the
element's content model was replaced, for the purposes of MathML layout and rendering,
by an merror element in the MathML namespace containing some appropriate error
message.

To enable authors to use MathML tools that only accept MathML in its XML form,
interactive HTML user agents are encouraged to provide a way to export any MathML
fragment as a namespace-well-formed XML fragment.

4.8.16 SVG

The svg element from the SVG namespace falls into the embedded content, phrasing
content, and flow content categories for the purposes of the content models in this
specification.

To enable authors to use SVG tools that only accept SVG in its XML form, interactive
HTML user agents are encouraged to provide a way to export any SVG fragment as a
namespace-well-formed XML fragment.

When the SVG foreignObject element contains elements from the HTML namespace,
such elements must all be flow content. [SVG]

The content model for title elements in the SVG namespace inside HTML documents is
phrasing content. (This further constrains the requirements given in the SVG
specification.)

4.8.17 Dimension attributes

Status: Last call for comments

Author requirements: The width and height attributes on img, iframe, embed, object,
video, and, when their type attribute is in the Image Button state, input elements may be
specified to give the dimensions of the visual content of the element (the width and height
respectively, relative to the nominal direction of the output medium), in CSS pixels. The
attributes, if specified, must have values that are valid non-negative integers.

The specified dimensions given may differ from the dimensions specified in the resource
itself, since the resource may have a resolution that differs from the CSS pixel resolution.
(On screens, CSS pixels have a resolution of 96ppi, but in general the CSS pixel
resolution depends on the reading distance.) If both attributes are specified, then one of
the following statements must be true:

• specified width - 0.5 ≤ specified height * target ratio ≤ specified width + 0.5
• specified height - 0.5 ≤ specified width / target ratio ≤ specified height + 0.5
• specified height = specified width = 0

The target ratio is the ratio of the intrinsic width to the intrinsic height in the resource. The
specified width and specified height are the values of the width and height attributes
respectively.

The two attributes must be omitted if the resource in question does not have both an
intrinsic width and an intrinsic height.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 365 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 365 from 931

If the two attributes are both zero, it indicates that the element is not intended for the user
(e.g. it might be a part of a service to count page views).

The dimension attributes are not intended to be used to stretch the image.

User agent requirements: User agents are expected to use these attributes as hints for
the rendering.

The width and height DOM attributes on the iframe, embed, object, and video elements
must reflect the respective content attributes of the same name.

4.9 Tabular data

Status: Last call for comments. ISSUE-32 (table-summary) blocks progress to Last Call

4.9.1 The table element

Status: Last call for comments

Categories
Flow content.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
In this order: optionally a caption element, followed by either zero or more
colgroup elements, followed optionally by a thead element, followed optionally by a
tfoot element, followed by either zero or more tbody elements or one or more tr
elements, followed optionally by a tfoot element (but there can only be one tfoot
element child in total).

Content attributes:
Global attributes
summary (but see prose)

DOM interface:
interface HTMLTableElement : HTMLElement {

 attribute HTMLTableCaptionElement caption;

 HTMLElement createCaption();

 void deleteCaption();

 attribute HTMLTableSectionElement tHead;

 HTMLElement createTHead();

 void deleteTHead();

 attribute HTMLTableSectionElement tFoot;

 HTMLElement createTFoot();

 void deleteTFoot();

 readonly attribute HTMLCollection tBodies;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 366 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 366 from 931

 HTMLElement createTBody();

 readonly attribute HTMLCollection rows;

 HTMLElement insertRow(optional in long index);

 void deleteRow(in long index);

};

The table element represents data with more than one dimension, in the form of a table.

The table element takes part in the table model.

Tables must not be used as layout aids. Historically, some Web authors have misused
tables in HTML as a way to control their page layout. This usage is non-conforming,
because tools attempting to extract tabular data from such documents would obtain very
confusing results. In particular, users of accessibility tools like screen readers are likely to
find it very difficult to navigate pages with tables used for layout.

There are a variety of alternatives to using HTML tables for layout, primarily using
CSS positioning and the CSS table model.

User agents that do table analysis on arbitrary content are encouraged to find heuristics to
determine which tables actually contain data and which are merely being used for layout.
This specification does not define a precise heuristic.

Tables have rows and columns given by their descendants. A table must not have an
empty row or column, as described in the description of the table model.

For tables that consist of more than just a grid of cells with headers in the first row and
headers in the first column, and for any table in general where the reader might have
difficulty understanding the content, authors should include explanatory information
introducing the table. This information is useful for all users, but is especially useful for
users who cannot see the table, e.g. users of screen readers.

Such explanatory information should introduce the purpose of the table, outline its basic
cell structure, highlight any trends or patterns, and generally teach the user how to use the
table.

For instance, the following table:

Characteristics with positive and negative sides
Negative Characteristic Positive

Sad Mood Happy
Failing Grade Passing

...might benefit from a description explaining to the way the table is laid out, something like
"Characteristics are given in the second column, with the negative side in the left column
and the positive side in the right column".

There are a variety of ways to include this information, such as:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 367 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 367 from 931

In prose, surrounding the table
<p>In the following table, characteristics are given in the second
column, with the negative side in the left column and the positive
side in the right column.</p>
<table>
 <caption>Characteristics with positive and negative
sides</caption>
 <thead>
 <tr>
 <th id="n"> Negative
 <th> Characteristic
 <th> Positive
 <tbody>
 <tr>
 <td headers="n r1"> Sad
 <th id="r1"> Mood
 <td> Happy
 <tr>
 <td headers="n r2"> Failing
 <th id="r2"> Grade
 <td> Passing
</table>

In the table's caption
<table>
 <caption>
 Characteristics with positive and negative
sides.
 <p>Characteristics are given in the second column, with the
 negative side in the left column and the positive side in the
right
 column.</p>
 </caption>
 <thead>
 <tr>
 <th id="n"> Negative
 <th> Characteristic
 <th> Positive
 <tbody>
 <tr>
 <td headers="n r1"> Sad
 <th id="r1"> Mood
 <td> Happy
 <tr>
 <td headers="n r2"> Failing
 <th id="r2"> Grade
 <td> Passing
</table>

In the table's caption, in a details element
<table>
 <caption>
 Characteristics with positive and negative
sides.
 <details>
 <legend>Help</legend>
 <p>Characteristics are given in the second column, with the
 negative side in the left column and the positive side in the
right
 column.</p>
 </details>
 </caption>
 <thead>
 <tr>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 368 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 368 from 931

 <th id="n"> Negative
 <th> Characteristic
 <th> Positive
 <tbody>
 <tr>
 <td headers="n r1"> Sad
 <th id="r1"> Mood
 <td> Happy
 <tr>
 <td headers="n r2"> Failing
 <th id="r2"> Grade
 <td> Passing
</table>

Next to the table, in the same figure
<figure>
 <legend>Characteristics with positive and negative sides</legend>
 <p>Characteristics are given in the second
 column, with the negative side in the left column and the
positive
 side in the right column.</p>
 <table>
 <thead>
 <tr>
 <th id="n"> Negative
 <th> Characteristic
 <th> Positive
 <tbody>
 <tr>
 <td headers="n r1"> Sad
 <th id="r1"> Mood
 <td> Happy
 <tr>
 <td headers="n r2"> Failing
 <th id="r2"> Grade
 <td> Passing
 </table>
<figure>

Next to the table, in a figure's legend
<figure>
 <legend>
 Characteristics with positive and negative
sides
 <p>Characteristics are given in the second
 column, with the negative side in the left column and the
positive
 side in the right column.</p>
 </legend>
 <table>
 <thead>
 <tr>
 <th id="n"> Negative
 <th> Characteristic
 <th> Positive
 <tbody>
 <tr>
 <td headers="n r1"> Sad
 <th id="r1"> Mood
 <td> Happy
 <tr>
 <td headers="n r2"> Failing
 <th id="r2"> Grade
 <td> Passing

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 369 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 369 from 931

 </table>
<figure>

Authors may also use other techniques, or combinations of the above techniques, as
appropriate.

The summary attribute on table elements was suggested in earlier versions of the
language as a technique for providing explanatory text for complex tables for users of
screen readers. One of the techniques described above should be used instead.

In particular, authors are encouraged to consider whether their explanatory text for
tables is likely to be useful to the visually impaired: if their text would not be useful,
then it is best to not include a summary attribute. Similarly, if their explanatory text
could help someone who is not visually impaired, e.g. someone who is seeing the
table for the first time, then the text would be more useful before the table or in the
caption. For example, describing the conclusions of the data in a table is useful to
everyone; explaining how to read the table, if not obvious from the headers alone, is
useful to everyone; describing the structure of the table, if it is easy to grasp
visually, may not be useful to everyone, but it might also not be useful to users who
can quickly navigate the table with an accessibility tool.

If a table element has a summary attribute, the user agent may report the contents of that
attribute to the user.

table . caption [= value]
Returns the table's caption element.

Can be set, to replace the caption element. If the new value is not a caption
element, throws a HIERARCHY_REQUEST_ERR exception.

caption = table . createCaption()
Ensures the table has a caption element, and returns it.

table . deleteCaption()
Ensures the table does not have a caption element.

table . tHead [= value]
Returns the table's thead element.

Can be set, to replace the thead element. If the new value is not a thead element,
throws a HIERARCHY_REQUEST_ERR exception.

thead = table . createTHead()
Ensures the table has a thead element, and returns it.

table . deleteTHead()
Ensures the table does not have a thead element.

table . tFoot [= value]
Returns the table's tfoot element.

Can be set, to replace the tfoot element. If the new value is not a tfoot element,
throws a HIERARCHY_REQUEST_ERR exception.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 370 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 370 from 931

tfoot = table .
createTFoot()

Ensures the table has a tfoot element, and returns it.

table .
deleteTFoot(
)

Ensures the table does not have a tfoot element.
tabl
e .
tBod
ies

Returns an HTMLCollection of the tbody elements of the table.
t
b
o
d
y

=

t
a
b
l
e

.

c
r
e
a
t
e
T
B
o
d
y

(
)

Creates a tbody element, inserts it into the table, and returns it.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 371 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 371 from 931

Returns an HTMLCollection of the tr elements of the table.

Creates a tr element, along with a tbody if required, inserts them into the table at
the position given by the argument, and returns the tr.
The position is relative to the rows in the table. The index −1 is equivalent to
inserting at the end of the table.
If the given position is less than −1 or greater than the number of rows, throws an
INDEX_SIZE_ERR exception.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 372 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 372 from 931

Removes the tr element with the given position in the table.
The position is relative to the rows in the table. The index −1 is equivalent to
deleting the last row of the table.
If the given position is less than −1 or greater than the index of the last row, or if
there are no rows, throws an INDEX_SIZE_ERR exception.

The caption DOM attribute must return, on getting, the first caption element child of the
table element, if any, or null otherwise. On setting, if the new value is a caption element,
the first caption element child of the table element, if any, must be removed, and the new
value must be inserted as the first node of the table element. If the new value is not a
caption element, then a HIERARCHY_REQUEST_ERR DOM exception must be raised instead.

The createCaption() method must return the first caption element child of the table
element, if any; otherwise a new caption element must be created, inserted as the first
node of the table element, and then returned.

The deleteCaption() method must remove the first caption element child of the table
element, if any.

The tHead DOM attribute must return, on getting, the first thead element child of the table
element, if any, or null otherwise. On setting, if the new value is a thead element, the first
thead element child of the table element, if any, must be removed, and the new value
must be inserted immediately before the first element in the table element that is neither a
caption element nor a colgroup element, if any, or at the end of the table otherwise. If the
new value is not a thead element, then a HIERARCHY_REQUEST_ERR DOM exception must be
raised instead.

The createTHead() method must return the first thead element child of the table element,
if any; otherwise a new thead element must be created and inserted immediately before
the first element in the table element that is neither a caption element nor a colgroup
element, if any, or at the end of the table otherwise, and then that new element must be
returned.

The deleteTHead() method must remove the first thead element child of the table
element, if any.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 373 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 373 from 931

The tFoot DOM attribute must return, on getting, the first tfoot element child of the table
element, if any, or null otherwise. On setting, if the new value is a tfoot element, the first
tfoot element child of the table element, if any, must be removed, and the new value
must be inserted immediately before the first element in the table element that is neither a
caption element, a colgroup element, nor a thead element, if any, or at the end of the
table if there are no such elements. If the new value is not a tfoot element, then a
HIERARCHY_REQUEST_ERR DOM exception must be raised instead.

The createTFoot() method must return the first tfoot element child of the table element,
if any; otherwise a new tfoot element must be created and inserted immediately before
the first element in the table element that is neither a caption element, a colgroup
element, nor a thead element, if any, or at the end of the table if there are no such
elements, and then that new element must be returned.

The deleteTFoot() method must remove the first tfoot element child of the table
element, if any.

The tBodies attribute must return an HTMLCollection rooted at the table node, whose
filter matches only tbody elements that are children of the table element.

The createTBody() method must create a new tbody element, insert it immediately after
the last tbody element in the table element, if any, or at the end of the table element if
the table element has no tbody element children, and then must return the new tbody
element.

The rows attribute must return an HTMLCollection rooted at the table node, whose filter
matches only tr elements that are either children of the table element, or children of
thead, tbody, or tfoot elements that are themselves children of the table element. The
elements in the collection must be ordered such that those elements whose parent is a
thead are included first, in tree order, followed by those elements whose parent is either a
table or tbody element, again in tree order, followed finally by those elements whose
parent is a tfoot element, still in tree order.

The behavior of the insertRow(index) method depends on the state of the table. When it
is called, the method must act as required by the first item in the following list of conditions
that describes the state of the table and the index argument:

If index is less than −1 or greater than the number of elements in rows collection:
The method must raise an INDEX_SIZE_ERR exception.

If the rows collection has zero elements in it, and the table has no tbody elements in
it:

The method must create a tbody element, then create a tr element, then append
the tr element to the tbody element, then append the tbody element to the table
element, and finally return the tr element.

If the rows collection has zero elements in it:
The method must create a tr element, append it to the last tbody element in the
table, and return the tr element.

If index is missing, equal to −1, or equal to the number of items in rows collection:
The method must create a tr element, and append it to the parent of the last tr
element in the rows collection. Then, the newly created tr element must be
returned.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 374 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 374 from 931

Otherwise:
The method must create a tr element, insert it immediately before the indexth tr
element in the rows collection, in the same parent, and finally must return the newly
created tr element.

When the deleteRow(index) method is called, the user agent must run the following steps:

1. If index is equal to −1, then index must be set to the number if items in the rows
collection, minus one.

2. Now, if index is less than zero, or greater than or equal to the number of elements
in the rows collection, the method must instead raise an INDEX_SIZE_ERR exception,
and these steps must be aborted.

Otherwise, the method must remove the indexth element in the rows collection from its
parent.

4.9.2 The caption element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
As the first element child of a table element.

Content model:
Flow content, but with no descendant table elements.

Content attributes:
Global attributes

DOM interface:
interface HTMLTableCaptionElement : HTMLElement {};

The caption element represents the title of the table that is its parent, if it has a parent
and that is a table element.

The caption element takes part in the table model.

When a table element is in a figure element alone but for the figure's legend, the
caption element should be omitted in favor of the legend.

A caption can introduce context for a table, making it significantly easier to understand.

Consider, for instance, the following table:

 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 375 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 375 from 931

5 6 7 8 9 10 11
6 7 8 9 10 11 12

In the abstract, this table is not clear. However, with a caption giving the table's number
(for reference in the main prose) and explaining its use, it makes more sense:

<caption>
<p>Table 1.
<p>This table shows the total score obtained from rolling two
six-sided dice. The first row represents the value of the first die,
the first column the value of the second die. The total is given in
the cell that corresponds to the values of the two dice.
</caption>

This provides the user with more context:

Table 1.

This table shows the total score obtained from rolling two six-sided dice. The first row represents the
value of the first die, the first column the value of the second die. The total is given in the cell that
corresponds to the values of the two dice.

 1 2 3 4 5 6
1 2 3 4 5 6 7
2 3 4 5 6 7 8
3 4 5 6 7 8 9
4 5 6 7 8 9 10
5 6 7 8 9 10 11
6 7 8 9 10 11 12

4.9.3 The colgroup element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
As a child of a table element, after any caption elements and before any thead,
tbody, tfoot, and tr elements.

Content model:
Zero or more col elements.

Content attributes:
Global attributes
span

DOM interface:
interface HTMLTableColElement : HTMLElement {

 attribute unsigned long span;

};

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 376 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 376 from 931

The colgroup element represents a group of one or more columns in the table that is its
parent, if it has a parent and that is a table element.

If the colgroup element contains no col elements, then the element may have a span
content attribute specified, whose value must be a valid non-negative integer greater than
zero.

The colgroup element and its span attribute take part in the table model.

The span DOM attribute must reflect the respective content attribute of the same name.
The value must be limited to only positive non-zero numbers.

4.9.4 The col element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
As a child of a colgroup element that doesn't have a span attribute.

Content model:
Empty.

Content attributes:
Global attributes
span

DOM interface:
HTMLTableColElement, same as for colgroup elements. This interface defines one
member, span.

If a col element has a parent and that is a colgroup element that itself has a parent that is
a table element, then the col element represents one or more columns in the column
group represented by that colgroup.

The element may have a span content attribute specified, whose value must be a valid
non-negative integer greater than zero.

The col element and its span attribute take part in the table model.

The span DOM attribute must reflect the content attribute of the same name. The value
must be limited to only positive non-zero numbers.

4.9.5 The tbody element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
As a child of a table element, after any caption, colgroup, and thead elements, but
only if there are no tr elements that are children of the table element.

Content model:
Zero or more tr elements

Content attributes:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 377 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 377 from 931

Global attributes
DOM interface:

interface HTMLTableSectionElement : HTMLElement {

 readonly attribute HTMLCollection rows;

 HTMLElement insertRow(optional in long index);

 void deleteRow(in long index);

};

The HTMLTableSectionElement interface is also used for thead and tfoot elements.

The tbody element represents a block of rows that consist of a body of data for the parent
table element, if the tbody element has a parent and it is a table.

The tbody element takes part in the table model.

tbody . rows
Returns an HTMLCollection of the tr elements of the table section.

tr = tbody . insertRow([index])
Creates a tr element, inserts it into the table section at the position given by the
argument, and returns the tr.
The position is relative to the rows in the table section. The index −1, which is the
default if the argument is omitted, is equivalent to inserting at the end of the table
section.
If the given position is less than −1 or greater than the number of rows, throws an
INDEX_SIZE_ERR exception.

tbody . deleteRow(index)
Removes the tr element with the given position in the table section.
The position is relative to the rows in the table section. The index −1 is equivalent
to deleting the last row of the table section.
If the given position is less than −1 or greater than the index of the last row, or if
there are no rows, throws an INDEX_SIZE_ERR exception.

The rows attribute must return an HTMLCollection rooted at the element, whose filter
matches only tr elements that are children of the element.

The insertRow(index) method must, when invoked on an element table section, act as
follows:

If index is less than −1 or greater than the number of elements in the rows collection, the
method must raise an INDEX_SIZE_ERR exception.

If index is missing, equal to −1, or equal to the number of items in the rows collection, the
method must create a tr element, append it to the element table section, and return the
newly created tr element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 378 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 378 from 931

Otherwise, the method must create a tr element, insert it as a child of the table section
element, immediately before the indexth tr element in the rows collection, and finally must
return the newly created tr element.

The deleteRow(index) method must remove the indexth element in the rows collection
from its parent. If index is less than zero or greater than or equal to the number of
elements in the rows collection, the method must instead raise an INDEX_SIZE_ERR
exception.

4.9.6 The thead element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
As a child of a table element, after any caption, and colgroup elements and
before any tbody, tfoot, and tr elements, but only if there are no other thead
elements that are children of the table element.

Content model:
Zero or more tr elements

Content attributes:
Global attributes

DOM interface:
HTMLTableSectionElement, as defined for tbody elements.

The thead element represents the block of rows that consist of the column labels
(headers) for the parent table element, if the thead element has a parent and it is a table.

The thead element takes part in the table model.

4.9.7 The tfoot element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
As a child of a table element, after any caption, colgroup, and thead elements and
before any tbody and tr elements, but only if there are no other tfoot elements
that are children of the table element.
As a child of a table element, after any caption, colgroup, thead, tbody, and tr
elements, but only if there are no other tfoot elements that are children of the
table element.

Content model:
Zero or more tr elements

Content attributes:
Global attributes

DOM interface:
HTMLTableSectionElement, as defined for tbody elements.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 379 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 379 from 931

The tfoot element represents the block of rows that consist of the column summaries
(footers) for the parent table element, if the tfoot element has a parent and it is a table.

The tfoot element takes part in the table model.

4.9.8 The tr element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
As a child of a thead element.
As a child of a tbody element.
As a child of a tfoot element.
As a child of a table element, after any caption, colgroup, and thead elements, but
only if there are no tbody elements that are children of the table element.

Content model:
When the parent node is a thead element: Zero or more th elements
Otherwise: Zero or more td or th elements

Content attributes:
Global attributes

DOM interface:
interface HTMLTableRowElement : HTMLElement {

 readonly attribute long rowIndex;

 readonly attribute long sectionRowIndex;

 readonly attribute HTMLCollection cells;

 HTMLElement insertCell(optional in long index);

 void deleteCell(in long index);

};

The tr element represents a row of cells in a table.

The tr element takes part in the table model.

tr . rowIndex
Returns the position of the row in the table's rows list.
Returns −1 if the element isn't in a table.

tr . sectionRowIndex
Returns the position of the row in the table section's rows list.
Returns −1 if the element isn't in a table section.

tr . cells
Returns an HTMLCollection of the td and th elements of the row.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 380 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 380 from 931

cell = tr . insertCell([index])
Creates a td element, inserts it into the table row at the position given by the
argument, and returns the td.
The position is relative to the cells in the row. The index −1, which is the default if
the argument is omitted, is equivalent to inserting at the end of the row.
If the given position is less than −1 or greater than the number of cells, throws an
INDEX_SIZE_ERR exception.

tr . deleteCell(index)
Removes the td or th element with the given position in the row.
The position is relative to the cells in the row. The index −1 is equivalent to deleting
the last cell of the row.
If the given position is less than −1 or greater than the index of the last cell, or if
there are no cells, throws an INDEX_SIZE_ERR exception.

The rowIndex attribute must, if the element has a parent table element, or a parent tbody,
thead, or tfoot element and a grandparent table element, return the index of the tr
element in that table element's rows collection. If there is no such table element, then the
attribute must return −1.

The sectionRowIndex attribute must, if the element has a parent table, tbody, thead, or
tfoot element, return the index of the tr element in the parent element's rows collection
(for tables, that's the rows collection; for table sections, that's the rows collection). If there
is no such parent element, then the attribute must return −1.

The cells attribute must return an HTMLCollection rooted at the tr element, whose filter
matches only td and th elements that are children of the tr element.

The insertCell(index) method must act as follows:

If index is less than −1 or greater than the number of elements in the cells collection, the
method must raise an INDEX_SIZE_ERR exception.

If index is missing, equal to −1, or equal to the number of items in cells collection, the
method must create a td element, append it to the tr element, and return the newly
created td element.

Otherwise, the method must create a td element, insert it as a child of the tr element,
immediately before the indexth td or th element in the cells collection, and finally must
return the newly created td element.

The deleteCell(index) method must remove the indexth element in the cells collection
from its parent. If index is less than zero or greater than or equal to the number of
elements in the cells collection, the method must instead raise an INDEX_SIZE_ERR
exception.

4.9.9 The td element

Status: Implemented and widely deployed

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 381 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 381 from 931

Categories
Sectioning root.

Contexts in which this element may be used:
As a child of a tr element.

Content model:
Flow content.

Content attributes:
Global attributes
colspan
rowspan
headers

DOM interface:
interface HTMLTableDataCellElement : HTMLTableCellElement {};

The td element represents a data cell in a table.

The td element and its colspan, rowspan, and headers attributes take part in the table
model.

4.9.10 The th element

Status: Implemented and widely deployed

Categories
None.

Contexts in which this element may be used:
As a child of a tr element.

Content model:
Phrasing content.

Content attributes:
Global attributes
colspan
rowspan
headers
scope

DOM interface:
interface HTMLTableHeaderCellElement : HTMLTableCellElement {

 attribute DOMString scope;

};

The th element represents a header cell in a table.

The th element may have a scope content attribute specified. The scope attribute is an
enumerated attribute with five states, four of which have explicit keywords:

The row keyword, which maps to the row state
The row state means the header cell applies to some of the subsequent cells in the
same row(s).

The col keyword, which maps to the column state

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 382 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 382 from 931

The column state means the header cell applies to some of the subsequent cells in
the same column(s).

The rowgroup keyword, which maps to the row group state
The row group state means the header cell applies to all the remaining cells in the
row group. A th element's scope attribute must not be in the row group state if the
element is not anchored in a row group.

The colgroup keyword, which maps to the column group state
The column group state means the header cell applies to all the remaining cells in
the column group. A th element's scope attribute must not be in the column group
state if the element is not anchored in a column group.

The auto state
The auto state makes the header cell apply to a set of cells selected based on
context.

The scope attribute's missing value default is the auto state.

The th element and its colspan, rowspan, headers, and scope attributes take part in the
table model.

The scope DOM attribute must reflect the content attribute of the same name.

The following example shows how the scope attribute's rowgroup value affects which data
cells a header cell applies to.

Here is a markup fragment showing a table:

<table>
 <thead>
 <tr> <th> ID <th> Measurement <th> Average <th> Maximum
 <tbody>
 <tr> <td> <th scope=rowgroup> Cats <td> <td>
 <tr> <td> 93 <td> Legs <td> 3.5 <td> 4
 <tr> <td> 10 <td> Tails <td> 1 <td> 1
 <tbody>
 <tr> <td> <th scope=rowgroup> English speakers <td> <td>
 <tr> <td> 32 <td> Legs <td> 2.67 <td> 4
 <tr> <td> 35 <td> Tails <td> 0.33 <td> 1
</table>

This would result in the following table:

ID Measurement Average Maximum
 Cats
93 Legs 3.5 4
10 Tails 1 1
 English speakers
32 Legs 2.67 4
35 Tails 0.33 1

The headers in the first row all apply directly down to the rows in their column.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 383 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 383 from 931

The headers with the explicit scope attributes apply to all the cells in their row group other
than the cells in the first column.

The remaining headers apply just to the cells to the right of them.

4.9.11 Attributes common to td and th elements

The td and th elements may have a colspan content attribute specified, whose value
must be a valid non-negative integer greater than zero.

The td and th elements may also have a rowspan content attribute specified, whose value
must be a valid non-negative integer.

These attributes give the number of columns and rows respectively that the cell is to span.
These attributes must not be used to overlap cells, as described in the description of the
table model.

The td and th element may have a headers content attribute specified. The headers
attribute, if specified, must contain a string consisting of an unordered set of unique
space-separated tokens, each of which must have the value of an ID of a th element
taking part in the same table as the td or th element (as defined by the table model).

A th element with ID id is said to be directly targeted by all td and th elements in the
same table that have headers attributes whose values include as one of their tokens the
ID id. A th element A is said to be targeted by a th or td element B if either A is directly
targeted by B or if there exists an element C that is itself targeted by the element B and A
is directly targeted by C.

A th element must not be targeted by itself.

The colspan, rowspan, and headers attributes take part in the table model.

The td and th elements implement interfaces that inherit from the HTMLTableCellElement
interface:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 384 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 384 from 931

interface HTMLTableCellElement : HTMLElement {
 attribute unsigned long colSpan;
 attribute unsigned long rowSpan;
 attribute DOMString headers;
 readonly attribute long cellIndex;
};

cell . cellIndex
Returns the position of the cell in the row's cells list.
Returns 0 if the element isn't in a row.

The colSpan DOM attribute must reflect the content attribute of the same name. The value
must be limited to only positive non-zero numbers.

The rowSpan DOM attribute must reflect the content attribute of the same name. Its default
value, which must be used if parsing the attribute as a non-negative integer returns an
error, is also 1.

The headers DOM attribute must reflect the content attribute of the same name.

The cellIndex DOM attribute must, if the element has a parent tr element, return the
index of the cell's element in the parent element's cells collection. If there is no such
parent element, then the attribute must return 0.

4.9.12 Processing model

The various table elements and their content attributes together define the table model.

A table consists of cells aligned on a two-dimensional grid of slots with coordinates (x, y).
The grid is finite, and is either empty or has one or more slots. If the grid has one or more
slots, then the x coordinates are always in the range 0 ≤ x < xwidth, and the y coordinates
are always in the range 0 ≤ y < yheight. If one or both of xwidth and yheight are zero, then the
table is empty (has no slots). Tables correspond to table elements.

A cell is a set of slots anchored at a slot (cellx, celly), and with a particular width and height
such that the cell covers all the slots with coordinates (x, y) where cellx ≤ x < cellx+width
and celly ≤ y < celly+height. Cells can either be data cells or header cells. Data cells
correspond to td elements, and header cells correspond to th elements. Cells of both
types can have zero or more associated header cells.

It is possible, in certain error cases, for two cells to occupy the same slot.

A row is a complete set of slots from x=0 to x=xwidth-1, for a particular value of y. Rows
correspond to tr elements.

A column is a complete set of slots from y=0 to y=yheight-1, for a particular value of x.
Columns can correspond to col elements, but in the absence of col elements are implied.

A row group is a set of rows anchored at a slot (0, groupy) with a particular height such
that the row group covers all the slots with coordinates (x, y) where 0 ≤ x < xwidth and
groupy ≤ y < groupy+height. Row groups correspond to tbody, thead, and tfoot elements.
Not every row is necessarily in a row group.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 385 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 385 from 931

A column group is a set of columns anchored at a slot (groupx, 0) with a particular width
such that the column group covers all the slots with coordinates (x, y) where
groupx ≤ x < groupx+width and 0 ≤ y < yheight. Column groups correspond to colgroup
elements. Not every column is necessarily in a column group.

Row groups cannot overlap each other. Similarly, column groups cannot overlap each
other.

A cell cannot cover slots that are from two or more row groups. It is, however, possible for
a cell to be in multiple column groups. All the slots that form part of one cell are part of
zero or one row groups and zero or more column groups.

In addition to cells, columns, rows, row groups, and column groups, tables can have a
caption element associated with them. This gives the table a heading, or legend.

A table model error is an error with the data represented by table elements and their
descendants. Documents must not have table model errors.

4.9.12.1 Forming a table

To determine which elements correspond to which slots in a table associated with a table
element, to determine the dimensions of the table (xwidth and yheight), and to determine if
there are any table model errors, user agents must use the following algorithm:

1. Let xwidth be zero.

2. Let yheight be zero.

3. Let pending tfoot elements be a list of tfoot elements, initially empty.

4. Let the table be the table represented by the table element. The xwidth and yheight
variables give the table's dimensions. The table is initially empty.

5. If the table element has no children elements, then return the table (which will be
empty), and abort these steps.

6. Associate the first caption element child of the table element with the table. If
there are no such children, then it has no associated caption element.

7. Let the current element be the first element child of the table element.

If a step in this algorithm ever requires the current element to be advanced to the
next child of the table when there is no such next child, then the user agent must
jump to the step labeled end, near the end of this algorithm.

8. While the current element is not one of the following elements, advance the current
element to the next child of the table:

o colgroup
o thead
o tbody
o tfoot
o tr

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 386 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 386 from 931

9. If the current element is a colgroup, follow these substeps:

1. Column groups: Process the current element according to the appropriate
case below:

If the current element has any col element children
Follow these steps:

1. Let xstart have the value of xwidth.

2. Let the current column be the first col element child of the colgroup
element.

3. Columns: If the current column col element has a span attribute, then
parse its value using the rules for parsing non-negative integers.

If the result of parsing the value is not an error or zero, then let span be that
value.

Otherwise, if the col element has no span attribute, or if trying to parse the
attribute's value resulted in an error, then let span be 1.

4. Increase xwidth by span.

5. Let the last span columns in the table correspond to the current
column col element.

6. If current column is not the last col element child of the colgroup
element, then let the current column be the next col element child of the
colgroup element, and return to the step labeled columns.

7. Let all the last columns in the table from x=xstart to x=xwidth-1 form a new
column group, anchored at the slot (xstart, 0), with width xwidth-xstart,
corresponding to the colgroup element.

If the current element has no col element children
8. If the colgroup element has a span attribute, then parse its value

using the rules for parsing non-negative integers.

If the result of parsing the value is not an error or zero, then let span be that
value.

Otherwise, if the colgroup element has no span attribute, or if trying to parse
the attribute's value resulted in an error, then let span be 1.

9. Increase xwidth by span.

10. Let the last span columns in the table form a new column group,
anchored at the slot (xwidth-span, 0), with width span, corresponding to the
colgroup element.

2. Advance the current element to the next child of the table.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 387 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 387 from 931

3. While the current element is not one of the following elements, advance the
current element to the next child of the table:

 colgroup
 thead
 tbody
 tfoot
 tr

4. If the current element is a colgroup element, jump to the step labeled column
groups above.

10. Let ycurrent be zero.

11. Let the list of downward-growing cells be an empty list.

12. Rows: While the current element is not one of the following elements, advance the
current element to the next child of the table:

0. thead
1. tbody
2. tfoot
3. tr

13. If the current element is a tr, then run the algorithm for processing rows, advance
the current element to the next child of the table, and return to the step labeled
rows.

14. Run the algorithm for ending a row group.

15. If the current element is a tfoot, then add that element to the list of pending tfoot
elements, advance the current element to the next child of the table, and return to
the step labeled rows.

16. The current element is either a thead or a tbody.

Run the algorithm for processing row groups.

17. Advance the current element to the next child of the table.

18. Return to the step labeled rows.

19. End: For each tfoot element in the list of pending tfoot elements, in tree order,
run the algorithm for processing row groups.

20. If there exists a row or column in the table the table containing only slots that do not
have a cell anchored to them, then this is a table model error.

21. Return the table.

The algorithm for processing row groups, which is invoked by the set of steps above
for processing thead, tbody, and tfoot elements, is:

1. Let ystart have the value of yheight.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 388 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 388 from 931

2. For each tr element that is a child of the element being processed, in tree order,
run the algorithm for processing rows.

3. If yheight > ystart, then let all the last rows in the table from y=ystart to y=yheight-1 form a
new row group, anchored at the slot with coordinate (0, ystart), with height yheight-ystart,
corresponding to the element being processed.

4. Run the algorithm for ending a row group.

The algorithm for ending a row group, which is invoked by the set of steps above when
starting and ending a block of rows, is:

1. While ycurrent is less than yheight, follow these steps:

1. Run the algorithm for growing downward-growing cells.

2. Increase ycurrent by 1.

2. Empty the list of downward-growing cells.

The algorithm for processing rows, which is invoked by the set of steps above for
processing tr elements, is:

1. If yheight is equal to ycurrent, then increase yheight by 1. (ycurrent is never greater than yheight.)

2. Let xcurrent be 0.

3. Run the algorithm for growing downward-growing cells.

4. If the tr element being processed has no td or th element children, then increase
ycurrent by 1, abort this set of steps, and return to the algorithm above.

5. Let current cell be the first td or th element in the tr element being processed.

6. Cells: While xcurrent is less than xwidth and the slot with coordinate (xcurrent, ycurrent) already
has a cell assigned to it, increase xcurrent by 1.

7. If xcurrent is equal to xwidth, increase xwidth by 1. (xcurrent is never greater than xwidth.)

8. If the current cell has a colspan attribute, then parse that attribute's value, and let
colspan be the result.

If parsing that value failed, or returned zero, or if the attribute is absent, then let
colspan be 1, instead.

9. If the current cell has a rowspan attribute, then parse that attribute's value, and let
rowspan be the result.

If parsing that value failed or if the attribute is absent, then let rowspan be 1,
instead.

10. If rowspan is zero, then let cell grows downward be true, and set rowspan to 1.
Otherwise, let cell grows downward be false.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 389 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 389 from 931

11. If xwidth < xcurrent+colspan, then let xwidth be xcurrent+colspan.

12. If yheight < ycurrent+rowspan, then let yheight be ycurrent+rowspan.

13. Let the slots with coordinates (x, y) such that xcurrent ≤ x < xcurrent+colspan and
ycurrent ≤ y < ycurrent+rowspan be covered by a new cell c, anchored at (xcurrent, ycurrent),
which has width colspan and height rowspan, corresponding to the current cell
element.

If the current cell element is a th element, let this new cell c be a header cell;
otherwise, let it be a data cell.

To establish which header cells apply to the current cell element, use the algorithm
for assigning header cells described in the next section.

If any of the slots involved already had a cell covering them, then this is a table
model error. Those slots now have two cells overlapping.

14. If cell grows downward is true, then add the tuple {c, xcurrent, colspan} to the list of
downward-growing cells.

15. Increase xcurrent by colspan.

16. If current cell is the last td or th element in the tr element being processed, then
increase ycurrent by 1, abort this set of steps, and return to the algorithm above.

17. Let current cell be the next td or th element in the tr element being processed.

18. Return to the step labelled cells.

When the algorithms above require the user agent to run the algorithm for growing
downward-growing cells, the user agent must, for each {cell, cellx, width} tuple in the list
of downward-growing cells, if any, extend the cell cell so that it also covers the slots with
coordinates (x, ycurrent), where cellx ≤ x < cellx+width.

4.9.12.2 Forming relationships between data cells and header cells

Status: Working draft

Each cell can be assigned zero or more header cells. The algorithm for assigning
header cells to a cell principal cell is as follows.

1. Let header list be an empty list of cells.

2. Let (principalx, principaly) be the coordinate of the slot to which the principal cell is
anchored.

3. If the principal cell has a headers attribute specified
1. Take the value of the principal cell's headers attribute and split it on spaces,

letting id list be the list of tokens obtained.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 390 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 390 from 931

2. For each token in the id list, if the first element in the Document with an ID
equal to the token is a cell in the same table, and that cell is not the principal
cell, then add that cell to header list.

If principal cell does not have a headers attribute specified
3. Let principalwidth be the width of the principal cell.

4. Let principalheight be the height of the principal cell.

5. For each value of y from principaly to principaly+principalheight-1, run the
internal algorithm for scanning and assigning header cells, with the principal
cell, the header list, the initial coordinate (principalx,y), and the increments
Δx=−1 and Δy=0.

6. For each value of x from principalx to principalx+principalwidth-1, run the
internal algorithm for scanning and assigning header cells, with the principal
cell, the header list, the initial coordinate (x,principaly), and the increments
Δx=0 and Δy=−1.

7. If the principal cell is anchored in a row group, then add all header cells that
are row group headers and are anchored in the same row group with an x-
coordinate less than or equal to principalx+principalwidth-1 and a y-coordinate
less than or equal to principaly+principalheight-1 to header list.

8. If the principal cell is anchored in a column group, then add all header cells
that are column group headers and are anchored in the same column group
with an x-coordinate less than or equal to principalx+principalwidth-1 and a y-
coordinate less than or equal to principaly+principalheight-1 to header list.

4. Remove all the empty cells from the header list.

5. Remove any duplicates from the header list.

6. Assign the headers in the header list to the principal cell.

The internal algorithm for scanning and assigning header cells, given a principal cell,
a header list, an initial coordinate (initialx, initialy), and Δx and Δy increments, is as follows:

1. Let x equal initialx.

2. Let y equal initialy.

3. Let opaque headers be an empty list of cells.

4. If principal cell is a header cell
Let in header block be true, and let headers from current header block be a list of
cells containing just the principal cell.

Otherwise
Let in header block be false and let headers from current header block be an empty
list of cells.

5. Loop: Increment x by Δx; increment y by Δy.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 391 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 391 from 931

For each invocation of this algorithm, one of Δx and Δy will be −1, and the
other will be 0.

6. If either x or y is less than 0, then abort this internal algorithm.

7. If there is no cell covering slot (x, y), or if there is more than one cell covering slot
(x, y), return to the substep marked loop.

8. Let current cell be the cell covering slot (x, y).

9. If current cell is a header cell
1. Set in header block to true.

2. Add current cell to headers from current header block.

3. Let blocked be false.

4. If Δx is 0
If there are any cells in the opaque headers list anchored with the same x-
coordinate as the current cell, and with the same width as current cell, then let
blocked be true.

If the current cell is not a column header, then let blocked be true.

If Δy is 0
If there is are any cells in the opaque headers list anchored with the same y-
coordinate as the current cell, and with the same height as current cell, then let
blocked be true.

If the current cell is not a row header, then let blocked be true.

5. If blocked is false, then add the current cell to the headers list.

If current cell is a data cell and in header block is true
Set in header block to false. Add all the cells in headers from current header block
to the opaque headers list, and empty the headers from current header block list.

10. Return to the step marked loop.

A header cell anchored at the slot with coordinate (x, y) with width width and height height
is said to be a column header if any of the following conditions are true:

• The cell's scope attribute is in the column state, or
• The cell's scope attribute is in the auto state, and there are no data cells in any of

the cells covering slots with y-coordinates y .. y+height-1.

A header cell anchored at the slot with coordinate (x, y) with width width and height height
is said to be a row header if any of the following conditions are true:

• The cell's scope attribute is in the row state, or
• The cell's scope attribute is in the auto state, the cell is not a column header, and

there are no data cells in any of the cells covering slots with x-coordinates x ..
x+width-1.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 392 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 392 from 931

A header cell is said to be a column group header if its scope attribute is in the column
group state.

A header cell is said to be a row group header if its scope attribute is in the row group
state.

A cell is said to be an empty cell if it contains no elements and its text content, if any,
consists only of White_Space characters.

4.10 Forms

Status: Working draft

Forms allow unscripted client-server interaction: given a form, a user can provide data,
submit it to the server, and have the server act on it accordingly (e.g. returning the results
of a search or calculation). The elements used in forms can also be used for user
interaction with no associated submission mechanism, in conjunction with scripts.

Mostly for historical reasons, elements in this section fall into several overlapping (but
subtly different) categories in addition to the usual ones like flow content, phrasing
content, and interactive content.

A number of the elements are form-associated elements, which means they can have a
form owner and, to expose this, have a form content attribute with a matching form DOM
attribute.

• button
• fieldset
• input
• keygen
• label
• object
• output
• select
• textarea

The form-associated elements fall into several subcategories:

Listed
Denotes elements that are listed in the form.elements and fieldset.elements
APIs.

• button
• fieldset
• input
• keygen
• object
• output
• select
• textarea

Labelable
Denotes elements that can be associated with label elements.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 393 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 393 from 931

• button
• input
• keygen
• select
• textarea

Submittable elements
Denotes elements that can be used for constructing the form data set when a form
element is submitted.

• button
• input
• keygen
• object
• select
• textarea

Resettable elements
Denotes elements that can be affected when a form element is reset.

• input
• keygen
• output
• select
• textarea

In addition, some submittable elements can be, depending on their attributes, buttons.
The prose below defines when an element is a button. Some buttons are specifically
submit buttons.

The object element is also a form-associated element and can, with the use of a
suitable plugin, partake in form submission.

4.10.1 The form element

Status: Working draft

Categories
Flow content.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Flow content, but with no form element descendants.

Content attributes:
Global attributes
accept-charset
action
autocomplete
enctype
method
name
novalidate
target

DOM interface:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 394 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 394 from 931

[OverrideBuiltins]

interface HTMLFormElement : HTMLElement {

 attribute DOMString acceptCharset;

 attribute DOMString action;

 attribute boolean autocomplete;

 attribute DOMString enctype;

 attribute DOMString method;

 attribute DOMString name;

 attribute boolean novalidate;

 attribute DOMString target;

 readonly attribute HTMLFormControlsCollection elements;

 readonly attribute long length;

 caller getter any item(in unsigned long index);

 caller getter any namedItem(in DOMString name);

 void submit();

 void reset();

 boolean checkValidity();

 void dispatchFormInput();

 void dispatchFormChange();

};

The form element represents a collection of form-associated elements, some of which can
represent editable values that can be submitted to a server for processing.

The accept-charset attribute gives the character encodings that are to be used for the
submission. If specified, the value must be an ordered set of unique space-separated
tokens, and each token must be the preferred name of an ASCII-compatible character
encoding. [IANACHARSET]

The name attribute represents the form's name within the forms collection. The value must
not be the empty string, and the value must be unique amongst the form elements in the
forms collection that it is in, if any.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 395 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 395 from 931

The autocomplete attribute is an enumerated attribute. The attribute has two states. The
on keyword maps to the on state, and the off keyword maps to the off state. The attribute
may also be omitted. The missing value default is the on state. The off state indicates that
by default, input elements in the form will have their resulting autocompletion state set to
off; the on state indicates that by default, input elements in the form will have their
resulting autocompletion state set to on.

The action, enctype, method, novalidate, and target attributes are attributes for form
submission.

form . elements
Returns an HTMLCollection of the form controls in the form (excluding image
buttons for historical reasons).

form . length
Returns the number of form controls in the form (excluding image buttons for
historical reasons).

element = form . item(index)
form[index]
form(index)

Returns the indexth element in the form (excluding image buttons for historical
reasons).

element = form . namedItem(name)
form[name]
form(name)

Returns the form control in the form with the given ID or name (excluding image
buttons for historical reasons).
Once an element has been referenced using a particular name, that name will
continue being available as a way to reference that element in this method, even if
the element's actual ID or name changes, for as long as the element remains in the
Document.

If there are multiple matching items, then a NodeList object containing all those
elements is returned.

Returns null if no element with that ID or name could be found.

form . submit()
Submits the form.

form . reset()
Resets the form.

form . checkValidity()
Returns true if the form's controls are all valid; otherwise, returns false.

form . dispatchFormInput()
Dispatches a forminput event at all the form controls.

form . dispatchFormChange()

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 396 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 396 from 931

Dispatches a formchange event at all the form controls.

The autocomplete and name DOM attributes must reflect the respective content attributes
of the same name.

The acceptCharset DOM attribute must reflect the accept-charset content attribute.

The elements DOM attribute must return an HTMLFormControlsCollection rooted at the
Document node, whose filter matches listed elements whose form owner is the form
element, with the exception of input elements whose type attribute is in the Image Button
state, which must, for historical reasons, be excluded from this particular collection.

The length DOM attribute must return the number of nodes represented by the elements
collection.

The indices of the supported indexed properties at any instant are the indices supported
by the object returned by the elements attribute at that instant.

The item(index) method must return the value returned by the method of the same name
on the elements collection, when invoked with the same argument.

Each form element has a mapping of names to elements called the past names map. It is
used to persist names of controls even when they change names.

The names of the supported named properties are the union of the names currently
supported by the object returned by the elements attribute, and the names currently in the
past names map.

The namedItem(name) method, when called, must run the following steps:

1. If name is one of the names of the supported named properties of the object
returned by the elements attribute, then run these substeps:

1. Let candidate be the object returned by the namedItem() method on the
object returned by the elements attribute when passed the name argument.

2. If candidate is an element, then add a mapping from name to candidate in
the form element's past names map, replacing the previous entry with the
same name, if any.

3. Return candidate and abort these steps.

2. Otherwise, name is the name of one of the entries in the form element's past
names map: return the object associated with name in that map.

If an element listed in the form element's past names map is removed from the Document,
then its entries must be removed from the map.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 397 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 397 from 931

The submit() method, when invoked, must submit the form element from the form
element itself.

The reset() method, when invoked, must reset the form element.

If the checkValidity() method is invoked, the user agent must statically validate the
constraints of the form element, and return true if the constraint validation return a positive
result, and false if it returned a negative result.

If the dispatchFormInput() method is invoked, the user agent must broadcast forminput
events from the form element.

If the dispatchFormChange() method is invoked, the user agent must broadcast
formchange events from the form element.

4.10.2 The fieldset element

Status: Working draft

Categories
Flow content.
Listed form-associated element.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
One legend element followed by flow content.

Content attributes:
Global attributes
disabled
form
name

DOM interface:
interface HTMLFieldSetElement : HTMLElement {

 attribute boolean disabled;

 readonly attribute HTMLFormElement form;

 attribute DOMString name;

 readonly attribute DOMString type;

 readonly attribute HTMLFormControlsCollection elements;

 readonly attribute boolean willValidate;

 readonly attribute ValidityState validity;

 readonly attribute DOMString validationMessage;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 398 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 398 from 931

 boolean checkValidity();

 void setCustomValidity(in DOMString error);

};

The fieldset element represents a set of form controls grouped under a common name.

The name of the group is given by the first legend element that is a child of the fieldset
element. The remainder of the descendants form the group.

The disabled attribute, when specified, causes all the form control descendants of the
fieldset element to be disabled.

The form attribute is used to explicitly associate the fieldset element with its form owner.
The name attribute represents the element's name.

fieldset . type
Returns the string "fieldset".

fieldset . elements
Returns an HTMLCollection of the form controls in the element.

The disabled DOM attribute must reflect the content attribute of the same name.

The type DOM attribute must return the string "fieldset".

The elements DOM attribute must return an HTMLFormControlsCollection rooted at the
fieldset element, whose filter matches listed elements.

The willValidate, validity, and validationMessage attributes, and the checkValidity()
and setCustomValidity() methods, are part of the constraint validation API.

Constraint validation: fieldset elements are always barred from constraint validation.

4.10.3 The label element

Status: Implemented and widely deployed

Categories
Flow content.
Phrasing content.
Interactive content.
Form-associated element.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content, but with no descendant labelable form-associated elements
unless it is the element's labeled control, and no descendant label elements.

Content attributes:
Global attributes
form

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 399 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 399 from 931

for
DOM interface:

interface HTMLLabelElement : HTMLElement {

 readonly attribute HTMLFormElement form;

 attribute DOMString htmlFor;

 readonly attribute HTMLElement control;

};

The label represents a caption in a user interface. The caption can be associated with a
specific form control, known as the label element's labeled control, either using for
attribute, or by putting the form control inside the label element itself.

Unless otherwise specified by the following rules, a label element has no labeled control.

The for attribute may be specified to indicate a form control with which the caption is to be
associated. If the attribute is specified, the attribute's value must be the ID of a labelable
form-associated element in the same Document as the label element. If the attribute is
specified and there is an element in the Document whose ID is equal to the value of the for
attribute, and the first such element is a labelable form-associated element, then that
element is the label element's labeled control.

If the for attribute is not specified, but the label element has a labelable form-associated
element descendant, then the first such descendant in tree order is the label element's
labeled control.

The label element's exact default presentation and behavior, in particular what its
activation behavior might be, if anything, should match the platform's label behavior.

For example, on platforms where clicking a checkbox label checks the checkbox, clicking
the label in the following snippet could trigger the user agent to run synthetic click
activation steps on the input element, as if the element itself had been triggered by the
user:

<label><input type=checkbox name=lost> Lost</label>

On other platforms, the behavior might be just to focus the control, or do nothing.

label . control
Returns the form control that is associated with this element.

The form attribute is used to explicitly associate the label element with its form owner.

The htmlFor DOM attribute must reflect the for content attribute.

The control DOM attribute must return the label element's labeled control, if any, or null
if there isn't one.

control . labels

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 400 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 400 from 931

Returns a NodeList of all the label elements that the form control is associated
with.

Labelable form-associated elements have a NodeList object associated with them that
represents the list of label elements, in tree order, whose labeled control is the element in
question. The labels DOM attribute of labelable form-associated elements, on getting,
must return that NodeList object.

The following example shows three form controls each with a label, two of which have
small text showing the right format for users to use.

<p><label>Full name: <input name=fn> <small>Format: First
Last</small></label></p>
<p><label>Age: <input name=age type=number min=0></label></p>
<p><label>Post code: <input name=pc> <small>Format: AB12
3CD</small></label></p>

4.10.4 The input element

Status: Working draft

Categories
Flow content.
Phrasing content.
If the type attribute is not in the Hidden state: Interactive content.
Listed, labelable, submittable, and resettable form-associated element.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Empty.

Content attributes:
Global attributes
accept
alt
autocomplete
autofocus
checked
disabled
form
formaction
formenctype
formmethod
formnovalidate
formtarget
height
list
max
maxlength
min
multiple
name
pattern
placeholder
readonly
required
size
src

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 401 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 401 from 931

step
type
value
width

DOM interface:
interface HTMLInputElement : HTMLElement {

 attribute DOMString accept;

 attribute DOMString alt;

 attribute boolean autocomplete;

 attribute boolean autofocus;

 attribute boolean defaultChecked;

 attribute boolean checked;

 attribute boolean disabled;

 readonly attribute HTMLFormElement form;

 readonly attribute FileList files;

 attribute DOMString formAction;

 attribute DOMString formEnctype;

 attribute DOMString formMethod;

 attribute boolean formNoValidate;

 attribute DOMString formTarget;

 attribute DOMString height;

 attribute boolean indeterminate;

 readonly attribute HTMLElement list;

 attribute DOMString max;

 attribute unsigned long maxLength;

 attribute DOMString min;

 attribute boolean multiple;

 attribute DOMString name;

 attribute DOMString pattern;

 attribute DOMString placeholder;

 attribute boolean readOnly;

 attribute boolean required;

 attribute unsigned long size;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 402 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 402 from 931

 attribute DOMString src;

 attribute DOMString step;

 attribute DOMString type;

 attribute DOMString defaultValue;

 attribute DOMString value;

 attribute Date valueAsDate;

 attribute float valueAsNumber;

 readonly attribute HTMLOptionElement selectedOption;

 attribute DOMString width;

 void stepUp(in long n);

 void stepDown(in long n);

 readonly attribute boolean willValidate;

 readonly attribute ValidityState validity;

 readonly attribute DOMString validationMessage;

 boolean checkValidity();

 void setCustomValidity(in DOMString error);

 readonly attribute NodeList labels;

 void select();

 attribute unsigned long selectionStart;

 attribute unsigned long selectionEnd;

 void setSelectionRange(in unsigned long start, in unsigned long end);

};

The input element represents a typed data field, usually with a form control to allow the
user to edit the data.

The type attribute controls the data type (and associated control) of the element. It is an
enumerated attribute. The following table lists the keywords and states for the attribute —

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 403 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 403 from 931

the keywords in the left column map to the states in the cell in the second column on the
same row as the keyword.

Keyword State Data type Control type
hidden Hidden An arbitrary string n/a
text Text Text with no line breaks Text field
search Search Text with no line breaks Search field
tel Telephone Text with no line breaks A text field
url URL An absolute IRI A text field
email E-mail An e-mail address or list of e-mail addresses A text field
password Password Text with no line breaks (sensitive

information)
Text field that
obscures data
entry

datetime Date and
Time

A date and time (year, month, day, hour,
minute, second, fraction of a second) with the
time zone set to UTC

A date and time
control

date Date A date (year, month, day) with no time zone A date control
month Month A date consisting of a year and a month with

no time zone
A month control

week Week A date consisting of a week-year number and
a week number with no time zone

A week control

time Time A time (hour, minute, seconds, fractional
seconds) with no time zone

A time control

datetime-
local

Local Date
and Time

A date and time (year, month, day, hour,
minute, second, fraction of a second) with no
time zone

A date and time
control

number Number A numerical value A text field or
spinner control

range Range A numerical value, with the extra semantic
that the exact value is not important

A slider control
or similar

color Color An sRGB color with 8-bit red, green, and blue
components

A color well

checkbox Checkbox A set of zero or more values from a
predefined list

A checkbox

radio Radio Button An enumerated value A radio button
file File Upload Zero or more files each with a MIME type and

optionally a file name
A label and a
button

submit Submit
Button

An enumerated value, with the extra semantic
that it must be the last value selected and
initiates form submission

A button

image Image
Button

A coordinate, relative to a particular image's
size, with the extra semantic that it must be
the last value selected and initiates form
submission

Either a
clickable image,
or a button

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 404 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 404 from 931

Keyword State Data type Control type
reset Reset Button n/a A button
button Button n/a A button

The missing value default is the Text state.

Which of the accept, alt, autocomplete, checked, formaction, formenctype, formmethod,
formnovalidate, formtarget, height, list, max, maxlength, min, multiple, pattern,
readonly, required, size, src, step, and width attributes apply to an input element
depends on the state of its type attribute. Similarly, the checked, files, valueAsDate,
valueAsNumber, list, and selectedOption DOM attributes, and the stepUp() and
stepDown() methods, are specific to certain states. The following table is non-normative
and summarises which content attributes, DOM attributes, and methods apply to each
state:

 Hidden Text,
Search,

URL,
Telephone

E-
mail

Password Date
and

Time,
Date,

Month,
Week,
Time

Local
Date
and

Time,
Number

Range Color Checkb
Radio
Butto

accept · · · · · · · · ·
alt · · · · · · · · ·

autocomplete · Yes Yes Yes Yes Yes Yes Yes ·
checked · · · · · · · · Yes

formaction · · · · · · · · ·
formenctype · · · · · · · · ·
formmethod · · · · · · · · ·

formnovalidate · · · · · · · · ·
formtarget · · · · · · · · ·
height · · · · · · · · ·
list · Yes Yes · Yes Yes Yes Yes ·
max · · · · Yes Yes Yes · ·

maxlength · Yes Yes Yes · · · · ·
min · · · · Yes Yes Yes · ·

multiple · · Yes · · · · · ·
pattern · Yes Yes Yes · · · · ·

placeholder · Yes Yes Yes · · · · ·
readonly · Yes Yes Yes Yes Yes · · ·
required · Yes Yes Yes Yes Yes · · Yes
size · Yes Yes Yes · · · · ·
src · · · · · · · · ·

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 405 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 405 from 931

 Hidden Text,
Search,

URL,
Telephone

E-
mail

Password Date
and

Time,
Date,

Month,
Week,
Time

Local
Date
and

Time,
Number

Range Color Checkb
Radio
Butto

step · · · · Yes Yes Yes · ·
width · · · · · · · · ·
checked · · · · · · · · Yes
files · · · · · · · · ·
value value value value value value value value value default/

valueAsDate · · · · Yes · · · ·
valueAsNumber · · · · Yes Yes Yes · ·

list · Yes Yes · Yes Yes Yes Yes ·
selectedOption · Yes Yes · Yes Yes Yes Yes ·

select() · Yes Yes Yes · · · · ·
selectionStart · Yes Yes Yes · · · · ·
selectionEnd · Yes Yes Yes · · · · ·

setSelectionRange() · Yes Yes Yes · · · · ·
stepDown() · · · · Yes Yes Yes · ·
stepUp() · · · · Yes Yes Yes · ·

input event · Yes Yes Yes Yes Yes Yes Yes ·
change event · Yes Yes Yes Yes Yes Yes Yes Yes

When an input element's type attribute changes state, and when the element is first
created, the element's rendering and behavior must change to the new state's accordingly
and the value sanitization algorithm, if one is defined for the type attribute's new state,
must be invoked.

Each input element has a value, which is exposed by the value DOM attribute. Some
states define an algorithm to convert a string to a number, an algorithm to convert a
number to a string, an algorithm to convert a string to a Date object, and an
algorithm to convert a Date object to a string, which are used by max, min, step,
valueAsDate, valueAsNumber, stepDown(), and stepUp().

Each input element has a boolean dirty value flag. When it is true, the element is said to
have a dirty value. The dirty value flag must be initially set to false when the element is
created, and must be set to true whenever the user interacts with the control in a way that
changes the value.

The value content attribute gives the default value of the input element. When the value
content attribute is added, set, or removed, if the control does not have a dirty value, the
user agent must set the value of the element to the value of the value content attribute, if

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 406 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 406 from 931

there is one, or the empty string otherwise, and then run the current value sanitization
algorithm, if one is defined.

Each input element has a checkedness, which is exposed by the checked DOM attribute.

Each input element has a boolean dirty checkedness flag. When it is true, the element
is said to have a dirty checkedness. The dirty checkedness flag must be initially set to
false when the element is created, and must be set to true whenever the user interacts
with the control in a way that changes the checkedness.

The checked content attribute is a boolean attribute that gives the default checkedness of
the input element. When the checked content attribute is added, if the control does not
have dirty checkedness, the user agent must set the checkedness of the element to true;
when the checked content attribute is removed, if the control does not have dirty
checkedness, the user agent must set the checkedness of the element to false.

The reset algorithm for input elements is to set the dirty value flag and dirty checkedness
flag back to false, set the value of the element to the value of the value content attribute, if
there is one, or the empty string otherwise, set the checkedness of the element to true if
the element has a checked content attribute and false if it does not, and then invoke the
value sanitization algorithm, if the type attribute's current state defines one.

Each input element has a boolean mutability flag. When it is true, the element is said to
be mutable, and when it is false the element is immutable. Unless otherwise specified,
an input element is always mutable. Unless otherwise specified, the user agent should
not allow the user to modify the element's value or checkedness.

When an input element is disabled, it is immutable.

When an input element does not have a Document node as one of its ancestors (i.e. when
it is not in the document), it is immutable.

The readonly attribute can also in some cases (e.g. for the Date state, but not the
Checkbox state) make an input element immutable.

The form attribute is used to explicitly associate the input element with its form owner.
The name attribute represents the element's name. The disabled attribute is used to make
the control non-interactive and to prevent its value from being submitted. The autofocus
attribute controls focus.

The indeterminate DOM attribute must initially be set to false. On getting, it must return
the last value it was set to. On setting, it must be set to the new value. It has no effect
except for changing the appearance of checkbox controls.

The accept, alt, autocomplete, max, min, multiple, pattern, placeholder, required, size,
src, step, and type DOM attributes must reflect the respective content attributes of the
same name. The maxLength DOM attribute must reflect the maxlength content attribute.
The readOnly DOM attribute must reflect the readonly content attribute. The
defaultChecked DOM attribute must reflect the checked content attribute. The
defaultValue DOM attribute must reflect the value content attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 407 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 407 from 931

The willValidate, validity, and validationMessage attributes, and the checkValidity()
and setCustomValidity() methods, are part of the constraint validation API. The labels
attribute provides a list of the element's labels. The select(), selectionStart,
selectionEnd, and setSelectionRange() methods and attributes expose the element's
text selection.

4.10.4.1 States of the type attribute

4.10.4.1.1 Hidden state

Status: Last call for comments

When an input element's type attribute is in the Hidden state, the rules in this section
apply.

The input element represents a value that is not intended to be examined or manipulated
by the user.

Constraint validation: If an input element's type attribute is in the Hidden state, it is
barred from constraint validation.

If the name attribute is present and has a value that is a case-sensitive match for the string
"_charset_", then the element's value attribute must be omitted.

The value DOM attribute applies to this element and is in mode value.

The following content attributes must not be specified and do not apply to the element:
accept, alt, autocomplete, checked, formaction, formenctype, formmethod,
formnovalidate, formtarget, height, list, max, maxlength, min, multiple, pattern,
placeholder, readonly, required, size, src, step, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
list, selectedOption, selectionStart, selectionEnd, valueAsDate, and valueAsNumber
DOM attributes; select(), setSelectionRange(), stepDown(), and stepUp() methods.

The input and change events do not apply.

4.10.4.1.2 Text state and Search state

Status: Last call for comments

When an input element's type attribute is in the Text state or the Search state, the rules
in this section apply.

The input element represents a one line plain text edit control for the element's value.

If the element is mutable, its value should be editable by the user. User agents must not
allow users to insert U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)
characters into the element's value.

The value attribute, if specified, must have a value that contains no U+000A LINE FEED
(LF) or U+000D CARRIAGE RETURN (CR) characters.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 408 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 408 from 931

The value sanitization algorithm is as follows: Strip line breaks from the value.

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, maxlength, pattern, placeholder, readonly,
required, and size content attributes; list, selectedOption, selectionStart,
selectionEnd, and value DOM attributes; select() and setSelectionRange() methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, max, min, multiple, src, step, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
valueAsDate, and valueAsNumber DOM attributes; stepDown() and stepUp() methods.

4.10.4.1.3 Telephone state

When an input element's type attribute is in the Telephone state, the rules in this section
apply.

The input element represents a control for editing a telephone number given in the
element's value.

If the element is mutable, its value should be editable by the user. User agents may
change the punctuation of values that the user enters. User agents must not allow users
to insert U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into
the element's value.

The value attribute, if specified, must have a value that contains no U+000A LINE FEED
(LF) or U+000D CARRIAGE RETURN (CR) characters.

The value sanitization algorithm is as follows: Strip line breaks from the value.

Unlike the URL and E-mail types, the Telephone type does not enforce a particular
syntax. This is intentional; in practice, telephone number fields tend to be free-form
fields, because there are a wide variety of valid phone numbers. Systems that need
to enforce a particular format are encouraged to use the setCustomValidity()
method to hook into the client-side validation mechanism.

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, maxlength, pattern, placeholder, readonly,
required, and size content attributes; list, selectedOption, selectionStart,
selectionEnd, and value DOM attributes; select() and setSelectionRange() methods.

The value DOM attribute is in mode value.

The input and change events apply.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 409 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 409 from 931

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, max, min, multiple, src, step, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
valueAsDate, and valueAsNumber DOM attributes; stepDown() and stepUp() methods.

4.10.4.1.4 URL state

Status: Last call for comments

When an input element's type attribute is in the URL state, the rules in this section apply.

The input element represents a control for editing a single absolute URL given in the
element's value.

If the element is mutable, the user agent should allow the user to change the URL
represented by its value. User agents may allow the user to set the value to a string that is
not a valid absolute URL, but may also or instead automatically escape characters
entered by the user so that the value is always a valid absolute URL (even if that isn't the
actual value seen and edited by the user in the interface). User agents should allow the
user to set the value to the empty string. User agents must not allow users to insert
U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters into the
value.

The value attribute, if specified, must have a value that is a valid absolute URL.

The value sanitization algorithm is as follows: Strip line breaks from the value.

Constraint validation: While the value of the element is not a valid absolute URL, the
element is suffering from a type mismatch.

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, maxlength, pattern, placeholder, readonly,
required, and size content attributes; list, selectedOption, selectionStart,
selectionEnd, and value DOM attributes; select() and setSelectionRange() methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, max, min, multiple, src, step, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
valueAsDate, and valueAsNumber DOM attributes; stepDown() and stepUp() methods.

4.10.4.1.5 E-mail state

Status: Last call for comments

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 410 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 410 from 931

When an input element's type attribute is in the E-mail state, the rules in this section
apply.

The input element represents a control for editing a list of e-mail addresses given in the
element's value.

If the element is mutable, the user agent should allow the user to change the e-mail
addresses represented by its value. If the multiple attribute is specified, then the user
agent should allow the user to select or provide multiple addresses; otherwise, the user
agent should act in a manner consistent with expecting the user to provide a single e-mail
address. User agents may allow the user to set the value to a string that is not an valid e-
mail address list. User agents should allow the user to set the value to the empty string.
User agents must not allow users to insert U+000A LINE FEED (LF) or U+000D
CARRIAGE RETURN (CR) characters into the value. User agents may transform the
value for display and editing (e.g. converting punycode in the value to IDN in the display
and vice versa).

If the multiple attribute is specified on the element, then the value attribute, if specified,
must have a value that is a valid e-mail address list; otherwise, the value attribute, if
specified, must have a value that is a single valid e-mail address.

The value sanitization algorithm is as follows: Strip line breaks from the value.

Constraint validation: If the multiple attribute is specified on the element, then, while
the value of the element is not a valid e-mail address list, the element is suffering from a
type mismatch; otherwise, while the value of the element is not a single valid e-mail
address, the element is suffering from a type mismatch.

A valid e-mail address list is a set of comma-separated tokens, where each token is
itself a valid e-mail address. To obtain the list of tokens from a valid e-mail address list,
the user agent must split the string on commas.

A valid e-mail address is a string that matches the production dot-atom-text "@" dot-
atom-text where dot-atom-text is defined in RFC 5322 section 3.2.3. [RFC5322]

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, maxlength, multiple, pattern, placeholder,
readonly, required, and size content attributes; list, selectedOption, selectionStart,
selectionEnd, and value DOM attributes; select() and setSelectionRange() methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, max, min, src, step, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
valueAsDate, and valueAsNumber DOM attributes; stepDown() and stepUp() methods.

4.10.4.1.6 Password state

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 411 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 411 from 931

Status: Last call for comments

When an input element's type attribute is in the Password state, the rules in this section
apply.

The input element represents a one line plain text edit control for the element's value. The
user agent should obscure the value so that people other than the user cannot see it.

If the element is mutable, its value should be editable by the user. User agents must not
allow users to insert U+000A LINE FEED (LF) or U+000D CARRIAGE RETURN (CR)
characters into the value.

The value attribute, if specified, must have a value that contains no U+000A LINE FEED
(LF) or U+000D CARRIAGE RETURN (CR) characters.

The value sanitization algorithm is as follows: Strip line breaks from the value.

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, maxlength, pattern, placeholder, readonly,
required, and size content attributes; selectionStart, selectionEnd, and value DOM
attributes; select(), and setSelectionRange() methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, list, max, min, multiple, src, step, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
list, selectedOption, valueAsDate, and valueAsNumber DOM attributes; stepDown() and
stepUp() methods.

4.10.4.1.7 Date and Time state

Status: Last call for comments

When an input element's type attribute is in the Date and Time state, the rules in this
section apply.

The input element represents a control for setting the element's value to a string
representing a specific global date and time. User agents may display the date and time in
whatever time zone is appropriate for the user.

If the element is mutable, the user agent should allow the user to change the global date
and time represented by its value, as obtained by parsing a global date and time from it.
User agents must not allow the user to set the value to a string that is not a valid global
date and time string expressed in UTC, though user agents may allow the user to set and
view the time in another time zone and silently translate the time to and from the UTC time
zone in the value. If the user agent provides a user interface for selecting a global date
and time, then the value must be set to a valid global date and time string expressed in

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 412 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 412 from 931

UTC representing the user's selection. User agents should allow the user to set the value
to the empty string.

The value attribute, if specified, must have a value that is a valid global date and time
string.

The value sanitization algorithm is as follows: If the value of the element is a valid
global date and time string, then adjust the time so that the value represents the same
point in time but expressed in the UTC time zone, otherwise, set it to the empty string
instead.

The min attribute, if specified, must have a value that is a valid global date and time string.
The max attribute, if specified, must have a value that is a valid global date and time string.

The step attribute is expressed in seconds. The step scale factor is 1000 (which converts
the seconds to milliseconds, as used in the other algorithms). The default step is 60
seconds.

When the element is suffering from a step mismatch, the user agent may round the
element's value to the nearest global date and time for which the element would not suffer
from a step mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If
parsing a global date and time from input results in an error, then return an error;
otherwise, return the number of milliseconds elapsed from midnight UTC on the morning
of 1970-01-01 (the time represented by the value "1970-01-01T00:00:00.0Z") to the
parsed global date and time, ignoring leap seconds.

The algorithm to convert a number to a string, given a number input, is as follows:
Return a valid global date and time string expressed in UTC that represents the global
date and time that is input milliseconds after midnight UTC on the morning of 1970-01-01
(the time represented by the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date object, given a string input, is as follows:
If parsing a global date and time from input results in an error, then return an error;
otherwise, return a Date object representing the parsed global date and time, expressed in
UTC.

The algorithm to convert a Date object to a string, given a Date object input, is as
follows: Return a valid global date and time string expressed in UTC that represents the
global date and time that is represented by input.

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, max, min, readonly, required, and step content
attributes; list, value, valueAsDate, valueAsNumber, and selectedOption DOM attributes;
stepDown() and stepUp() methods.

The value DOM attribute is in mode value.

The input and change events apply.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 413 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 413 from 931

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, maxlength, multiple, pattern, placeholder, size, src, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
selectionStart, and selectionEnd DOM attributes; select() and setSelectionRange()
methods.

4.10.4.1.8 Date state

Status: Last call for comments

When an input element's type attribute is in the Date state, the rules in this section apply.

The input element represents a control for setting the element's value to a string
representing a specific date.

If the element is mutable, the user agent should allow the user to change the date
represented by its value, as obtained by parsing a date from it. User agents must not allow
the user to set the value to a string that is not a valid date string. If the user agent provides
a user interface for selecting a date, then the value must be set to a valid date string
representing the user's selection. User agents should allow the user to set the value to the
empty string.

The value attribute, if specified, must have a value that is a valid date string.

The value sanitization algorithm is as follows: If the value of the element is not a valid
date string, then set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid date string. The max
attribute, if specified, must have a value that is a valid date string.

The step attribute is expressed in days. The step scale factor is 86,400,000 (which
converts the days to milliseconds, as used in the other algorithms). The default step is 1
day.

When the element is suffering from a step mismatch, the user agent may round the
element's value to the nearest date for which the element would not suffer from a step
mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If
parsing a date from input results in an error, then return an error; otherwise, return the
number of milliseconds elapsed from midnight UTC on the morning of 1970-01-01 (the
time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC on the morning
of the parsed date, ignoring leap seconds.

The algorithm to convert a number to a string, given a number input, is as follows:
Return a valid date string that represents the date that, in UTC, is current input
milliseconds after midnight UTC on the morning of 1970-01-01 (the time represented by
the value "1970-01-01T00:00:00.0Z").

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 414 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 414 from 931

The algorithm to convert a string to a Date object, given a string input, is as follows:
If parsing a date from input results in an error, then return an error; otherwise, return a
Date object representing midnight UTC on the morning of the parsed date.

The algorithm to convert a Date object to a string, given a Date object input, is as
follows: Return a valid date string that represents the date current at the time represented
by input in the UTC time zone.

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, max, min, readonly, required, and step content
attributes; list, value, valueAsDate, valueAsNumber, and selectedOption DOM attributes;
stepDown() and stepUp() methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, maxlength, multiple, pattern, placeholder, size, src, and width.

The following DOM attributes and methods do not apply to the element: checked,
selectionStart, and selectionEnd DOM attributes; select() and setSelectionRange()
methods.

4.10.4.1.9 Month state

Status: Last call for comments

When an input element's type attribute is in the Month state, the rules in this section
apply.

The input element represents a control for setting the element's value to a string
representing a specific month.

If the element is mutable, the user agent should allow the user to change the month
represented by its value, as obtained by parsing a month from it. User agents must not
allow the user to set the value to a string that is not a valid month string. If the user agent
provides a user interface for selecting a month, then the value must be set to a valid
month string representing the user's selection. User agents should allow the user to set
the value to the empty string.

The value attribute, if specified, must have a value that is a valid month string.

The value sanitization algorithm is as follows: If the value of the element is not a valid
month string, then set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid month string. The max
attribute, if specified, must have a value that is a valid month string.

The step attribute is expressed in months. The step scale factor is 1 (there is no
conversion needed as the algorithms use months). The default step is 1 month.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 415 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 415 from 931

When the element is suffering from a step mismatch, the user agent may round the
element's value to the nearest month for which the element would not suffer from a step
mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If
parsing a month from input results in an error, then return an error; otherwise, return the
number of months between January 1970 and the parsed month.

The algorithm to convert a number to a string, given a number input, is as follows:
Return a valid month string that represents the month that has input months between it
and January 1970.

The algorithm to convert a string to a Date object, given a string input, is as follows:
If parsing a month from input results in an error, then return an error; otherwise, return a
Date object representing midnight UTC on the morning of the first day of the parsed
month.

The algorithm to convert a Date object to a string, given a Date object input, is as
follows: Return a valid month string that represents the month current at the time
represented by input in the UTC time zone.

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, max, min, readonly, required, and step content
attributes; list, value, valueAsDate, valueAsNumber, and selectedOption DOM attributes;
stepDown() and stepUp() methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, maxlength, multiple, pattern, placeholder, size, src, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
selectionStart, and selectionEnd DOM attributes; select() and setSelectionRange()
methods.

4.10.4.1.10 Week state

Status: Last call for comments

When an input element's type attribute is in the Week state, the rules in this section
apply.

The input element represents a control for setting the element's value to a string
representing a specific week.

If the element is mutable, the user agent should allow the user to change the week
represented by its value, as obtained by parsing a week from it. User agents must not
allow the user to set the value to a string that is not a valid week string. If the user agent
provides a user interface for selecting a week, then the value must be set to a valid week

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 416 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 416 from 931

string representing the user's selection. User agents should allow the user to set the value
to the empty string.

The value attribute, if specified, must have a value that is a valid week string.

The value sanitization algorithm is as follows: If the value of the element is not a valid
week string, then set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid week string. The max
attribute, if specified, must have a value that is a valid week string.

The step attribute is expressed in weeks. The step scale factor is 604,800,000 (which
converts the weeks to milliseconds, as used in the other algorithms). The default step is 1
week.

When the element is suffering from a step mismatch, the user agent may round the
element's value to the nearest week for which the element would not suffer from a step
mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If
parsing a week string from input results in an error, then return an error; otherwise, return
the number of milliseconds elapsed from midnight UTC on the morning of 1970-01-01 (the
time represented by the value "1970-01-01T00:00:00.0Z") to midnight UTC on the morning
of the Monday of the parsed week, ignoring leap seconds.

The algorithm to convert a number to a string, given a number input, is as follows:
Return a valid week string that represents the week that, in UTC, is current input
milliseconds after midnight UTC on the morning of 1970-01-01 (the time represented by
the value "1970-01-01T00:00:00.0Z").

The algorithm to convert a string to a Date object, given a string input, is as follows:
If parsing a week from input results in an error, then return an error; otherwise, return a
Date object representing midnight UTC on the morning of the Monday of the parsed week.

The algorithm to convert a Date object to a string, given a Date object input, is as
follows: Return a valid week string that represents the week current at the time
represented by input in the UTC time zone.

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, max, min, readonly, required, and step content
attributes; list, value, valueAsDate, valueAsNumber, and selectedOption DOM attributes;
stepDown() and stepUp() methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, maxlength, multiple, pattern, placeholder, size, src, and width.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 417 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 417 from 931

The following DOM attributes and methods do not apply to the element: checked, files,
selectionStart, and selectionEnd DOM attributes; select() and setSelectionRange()
methods.

4.10.4.1.11 Time state

Status: Last call for comments

When an input element's type attribute is in the Time state, the rules in this section apply.

The input element represents a control for setting the element's value to a string
representing a specific time.

If the element is mutable, the user agent should allow the user to change the time
represented by its value, as obtained by parsing a time from it. User agents must not allow
the user to set the value to a string that is not a valid time string. If the user agent provides
a user interface for selecting a time, then the value must be set to a valid time string
representing the user's selection. User agents should allow the user to set the value to the
empty string.

The value attribute, if specified, must have a value that is a valid time string.

The value sanitization algorithm is as follows: If the value of the element is not a valid
time string, then set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid time string. The max
attribute, if specified, must have a value that is a valid time string.

The step attribute is expressed in seconds. The step scale factor is 1000 (which converts
the seconds to milliseconds, as used in the other algorithms). The default step is 60
seconds.

When the element is suffering from a step mismatch, the user agent may round the
element's value to the nearest time for which the element would not suffer from a step
mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If
parsing a time from input results in an error, then return an error; otherwise, return the
number of milliseconds elapsed from midnight to the parsed time on a day with no time
changes.

The algorithm to convert a number to a string, given a number input, is as follows:
Return a valid time string that represents the time that is input milliseconds after midnight
on a day with no time changes.

The algorithm to convert a string to a Date object, given a string input, is as follows:
If parsing a time from input results in an error, then return an error; otherwise, return a
Date object representing the parsed time in UTC on 1970-01-01.

The algorithm to convert a Date object to a string, given a Date object input, is as
follows: Return a valid time string that represents the UTC time component that is
represented by input.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 418 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 418 from 931

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, max, min, readonly, required, and step content
attributes; list, value, valueAsDate, valueAsNumber, and selectedOption DOM attributes;
stepDown() and stepUp() methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, maxlength, multiple, pattern, placeholder, size, src, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
selectionStart, and selectionEnd DOM attributes; select() and setSelectionRange()
methods.

4.10.4.1.12 Local Date and Time state

Status: Last call for comments

When an input element's type attribute is in the Local Date and Time state, the rules in
this section apply.

The input element represents a control for setting the element's value to a string
representing a local date and time, with no time zone information.

If the element is mutable, the user agent should allow the user to change the date and
time represented by its value, as obtained by parsing a date and time from it. User agents
must not allow the user to set the value to a string that is not a valid local date and time
string. If the user agent provides a user interface for selecting a local date and time, then
the value must be set to a valid local date and time string representing the user's
selection. User agents should allow the user to set the value to the empty string.

The value attribute, if specified, must have a value that is a valid local date and time
string.

The value sanitization algorithm is as follows: If the value of the element is not a valid
local date and time string, then set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid local date and time string.
The max attribute, if specified, must have a value that is a valid local date and time string.

The step attribute is expressed in seconds. The step scale factor is 1000 (which converts
the seconds to milliseconds, as used in the other algorithms). The default step is 60
seconds.

When the element is suffering from a step mismatch, the user agent may round the
element's value to the nearest local date and time for which the element would not suffer
from a step mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If
parsing a date and time from input results in an error, then return an error; otherwise,

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 419 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 419 from 931

return the number of milliseconds elapsed from midnight on the morning of 1970-01-01
(the time represented by the value "1970-01-01T00:00:00.0") to the parsed local date and
time, ignoring leap seconds.

The algorithm to convert a number to a string, given a number input, is as follows:
Return a valid local date and time string that represents the date and time that is input
milliseconds after midnight on the morning of 1970-01-01 (the time represented by the
value "1970-01-01T00:00:00.0").

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, max, min, readonly, required, and step content
attributes; list, value, valueAsNumber, and selectedOption DOM attributes; stepDown()
and stepUp() methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, maxlength, multiple, pattern, placeholder, size, src, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
selectionStart, selectionEnd, and valueAsDate DOM attributes; select() and
setSelectionRange() methods.

4.10.4.1.13 Number state

Status: Last call for comments

When an input element's type attribute is in the Number state, the rules in this section
apply.

The input element represents a control for setting the element's value to a string
representing a number.

If the element is mutable, the user agent should allow the user to change the number
represented by its value, as obtained from applying the rules for parsing floating point
number values to it. User agents must not allow the user to set the value to a string that is
not a valid floating point number. If the user agent provides a user interface for selecting a
number, then the value must be set to the best representation of the floating point number
representing the user's selection. User agents should allow the user to set the value to the
empty string.

The value attribute, if specified, must have a value that is a valid floating point number.

The value sanitization algorithm is as follows: If the value of the element is not a valid
floating point number, then set it to the empty string instead.

The min attribute, if specified, must have a value that is a valid floating point number. The
max attribute, if specified, must have a value that is a valid floating point number.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 420 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 420 from 931

The step scale factor is 1. The default step is 1 (allowing only integers, unless the min
attribute has a non-integer value).

When the element is suffering from a step mismatch, the user agent may round the
element's value to the nearest number for which the element would not suffer from a step
mismatch.

The algorithm to convert a string to a number, given a string input, is as follows: If
applying the rules for parsing floating point number values to input results in an error, then
return an error; otherwise, return the resulting number.

The algorithm to convert a number to a string, given a number input, is as follows:
Return a valid floating point number that represents input.

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, max, min, readonly, required, and step content
attributes; list, value, valueAsNumber, and selectedOption DOM attributes; stepDown()
and stepUp() methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, maxlength, multiple, pattern, placeholder, size, src, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
selectionStart, selectionEnd, and valueAsDate DOM attributes; select() and
setSelectionRange() methods.

4.10.4.1.14 Range state

Status: Last call for comments

When an input element's type attribute is in the Range state, the rules in this section
apply.

The input element represents a control for setting the element's value to a string
representing a number, but with the caveat that the exact value is not important, letting
UAs provide a simpler interface than they do for the Number state.

In this state, the range and step constraints are enforced even during user input,
and there is no way to set the value to the empty string.

If the element is mutable, the user agent should allow the user to change the number
represented by its value, as obtained from applying the rules for parsing floating point
number values to it. User agents must not allow the user to set the value to a string that is
not a valid floating point number. If the user agent provides a user interface for selecting a
number, then the value must be set to a best representation of the floating point number
representing the user's selection. User agents must not allow the user to set the value to
the empty string.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 421 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 421 from 931

The value attribute, if specified, must have a value that is a valid floating point number.

The value sanitization algorithm is as follows: If the value of the element is not a valid
floating point number, then set it to a valid floating point number that represents the
default value.

The min attribute, if specified, must have a value that is a valid floating point number. The
default minimum is 0. The max attribute, if specified, must have a value that is a valid
floating point number. The default maximum is 100.

The default value is the minimum plus half the difference between the minimum and the
maximum, unless the maximum is less than the minimum, in which case the default value
is the minimum.

When the element is suffering from an underflow, the user agent must set the element's
value to a valid floating point number that represents the minimum.

When the element is suffering from an overflow, if the maximum is not less than the
minimum, the user agent must set the element's value to a valid floating point number that
represents the maximum.

The step scale factor is 1. The default step is 1 (allowing only integers, unless the min
attribute has a non-integer value).

When the element is suffering from a step mismatch, the user agent must round the
element's value to the nearest number for which the element would not suffer from a step
mismatch, and which is greater than or equal to the minimum, and, if the maximum is not
less than the minimum, which is less than or equal to the maximum.

The algorithm to convert a string to a number, given a string input, is as follows: If
applying the rules for parsing floating point number values to input results in an error, then
return an error; otherwise, return the resulting number.

The algorithm to convert a number to a string, given a number input, is as follows:
Return a valid floating point number that represents input.

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete, list, max, min, and step content attributes; list,
value, valueAsNumber, and selectedOption DOM attributes; stepDown() and stepUp()
methods.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, maxlength, multiple, pattern, placeholder, readonly, required, size, src, and
width.

The following DOM attributes and methods do not apply to the element: checked, files,
selectionStart, selectionEnd, and valueAsDate DOM attributes; select() and
setSelectionRange() methods.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 422 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 422 from 931

4.10.4.1.15 Color state

Status: Working draft

When an input element's type attribute is in the Color state, the rules in this section apply.

The input element represents a color well control, for setting the element's value to a
string representing a simple color.

In this state, there is always a color picked, and there is no way to set the value to
the empty string.

If the element is mutable, the user agent should allow the user to change the color
represented by its value, as obtained from applying the rules for parsing simple color
values to it. User agents must not allow the user to set the value to a string that is not a
valid lowercase simple color. If the user agent provides a user interface for selecting a
color, then the value must be set to the result of using the rules for serializing simple color
values to the user's selection. User agents must not allow the user to set the value to the
empty string.

The value attribute, if specified, must have a value that is a valid simple color.

The value sanitization algorithm is as follows: If the value of the element is a valid
simple color, then set it to the value of the element converted to ASCII lowercase;
otherwise, set it to the string "#000000".

The following common input element content attributes, DOM attributes, and methods
apply to the element: autocomplete and list content attributes; list, value, and
selectedOption DOM attributes.

The value DOM attribute is in mode value.

The input and change events apply.

The following content attributes must not be specified and do not apply to the element:
accept, alt, checked, formaction, formenctype, formmethod, formnovalidate, formtarget,
height, maxlength, max, min, multiple, pattern, placeholder, readonly, required, size,
src, step, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
selectionStart, selectionEnd, valueAsDate, and valueAsNumber DOM attributes;
select(), setSelectionRange(), stepDown(), and stepUp() methods.

4.10.4.1.16 Checkbox state

Status: Last call for comments

When an input element's type attribute is in the Checkbox state, the rules in this section
apply.

The input element represents a two-state control that represents the element's
checkedness state. If the element's checkedness state is true, the control represents a
positive selection, and if it is false, a negative selection. If the element's indeterminate

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 423 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 423 from 931

DOM attribute is set to true, then the control's selection should be obscured as if the
control was in a third, indeterminate, state.

The control is never a true tri-state control, even if the element's indeterminate DOM
attribute is set to true. The indeterminate DOM attribute only gives the appearance
of a third state.

If the element is mutable, then: The pre-click activation steps consist of setting the
element's checkedness to its opposite value (i.e. true if it is false, false if it is true), and of
setting the element's indeterminate DOM attribute to false. The canceled activation steps
consist of setting the checkedness and the element's indeterminate DOM attribute back
to the values they had before the pre-click activation steps were run. The activation
behavior is to fire a simple event that bubbles called change at the element, then
broadcast formchange events at the element's form owner.

Constraint validation: If the element is required and its checkedness is false, then the
element is suffering from being missing.

input . indeterminate [= value]
When set, overrides the rendering of checkbox controls so that the current value is
not visible.

The following common input element content attributes and DOM attributes apply to the
element: checked, and required content attributes; checked and value DOM attributes.

The value DOM attribute is in mode default/on.

The change event applies.

The following content attributes must not be specified and do not apply to the element:
accept, alt, autocomplete, formaction, formenctype, formmethod, formnovalidate,
formtarget, height, list, max, maxlength, min, multiple, pattern, placeholder, readonly,
size, src, step, and width.

The following DOM attributes and methods do not apply to the element: files, list,
selectedOption, selectionStart, selectionEnd, valueAsDate, and valueAsNumber DOM
attributes; select(), setSelectionRange(), stepDown(), and stepUp() methods.

The input event does not apply.

4.10.4.1.17 Radio Button state

Status: Last call for comments

When an input element's type attribute is in the Radio Button state, the rules in this
section apply.

The input element represents a control that, when used in conjunction with other input
elements, forms a radio button group in which only one control can have its checkedness
state set to true. If the element's checkedness state is true, the control represents the
selected control in the group, and if it is false, it indicates a control in the group that is not
selected.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 424 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 424 from 931

The radio button group that contains an input element a also contains all the other
input elements b that fulfill all of the following conditions:

• The input element b's type attribute is in the Radio Button state.
• Either neither a nor b have a form owner, or they both have one and it is the same

for both.
• They both have a name attribute, and the value of a's name attribute is a compatibility

caseless match for the value of b's name attribute.

A document must not contain an input element whose radio button group contains only
that element.

When any of the following events occur, if the element's checkedness state is true after
the event, the checkedness state of all the other elements in the same radio button group
must be set to false:

• The element's checkedness state is set to true (for whatever reason).
• The element's name attribute is added, removed, or changes value.
• The element's form owner changes.

If the element is mutable, then: The pre-click activation steps consist of setting the
element's checkedness to true. The canceled activation steps consist of setting the
element's checkedness to false. The activation behavior is to fire a simple event that
bubbles called change at the element, then broadcast formchange events at the element's
form owner.

Constraint validation: If the element is required and all of the input elements in the radio
button group have a checkedness that is false, then the element is suffering from being
missing.

If none of the radio buttons in a radio button group are checked when they are
inserted into the document, then they will all be initially unchecked in the interface,
until such time as one of them is checked (either by the user or by script).

The following common input element content attributes and DOM attributes apply to the
element: checked and required content attributes; checked and value DOM attributes.

The value DOM attribute is in mode default/on.

The change event applies.

The following content attributes must not be specified and do not apply to the element:
accept, alt, autocomplete, formaction, formenctype, formmethod, formnovalidate,
formtarget, height, list, max, maxlength, min, multiple, pattern, placeholder, readonly,
size, src, step, and width.

The following DOM attributes and methods do not apply to the element: files, list,
selectedOption, selectionStart, selectionEnd, valueAsDate, and valueAsNumber DOM
attributes; select(), setSelectionRange(), stepDown(), and stepUp() methods.

The input event does not apply.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 425 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 425 from 931

4.10.4.1.18 File Upload state

Status: Last call for comments

When an input element's type attribute is in the File Upload state, the rules in this section
apply.

The input element represents a list of selected files, each file consisting of a file name, a
file type, and a file body (the contents of the file).

If the element is mutable, the user agent should allow the user to change the files on the
list, e.g. adding or removing files. Files can be from the filesystem or created on the fly,
e.g. a picture taken from a camera connected to the user's device.

Constraint validation: If the element is required and the list of selected files is empty,
then the element is suffering from being missing.

Unless the multiple attribute is set, there must be no more than one file in the list of
selected files.

The accept attribute may be specified to provide user agents with a hint of what file types
the server will be able to accept.

If specified, the attribute must consist of a set of comma-separated tokens, each of which
must be an ASCII case-insensitive match for one of the following:

The string audio/*
Indicates that sound files are accepted.

The string video/*
Indicates that video files are accepted.

The string image/*
Indicates that image files are accepted.

A valid MIME type, with no parameters
Indicates that files of the specified type are accepted.

The tokens must not be ASCII case-insensitive matches for any of the other tokens (i.e.
duplicates are not allowed). To obtain the list of tokens from the attribute, the user agent
must split the attribute value on commas.

User agents should prevent the user from selecting files that are not accepted by one (or
more) of these tokens.

The following common input element content attributes apply to the element:

The following common input element content attributes and DOM attributes apply to the
element: accept, multiple, and required; files and value DOM attributes.

The value DOM attribute is in mode filename.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 426 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 426 from 931

The change event applies.

The following content attributes must not be specified and do not apply to the element:
alt, autocomplete, checked, formaction, formenctype, formmethod, formnovalidate,
formtarget, height, list, max, maxlength, min, pattern, placeholder, readonly, size, src,
step, and width.

The element's value attribute must be omitted.

The following DOM attributes and methods do not apply to the element: checked, list,
selectedOption, selectionStart, selectionEnd, valueAsDate, and valueAsNumber DOM
attributes; select(), setSelectionRange(), stepDown(), and stepUp() methods.

The input event does not apply.

4.10.4.1.19 Submit Button state

Status: Last call for comments

When an input element's type attribute is in the Submit Button state, the rules in this
section apply.

The input element represents a button that, when activated, submits the form. If the
element has a value attribute, the button's label must be the value of that attribute;
otherwise, it must be an implementation-defined string that means "Submit" or some such.
The element is a button, specifically a submit button.

If the element is mutable, the user agent should allow the user to activate the element.

The element's activation behavior, if the element has a form owner, is to submit the form
owner from the input element; otherwise, it is to do nothing.

The formaction, formenctype, formmethod, formnovalidate, and formtarget attributes are
attributes for form submission.

The formnovalidate attribute can be used to make submit buttons that do not trigger
the constraint validation.

The following common input element content attributes and DOM attributes apply to the
element: formaction, formenctype, formmethod, formnovalidate, and formtarget content
attributes; value DOM attribute.

The value DOM attribute is in mode default.

The following content attributes must not be specified and do not apply to the element:
accept, alt, autocomplete, checked, height, list, max, maxlength, min, multiple, pattern,
placeholder, readonly, required, size, src, step, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
list, selectedOption, selectionStart, selectionEnd, valueAsDate, and valueAsNumber
DOM attributes; select(), setSelectionRange(), stepDown(), and stepUp() methods.

The input and change events do not apply.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 427 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 427 from 931

4.10.4.1.20 Image Button state

Status: Last call for comments

When an input element's type attribute is in the Image Button state, the rules in this
section apply.

The input element represents either an image from which a user can select a coordinate
and submit the form, or alternatively a button from which the user can submit the form.
The element is a button, specifically a submit button.

The image is given by the src attribute. The src attribute must be present, and must
contain a valid URL referencing a non-interactive, optionally animated, image resource
that is neither paged nor scripted.

When any of the following events occur, unless the user agent cannot support images, or
its support for images has been disabled, or the user agent only fetches elements on
demand, the user agent must resolve the value of the src attribute, relative to the element,
and if that is successful, must fetch the resulting absolute URL:

• The input element's type attribute is first set to the Image Button state (possibly
when the element is first created), and the src attribute is present.

• The input element's type attribute is changed back to the Image Button state, and
the src attribute is present, and its value has changed since the last time the type
attribute was in the Image Button state.

• The input element's type attribute is in the Image Button state, and the src
attribute is set or changed.

Fetching the image must delay the load event of the element's document until the task that
is queued by the networking task source once the resource has been fetched (defined
below) has been run.

If the image was successfully obtained, with no network errors, and the image's type is a
supported image type, and the image is a valid image of that type, then the image is said
to be available. If this is true before the image is completely downloaded, each task that is
queued by the networking task source while the image is being fetched must update the
presentation of the image appropriately.

The user agents should apply the image sniffing rules to determine the type of the image,
with the image's associated Content-Type headers giving the official type. If these rules
are not applied, then the type of the image must be the type given by the image's
associated Content-Type headers.

User agents must not support non-image resources with the input element. User agents
must not run executable code embedded in the image resource. User agents must only
display the first page of a multipage resource. User agents must not allow the resource to
act in an interactive fashion, but should honor any animation in the resource.

The task that is queued by the networking task source once the resource has been
fetched, must, if the download was successful and the image is available, queue a task to

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 428 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 428 from 931

fire a simple event called load at the input element; and otherwise, if the fetching process
fails without a response from the remote server, or completes but the image is not a valid
or supported image, queue a task to fire a simple event called error on the input
element.

The alt attribute provides the textual label for the alternative button for users and user
agents who cannot use the image. The alt attribute must also be present, and must
contain a non-empty string.

The input element supports dimension attributes.

If the src attribute is set, and the image is available and the user agent is configured to
display that image, then: The element represents a control for selecting a coordinate from
the image specified by the src attribute; if the element is mutable, the user agent should
allow the user to select this coordinate. The activation behavior in this case consists of
taking the user's selected coordinate, and then, if the element has a form owner,
submitting the input element's form owner from the input element. If the user activates
the control without explicitly selecting a coordinate, then the coordinate (0,0) must be
assumed.

Otherwise, the element represents a submit button whose label is given by the value of
the alt attribute; if the element is mutable, the user agent should allow the user to activate
the button. The activation behavior in this case consists of setting the selected coordinate
to (0,0), and then, if the element has a form owner, submitting the input element's form
owner from the input element.

The selected coordinate must consist of an x-component and a y-component. The x-
component must be greater than or equal to zero, and less than or equal to the rendered
width, in CSS pixels, of the image, plus the widths of the left and right borders rendered
around the image, if any. The y-component must be greater than or equal to zero, and
less than or equal to the rendered height, in CSS pixels, of the image, plus the widths of
the top and bottom bordered rendered around the image, if any. The coordinates must be
relative to the image's borders, where there are any, and the edge of the image otherwise.

The formaction, formenctype, formmethod, formnovalidate, and formtarget attributes are
attributes for form submission.

The following common input element content attributes and DOM attributes apply to the
element: alt, formaction, formenctype, formmethod, formnovalidate, formtarget, height,
src, and width content attributes; value DOM attribute.

The value DOM attribute is in mode default.

The following content attributes must not be specified and do not apply to the element:
accept, autocomplete, checked, list, max, maxlength, min, multiple, pattern,
placeholder, readonly, required, size, and step.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 429 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 429 from 931

The element's value attribute must be omitted.

The following DOM attributes and methods do not apply to the element: checked, files,
list, selectedOption, selectionStart, selectionEnd, valueAsDate, and valueAsNumber
DOM attributes; select(), setSelectionRange(), stepDown(), and stepUp() methods.

The input and change events do not apply.

Many aspects of this state's behavior are similar to the behavior of the img element.
Readers are encouraged to read that section, where many of the same requirements
are described in more detail.

4.10.4.1.21 Reset Button state

Status: Last call for comments

When an input element's type attribute is in the Reset Button state, the rules in this
section apply.

The input element represents a button that, when activated, resets the form. If the
element has a value attribute, the button's label must be the value of that attribute;
otherwise, it must be an implementation-defined string that means "Reset" or some such.
The element is a button.

If the element is mutable, the user agent should allow the user to activate the element.

The element's activation behavior, if the element has a form owner, is to reset the form
owner; otherwise, it is to do nothing.

Constraint validation: The element is barred from constraint validation.

The value DOM attribute applies to this element and is in mode default.

The following content attributes must not be specified and do not apply to the element:
accept, alt, autocomplete, checked, formaction, formenctype, formmethod,
formnovalidate, formtarget, height, list, max, maxlength, min, multiple, pattern,
placeholder, readonly, required, size, src, step, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
list, selectedOption, selectionStart, selectionEnd, valueAsDate, and valueAsNumber
DOM attributes; select(), setSelectionRange(), stepDown(), and stepUp() methods.

The input and change events do not apply.

4.10.4.1.22 Button state

Status: Last call for comments

When an input element's type attribute is in the Button state, the rules in this section
apply.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 430 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 430 from 931

The input element represents a button with no default behavior. If the element has a
value attribute, the button's label must be the value of that attribute; otherwise, it must be
the empty string. The element is a button.

If the element is mutable, the user agent should allow the user to activate the element.
The element's activation behavior is to do nothing.

Constraint validation: The element is barred from constraint validation.

The value DOM attribute applies to this element and is in mode default.

The following content attributes must not be specified and do not apply to the element:
accept, alt, autocomplete, checked, formaction, formenctype, formmethod,
formnovalidate, formtarget, height, list, max, maxlength, min, multiple, pattern,
placeholder, readonly, required, size, src, step, and width.

The following DOM attributes and methods do not apply to the element: checked, files,
list, selectedOption, selectionStart, selectionEnd, valueAsDate, and valueAsNumber
DOM attributes; select(), setSelectionRange(), stepDown(), and stepUp() methods.

The input and change events do not apply.

4.10.4.2 Common input element attributes

These attributes only apply to an input element if its type attribute is in a state whose
definition declares that the attribute applies. When an attribute doesn't apply to an input
element, user agents must ignore the attribute.

4.10.4.2.1 THE autocomplete ATTRIBUTE

Status: Last call for comments

The autocomplete attribute is an enumerated attribute. The attribute has three states. The
on keyword maps to the on state, and the off keyword maps to the off state. The attribute
may also be omitted. The missing value default is the default state.

The off state indicates that the control's input data is either particularly sensitive (for
example the activation code for a nuclear weapon) or is a value that will never be reused
(for example a one-time-key for a bank login) and the user will therefore have to explicitly
enter the data each time, instead of being able to rely on the UA to prefill the value for
him.

Conversely, the on state indicates that the value is not particularly sensitive and the user
can expect to be able to rely on his user agent to remember values he has entered for that
control.

The default state indicates that the user agent is to use the autocomplete attribute on the
element's form owner instead.

Each input element has a resulting autocompletion state, which is either on or off.

When an input element's autocomplete attribute is in the on state, when an input
element's autocomplete attribute is in the default state, and the element has no form

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 431 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 431 from 931

owner, and when an input element's autocomplete attribute is in the default state, and the
element's form owner's autocomplete attribute is in the on state, the input element's
resulting autocompletion state is on. Otherwise, the input element's resulting
autocompletion state is off.

When an input element's resulting autocompletion state is on, the user agent may store
the value entered by the user so that if the user returns to the page, the UA can prefill the
form. Otherwise, the user agent should not remember the control's value.

The autocompletion mechanism must be implemented by the user agent acting as if the
user had modified the element's value, and must be done at a time where the element is
mutable (e.g. just after the element has been inserted into the document, or when the user
agent stops parsing).

Banks frequently do not want UAs to prefill login information:

<p>Account: <input type="text" name="ac" autocomplete="off"></p>
<p>PIN: <input type="text" name="pin" autocomplete="off"></p>

A user agent may allow the user to override the resulting autocompletion state and set it to
always on, always allowing values to be remembered and prefilled), or always off, never
remembering values. However, the ability to override the resulting autocompletion state to
on should not be trivially accessible, as there are significant security implications for the
user if all values are always remembered, regardless of the site's preferences.

4.10.4.2.2 THE LIST ATTRIBUTE

Status: Last call for comments

The list attribute is used to identify an element that lists predefined options suggested to
the user.

If present, its value must be the ID of a datalist element in the same document.

The suggestions source element is the first element in the document in tree order to
have an ID equal to the value of the list attribute, if that element is a datalist element. If
there is no list attribute, or if there is no element with that ID, or if the first element with
that ID is not a datalist element, then there is no suggestions source element.

If there is a suggestions source element, then, when the user agent is allowing the user to
edit the input element's value, the user agent should offer the suggestions represented by
the suggestions source element to the user in a manner suitable for the type of control
used. The user agent may use the suggestion's label to identify the suggestion if
appropriate. If the user selects a suggestion, then the input element's value must be set
to the selected suggestion's value, as if the user had written that value himself.

User agents must filter the suggestions to hide suggestions that the user would not be
allowed to enter as the input element's value, and should filter the suggestions to hide
suggestions that would cause the element to not satisfy its constraints.

If the list attribute does not apply, there is no suggestions source element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 432 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 432 from 931

4.10.4.2.3 THE READONLY ATTRIBUTE

Status: Last call for comments

The readonly attribute is a boolean attribute that controls whether or not the use can edit
the form control. When specified, the element is immutable.

Constraint validation: If the readonly attribute is specified on an input element, the
element is barred from constraint validation.

4.10.4.2.4 THE SIZE ATTRIBUTE

Status: Last call for comments

The size attribute gives the number of characters that, in a visual rendering, the user
agent is to allow the user to see while editing the element's value.

The size attribute, if specified, must have a value that is a valid non-negative integer
greater than zero.

If the attribute is present, then its value must be parsed using the rules for parsing non-
negative integers, and if the result is a number greater than zero, then the user agent
should ensure that at least that many characters are visible.

The size DOM attribute limited to only positive non-zero numbers.

4.10.4.2.5 THE REQUIRED ATTRIBUTE

Status: Last call for comments

The required attribute is a boolean attribute. When specified, the element is required.

Constraint validation: If the element is required, and its value DOM attribute applies and
is in the mode value, and the element is mutable, and the element's value is the empty
string, then the element is suffering from being missing.

4.10.4.2.6 THE MULTIPLE ATTRIBUTE

Status: Last call for comments

The multiple attribute is a boolean attribute that indicates whether the user is to be
allowed to specify more than one value.

4.10.4.2.7 THE MAXLENGTH ATTRIBUTE

Status: Last call for comments

The maxlength attribute, when it applies, is a form control maxlength attribute controlled by
the input element's dirty value flag.

If the input element has a maximum allowed value length, then the code-point length of
the value of the element's value attribute must be equal to or less than the element's
maximum allowed value length.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 433 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 433 from 931

4.10.4.2.8 THE PATTERN ATTRIBUTE

Status: Last call for comments

The pattern attribute specifies a regular expression against which the control's value is to
be checked.

If specified, the attribute's value must match the JavaScript Pattern production.
[ECMA262]

Constraint validation: If the element's value is not the empty string, and the element's
pattern attribute is specified and the attribute's value, when compiled as a JavaScript
regular expression with the global, ignoreCase, and multiline flags disabled (see
ECMA262 Edition 3, sections 15.10.7.2 through 15.10.7.4), compiles successfully but the
resulting regular expression does not match the entirety of the element's value, then the
element is suffering from a pattern mismatch. [ECMA262]

This implies that the regular expression language used for this attribute is the same
as that used in JavaScript, except that the pattern attribute must match the entire
value, not just any subset (somewhat as if it implied a ^(?: at the start of the pattern
and a)$ at the end).

When an input element has a pattern attribute specified, authors should include a title
attribute to give a description of the pattern. User agents may use the contents of this
attribute, if it is present, when informing the user that the pattern is not matched, or at any
other suitable time, such as in a tooltip or read out by assistive technology when the
control gains focus.

For example, the following snippet:

<label> Part number:
 <input pattern="[0-9][A-Z]{3}" name="part"
 title="A part number is a digit followed by three uppercase
letters."/>
</label>

...could cause the UA to display an alert such as:

A part number is a digit followed by three uppercase letters.
You cannot complete this form until the field is correct.

When a control has a pattern attribute, the title attribute, if used, must describe the
pattern. Additional information could also be included, so long as it assists the user in
filling in the control. Otherwise, assistive technology would be impaired.

For instance, if the title attribute contained the caption of the control, assistive
technology could end up saying something like The text you have entered
does not match the required pattern. Birthday, which is not useful.

UAs may still show the title in non-error situations (for example, as a tooltip when
hovering over the control), so authors should be careful not to word titles as if an error
has necessarily occurred.

4.10.4.2.9 THE MIN AND MAX ATTRIBUTES

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 434 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 434 from 931

Status: Last call for comments

The min and max attributes indicate the allowed range of values for the element.

Their syntax is defined by the section that defines the type attribute's current state.

If the element has a min attribute, and the result of applying the algorithm to convert a
string to a number to the value of the min attribute is a number, then that number is the
element's minimum; otherwise, if the type attribute's current state defines a default
minimum, then that is the minimum; otherwise, the element has no minimum.)

Constraint validation: When the element has a minimum, and the result of applying the
algorithm to convert a string to a number to the string given by the element's value is a
number, and the number obtained from that algorithm is less than the minimum, the
element is suffering from an underflow.

The min attribute also defines the step base.

If the element has a max attribute, and the result of applying the algorithm to convert a
string to a number to the value of the max attribute is a number, then that number is the
element's maximum; otherwise, if the type attribute's current state defines a default
maximum, then that is the maximum; otherwise, the element has no maximum.)

Constraint validation: When the element has a maximum, and the result of applying the
algorithm to convert a string to a number to the string given by the element's value is a
number, and the number obtained from that algorithm is more than the maximum, the
element is suffering from an overflow.

The max attribute's value (the maximum) must not be less than the min attribute's value (its
minimum).

If an element has a maximum that is less than its minimum, then so long as the
element has a value, it will either be suffering from an underflow or suffering from
an overflow.

4.10.4.2.10 THE STEP ATTRIBUTE

Status: Last call for comments

The step attribute indicates the granularity that is expected (and required) of the value, by
limiting the allowed values. The section that defines the type attribute's current state also
defines the default step and the step scale factor, which are used in processing the
attribute as described below.

The step attribute, if specified, must either have a value that is a valid floating point
number that parses to a number that is greater than zero, or must have a value that is an
ASCII case-insensitive match for the string "any".

The attribute provides the allowed value step for the element, as follows:

1. If the attribute is absent, then the allowed value step is the default step multiplied
by the step scale factor.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 435 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 435 from 931

2. Otherwise, if the attribute's value is an ASCII case-insensitive match for the string
"any", then there is no allowed value step.

3. Otherwise, if the rules for parsing floating point number values, when they are
applied to the attribute's value, return an error, zero, or a number less than zero,
then the allowed value step is the default step multiplied by the step scale factor.

4. Otherwise, the allowed value step is the number returned by the rules for parsing
floating point number values when they are applied to the attribute's value,
multiplied by the step scale factor.

The step base is the result of applying the algorithm to convert a string to a number to the
value of the min attribute, unless the element does not have a min attribute specified or the
result of applying that algorithm is an error, in which case the step base is zero.

Constraint validation: When the element has an allowed value step, and the result of
applying the algorithm to convert a string to a number to the string given by the element's
value is a number, and that number subtracted from the step base is not an integral
multiple of the allowed value step, the element is suffering from a step mismatch.

4.10.4.2.11 THE PLACEHOLDER ATTRIBUTE

Status: Last call for comments

The placeholder attribute represents a short hint (a word or short phrase) intended to aid
the user with data entry. A hint could be a sample value or a brief description of the
expected format. The attribute, if specified, must have a value that contains no U+000A
LINE FEED (LF) or U+000D CARRIAGE RETURN (CR) characters.

For a longer hint or other advisory text, the title attribute is more appropriate.

The placeholder attribute should not be used as an alternative to a label.

User agents should present this hint to the user, after having stripped line breaks from it,
when the element's value is the empty string and the control is not focused (e.g. by
displaying it inside a blank unfocused control).

Here is an example of a mail configuration user interface that uses the placeholder
attribute:

<fieldset>
 <legend>Mail Account</legend>
 <p><label>Name: <input type="text" name="fullname" placeholder="John
Ratzenberger"></label></p>
 <p><label>Address: <input type="email" name="address"
placeholder="john@example.net"></label></p>
 <p><label>Password: <input type="password" name="password"></label></p>
 <p><label>Description: <input type="text" name="desc" placeholder="My
Email Account"></label></p>
</fieldset>

4.10.4.3 Common input element APIs

Status: Last call for comments

input . value [= value]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 436 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 436 from 931

Returns the current value of the form control.
Can be set, to change the value.

Throws an INVALID_ACCESS_ERR exception if it is set when the control is a file upload
control.

input . checked [= value]
Returns the current checkedness of the form control.
Can be set, to change the checkedness.

input . files
Returns a FileList object listing the selected files of the form control.

input . valueAsDate [= value]
Returns a Date object representing the form control's value, if applicable; otherwise,
returns null.
Can be set, to change the value.

Throws an INVALID_ACCESS_ERR exception if the control isn't date- or time-based.

input . valueAsNumber [= value]
Returns a number representing the form control's value, if applicable; otherwise,
returns null.
Can be set, to change the value.

Throws an INVALID_ACCESS_ERR exception if the control is neither date- or time-
based nor numeric.

input . stepUp(n)
input . stepDown(n)

Changes the form control's value by the value given in the step attribute, multiplied
by n.

Throws INVALID_ACCESS_ERR exception if the control is neither date- or time-based
nor numeric, if the step attribute's value is "any", if the current value could not be
parsed, or if stepping in the given direction by the given amount would take the
value out of range.

input . list
Returns the datalist element indicated by the list attribute.

input . selectedOption
Returns the option element from the datalist element indicated by the list
attribute that matches the form control's value.

The value DOM attribute allows scripts to manipulate the value of an input element. The
attribute is in one of the following modes, which define its behavior:

value
On getting, it must return the current value of the element. On setting, it must set
the element's value to the new value, set the element's dirty value flag to true, and

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 437 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 437 from 931

then invoke the value sanitization algorithm, if the element's type attribute's current
state defines one.

default
On getting, if the element has a value attribute, it must return that attribute's value;
otherwise, it must return the empty string. On setting, it must set the element's
value attribute to the new value.

default/on
On getting, if the element has a value attribute, it must return that attribute's value;
otherwise, it must return the string "on". On setting, it must set the element's value
attribute to the new value.

filename
On getting, it must return the string "C:\fakepath\" followed by the filename of the
first file in the list of selected files, if any, or the empty string if the list is empty. On
setting, it must throw an INVALID_ACCESS_ERR exception.

The checked DOM attribute allows scripts to manipulate the checkedness of an input
element. On getting, it must return the current checkedness of the element; and on
setting, it must set the element's checkedness to the new value and set the element's dirty
checkedness flag to true.

The files DOM attribute allows scripts to access the element's selected files. On getting,
if the DOM attribute applies, it must return a FileList object that represents the current
selected files. The same object must be returned until the list of selected files changes. If
the DOM attribute does not apply, then it must instead throw an INVALID_STATE_ERR
exception. [FILEAPI]

The valueAsDate DOM attribute represents the value of the element, interpreted as a date.

On getting, if the valueAsDate attribute does not apply, as defined for the input element's
type attribute's current state, then return null. Otherwise, run the algorithm to convert a
string to a Date object defined for that state; if the algorithm returned a Date object, then
return it, otherwise, return null.

On setting, if the valueAsDate attribute does not apply, as defined for the input element's
type attribute's current state, then throw an INVALID_ACCESS_ERR exception; otherwise, if
the new value is null, then set the value of the element to the empty string; otherwise, run
the algorithm to convert a Date object to a string, as defined for that state, on the new
value, and set the value of the element to resulting string.

The valueAsNumber DOM attribute represents the value of the element, interpreted as a
number.

On getting, if the valueAsNumber attribute does not apply, as defined for the input
element's type attribute's current state, then return a Not-a-Number (NaN) value.
Otherwise, if the valueAsDate attribute applies, run the algorithm to convert a string to a

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 438 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 438 from 931

Date object defined for that state; if the algorithm returned a Date object, then return the
time value of the object (the number of milliseconds from midnight UTC the morning of
1970-01-01 to the time represented by the Date object), otherwise, return a Not-a-Number
(NaN) value. Otherwise, run the algorithm to convert a string to a number defined for that
state; if the algorithm returned a number, then return it, otherwise, return a Not-a-Number
(NaN) value.

On setting, if the valueAsNumber attribute does not apply, as defined for the input
element's type attribute's current state, then throw an INVALID_ACCESS_ERR exception.
Otherwise, if the valueAsDate attribute applies, run the algorithm to convert a Date object
to a string defined for that state, passing it a Date object whose time value is the new
value, and set the value of the element to resulting string. Otherwise, run the algorithm to
convert a number to a string, as defined for that state, on the new value, and set the value
of the element to resulting string.

The stepDown(n) and stepUp(n) methods, when invoked, must run the following algorithm:

1. If the stepDown() and stepUp() methods do not apply, as defined for the input
element's type attribute's current state, then throw an INVALID_ACCESS_ERR
exception, and abort these steps.

2. If the element has no allowed value step, then throw an INVALID_ACCESS_ERR
exception, and abort these steps.

3. If applying the algorithm to convert a string to a number to the string given by the
element's value results in an error, then throw an INVALID_ACCESS_ERR exception,
and abort these steps; otherwise, let value be the result of that algorithm.

4. Let delta be the allowed value step multiplied by n.

5. If the method invoked was the stepDown() method, negate delta.

6. Let value be the result of adding delta to value.

7. If the element has a minimum, and the value is less than that minimum, then throw
a INVALID_ACCESS_ERR exception.

8. If the element has a maximum, and the value is greater than that maximum, then
throw a INVALID_ACCESS_ERR exception.

9. Let value as string be the result of running the algorithm to convert a number to a
string, as defined for the input element's type attribute's current state, on value.

10. Set the value of the element to value as string.

The list DOM attribute must return the current suggestions source element, if any, or null
otherwise.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 439 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 439 from 931

The selectedOption DOM attribute must return the first option element, in tree order, to
be a child of the suggestions source element and whose value matches the input
element's value, if any. If there is no suggestions source element, or if it contains no
matching option element, then the selectedOption attribute must return null.

4.10.4.4 Common event behaviors

When the input event applies, any time the user causes the element's value to change,
the user agent must queue a task to fire a simple event that bubbles called input at the
input element, then broadcast forminput events at the input element's form owner. User
agents may wait for a suitable break in the user's interaction before queuing the task; for
example, a user agent could wait for the user to have not hit a key for 100ms, so as to
only fire the event when the user pauses, instead of continuously for each keystroke.

Examples of a user changing the element's value would include the user typing into a
text field, pasting a new value into the field, or undoing an edit in that field. Some user
interactions do not cause changes to the value, e.g. hitting the "delete" key in an
empty text field, or replacing some text in the field with text from the clipboard that
happens to be exactly the same text.

When the change event applies, if the element does not have an activation behavior
defined but uses a user interface that involves an explicit commit action, then any time the
user commits a change to the element's value or list of selected files, the user agent must
queue a task to fire a simple event that bubbles called change at the input element, then
broadcast formchange events at the input element's form owner.

An example of a user interface with a commit action would be a File Upload control
that consists of a single button that brings up a file selection dialog: when the dialog is
closed, if that the file selection changed as a result, then the user has committed a
new file selection.

Another example of a user interface with a commit action would be a Date control that
allows both text-based user input and user selection from a drop-down calendar:
while text input might not have an explicit commit step, selecting a date from the drop
down calendar and then dismissing the drop down would be a commit action.

When the user agent changes the element's value on behalf of the user (e.g. as part of a
form prefilling feature), the user agent must follow these steps:

1. If the input event applies, queue a task to fire a simple event that bubbles called
input at the input element.

2. If the input event applies, broadcast forminput events at the input element's form
owner.

3. If the change event applies, queue a task to fire a simple event that bubbles called
change at the input element.

4. If the change event applies, broadcast formchange events at the input element's
form owner.

In addition, when the change event applies, change events can also be fired as part of
the element's activation behavior and as part of the unfocusing steps.

The task source for these task is the user interaction task source.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 440 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 440 from 931

4.10.5 The button element

Status: Last call for comments

Categories
Flow content.
Phrasing content.
Interactive content.
Listed, labelable, and submittable form-associated element.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content, but there must be no interactive content descendant.

Content attributes:
Global attributes
autofocus
disabled
form
formaction
formenctype
formmethod
formnovalidate
formtarget
name
type
value

DOM interface:
interface HTMLButtonElement : HTMLElement {

 attribute boolean autofocus;

 attribute boolean disabled;

 readonly attribute HTMLFormElement form;

 attribute DOMString formaction;

 attribute DOMString formenctype;

 attribute DOMString formmethod;

 attribute DOMString formnoValidate;

 attribute DOMString formtarget;

 attribute DOMString name;

 attribute DOMString type;

 attribute DOMString value;

 readonly attribute boolean willValidate;

 readonly attribute ValidityState validity;

 readonly attribute DOMString validationMessage;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 441 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 441 from 931

 boolean checkValidity();

 void setCustomValidity(in DOMString error);

 readonly attribute NodeList labels;

};

The button element represents a button. If the element is not disabled, then the user
agent should allow the user to activate the button.

The element is a button.

The type attribute controls the behavior of the button when it is activated. It is an
enumerated attribute. The following table lists the keywords and states for the attribute —
the keywords in the left column map to the states in the cell in the second column on the
same row as the keyword.

Keyword State Brief description
submit Submit Button Submits the form.
reset Reset Button Resets the form.
button Button Does nothing.

The missing value default is the Submit Button state.

If the type attribute is in the Submit Button state, the element is specifically a submit
button.

If the element is not disabled, the activation behavior of the button element is to run the
steps defined in the following list for the current state of the element's type attribute.

Submit Button
If the element has a form owner, the element must submit the form owner from the
button element.

Reset Button
If the element has a form owner, the element must reset the form owner.

Button
Do nothing.

The form attribute is used to explicitly associate the button element with its form owner.
The name attribute represents the element's name. The disabled attribute is used to make
the control non-interactive and to prevent its value from being submitted. The autofocus
attribute controls focus. The formaction, formenctype, formmethod, formnovalidate, and
formtarget attributes are attributes for form submission.

The formnovalidate attribute can be used to make submit buttons that do not trigger
the constraint validation.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 442 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 442 from 931

The value attribute gives the element's value for the purposes of form submission. The
value attribute must not be present unless the form attribute is present. The element's
value is the value of the element's value attribute, if there is one, or the empty string
otherwise.

A button (and its value) is only included in the form submission if the button itself
was used to initiate the form submission.

The value and type DOM attributes must reflect the respective content attributes of the
same name.

The willValidate, validity, and validationMessage attributes, and the checkValidity()
and setCustomValidity() methods, are part of the constraint validation API. The labels
attribute provides a list of the element's labels.

4.10.6 The select element

Status: Last call for comments

Categories
Flow content.
Phrasing content.
Interactive content.
Listed, labelable, submittable, and resettable form-associated element.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Zero or more option or optgroup elements.

Content attributes:
Global attributes
autofocus
disabled
form
multiple
name
size

DOM interface:
interface HTMLSelectElement : HTMLElement {

 attribute boolean autofocus;

 attribute boolean disabled;

 readonly attribute HTMLFormElement form;

 attribute boolean multiple;

 attribute DOMString name;

 attribute unsigned long size;

 readonly attribute DOMString type;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 443 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 443 from 931

 readonly attribute HTMLOptionsCollection options;

 attribute unsigned long length;

 caller getter any item(in unsigned long index);

 caller getter any namedItem(in DOMString name);

 void add(in HTMLElement element, optional in HTMLElement before);

 void add(in HTMLElement element, in long before);

 void remove(in long index);

 readonly attribute HTMLCollection selectedOptions;

 attribute long selectedIndex;

 attribute DOMString value;

 readonly attribute boolean willValidate;

 readonly attribute ValidityState validity;

 readonly attribute DOMString validationMessage;

 boolean checkValidity();

 void setCustomValidity(in DOMString error);

 readonly attribute NodeList labels;

};

The select element represents a control for selecting amongst a set of options.

The multiple attribute is a boolean attribute. If the attribute is present, then the select
element represents a control for selecting zero or more options from the list of options. If
the attribute is absent, then the select element represents a control for selecting a single
option from the list of options.

The list of options for a select element consists of all the option element children of the
select element, and all the option element children of all the optgroup element children of
the select element, in tree order.

The size attribute gives the number of options to show to the user. The size attribute, if
specified, must have a value that is a valid non-negative integer greater than zero. If the
multiple attribute is present, then the size attribute's default value is 4. If the multiple
attribute is absent, then the size attribute's default value is 1.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 444 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 444 from 931

If the multiple attribute is absent, and the element is not disabled, then the user agent
should allow the user to pick an option element in its list of options that is itself not
disabled. Upon this option element being picked (either through a click, or through
unfocusing the element after changing its value, or through a menu command, or through
any other mechanism), and before the relevant user interaction event is queued (e.g.
before the click event), the user agent must set the selectedness of the picked option
element to true and then queue a task to fire a simple event that bubbles called change at
the select element, using the user interaction task source as the task source, then
broadcast formchange events at the element's form owner.

If the multiple attribute is absent, whenever an option element in the select element's
list of options has its selectedness set to true, and whenever an option element with its
selectedness set to true is added to the select element's list of options, the user agent
must set the selectedness of all the other option element in its list of options to false.

If the multiple attribute is absent, whenever there are no option elements in the select
element's list of options that have their selectedness set to true, the user agent must set
the selectedness of the first option element in the list of options in tree order that is not
disabled, if any, to true.

If the multiple attribute is present, and the element is not disabled, then the user agent
should allow the user to toggle the selectedness of the option elements in its list of
options that are themselves not disabled (either through a click, or through a menu
command, or any other mechanism). Upon the selectedness of one or more option
elements being changed by the user, and before the relevant user interaction event is
queued (e.g. before a related click event), the user agent must queue a task to fire a
simple event tgat bubbles called change at the select element, using the user interaction
task source as the task source, then broadcast formchange events at the element's form
owner.

The reset algorithm for select elements is to go through all the option elements in the
element's list of options, and set their selectedness to true if the option element has a
selected attribute, and false otherwise.

The form attribute is used to explicitly associate the select element with its form owner.
The name attribute represents the element's name. The disabled attribute is used to make
the control non-interactive and to prevent its value from being submitted. The autofocus
attribute controls focus.

select . type
Returns "select-multiple" if the element has a multiple attribute, and "select-
one" otherwise.

select . options
Returns an HTMLOptionsCollection of the list of options.

select . length [= value]
Returns the number of elements in the list of options.

When set to a smaller number, truncates the number of option elements in the
select.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 445 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 445 from 931

When set to a greater number, adds new blank option elements to the select.

element = select . item(index)
select[index]
select(index)

Returns the item with index index from the list of options. The items are sorted in
tree order.
Returns null if index is out of range.

element = select . namedItem(name)
select[name]
select(name)

Returns the item with ID or name name from the list of options.

If there are multiple matching items, then a NodeList object containing all those
elements is returned.
Returns null if no element with that ID could be found.

select . add(element [, before])
Inserts element before the node given by before.
The before argument can be a number, in which case element is inserted before
the item with that number, or an element from the list of options, in which case
element is inserted before that element.
If before is omitted, null, or a number out of range, then element will be added at
the end of the list.

This method will throw a HIERARCHY_REQUEST_ERR exception if element is an
ancestor of the element into which it is to be inserted. If element is not an option or
optgroup element, then the method does nothing.

select . selectedOptions
Returns an HTMLCollection of the list of options that are selected.

select . selectedIndex [= value]
Returns the index of the first selected item, if any, or −1 if there is no selected item.
Can be set, to change the selection.

select . value [= value]
Returns the value of the first selected item, if any, or the empty string if there is no
selected item.
Can be set, to change the selection.

The type DOM attribute, on getting, must return the string "select-one" if the multiple
attribute is absent, and the string "select-multiple" if the multiple attribute is present.

The options DOM attribute must return an HTMLOptionsCollection rooted at the select
node, whose filter matches the elements in the list of options.

The options collection is also mirrored on the HTMLSelectElement object. The indices of
the supported indexed properties at any instant are the indices supported by the object

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 446 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 446 from 931

returned by the options attribute at that instant. The names of the supported named
properties at any instant are the names supported by the object returned by the options
attribute at that instant.

The length DOM attribute must return the number of nodes represented by the options
collection. On setting, it must act like the attribute of the same name on the options
collection.

The item(index) method must return the value returned by the method of the same name
on the options collection, when invoked with the same argument.

The namedItem(name) method must return the value returned by the method of the same
name on the options collection, when invoked with the same argument.

Similarly, the add() and remove() methods must act like their namesake methods on that
same options collection.

The selectedOptions DOM attribute must return an HTMLCollection rooted at the select
node, whose filter matches the elements in the list of options that have their selectedness
set to true.

The selectedIndex DOM attribute, on getting, must return the index of the first option
element in the list of options in tree order that has its selectedness set to true, if any. If
there isn't one, then it must return −1.

On setting, the selectedIndex attribute must set the selectedness of all the option
elements in the list of options to false, and then the option element in the list of options
whose index is the given new value, if any, must have its selectedness set to true.

The value DOM attribute, on getting, must return the value of the first option element in
the list of options in tree order that has its selectedness set to true, if any. If there isn't one,
then it must return the empty string.

On setting, the value attribute must set the selectedness of all the option elements in the
list of options to false, and then first the option element in the list of options, in tree order,
whose value is equal to the given new value, if any, must have its selectedness set to
true.

The multiple and size DOM attributes must reflect the respective content attributes of the
same name. The size DOM attribute limited to only positive non-zero numbers.

The willValidate, validity, and validationMessage attributes, and the checkValidity()
and setCustomValidity() methods, are part of the constraint validation API. The labels
attribute provides a list of the element's labels.

4.10.7 The datalist element

Status: Last call for comments

Categories
Flow content.
Phrasing content.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 447 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 447 from 931

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Either: phrasing content.
Or: Zero or more option elements.

Content attributes:
Global attributes

DOM interface:
interface HTMLDataListElement : HTMLElement {

 readonly attribute HTMLCollection options;

};

The datalist element represents a set of option elements that represent predefined
options for other controls. The contents of the element represents fallback content for
legacy user agents, intermixed with option elements that represent the predefined
options. In the rendering, the datalist element represents nothing and it, along with its
children, should be hidden.

The datalist element is hooked up to an input element using the list attribute on the
input element.

Each option element that is a descendant of the datalist element, that is not disabled,
and whose value is a string that isn't the empty string, represents a suggestion. Each
suggestion has a value and a label.

datalist . options
Returns an HTMLCollection of the options elements of the table.

The options DOM attribute must return an HTMLCollection rooted at the datalist node,
whose filter matches option elements.

Constraint validation: If an element has a datalist element ancestor, it is barred from
constraint validation.

4.10.8 The optgroup element

Status: Last call for comments

Categories
None.

Contexts in which this element may be used:
As a child of a select element.

Content model:
Zero or more option elements.

Content attributes:
Global attributes
disabled
label

DOM interface:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 448 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 448 from 931

interface HTMLOptGroupElement : HTMLElement {

 attribute boolean disabled;

 attribute DOMString label;

};

The optgroup element represents a group of option elements with a common label.

The element's group of option elements consists of the option elements that are children
of the optgroup element.

When showing option elements in select elements, user agents should show the option
elements of such groups as being related to each other and separate from other option
elements.

The disabled attribute is a boolean attribute and can be used to disable a group of option
elements together.

The label attribute must be specified. Its value gives the name of the group, for the
purposes of the user interface. User agents should use this attribute's value when labelling
the group of option elements in a select element.

The disabled and label attributes must reflect the respective content attributes of the
same name.

4.10.9 The option element

Status: Last call for comments

Categories
None.

Contexts in which this element may be used:
As a child of a select element.
As a child of a datalist element.
As a child of an optgroup element.

Content model:
Text.

Content attributes:
Global attributes
disabled
label
selected
value

DOM interface:
[NamedConstructor=Option(),

 NamedConstructor=Option(in DOMString text),

 NamedConstructor=Option(in DOMString text, in DOMString value),

 NamedConstructor=Option(in DOMString text, in DOMString value, in
boolean defaultSelected),

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 449 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 449 from 931

 NamedConstructor=Option(in DOMString text, in DOMString value, in
boolean defaultSelected, in boolean selected)]

interface HTMLOptionElement : HTMLElement {

 attribute boolean disabled;

 readonly attribute HTMLFormElement form;

 attribute DOMString label;

 attribute boolean defaultSelected;

 attribute boolean selected;

 attribute DOMString value;

 attribute DOMString text;

 readonly attribute long index;

};

The option element represents an option in a select element or as part of a list of
suggestions in a datalist element.

The disabled attribute is a boolean attribute. An option element is disabled if its disabled
attribute is present or if it is a child of an optgroup element whose disabled attribute is
present.

An option element that is disabled must prevent any click events that are queued on the
user interaction task source from being dispatched on the element.

The label attribute provides a label for element. The label of an option element is the
value of the label attribute, if there is one, or the textContent of the element, if there isn't.

The value attribute provides a value for element. The value of an option element is the
value of the value attribute, if there is one, or the textContent of the element, if there isn't.

The selected attribute represents the default selectedness of the element.

The selectedness of an option element is a boolean state, initially false. If the element is
disabled, then the element's selectedness is always false and cannot be set to true.
Unless otherwise specified, when the element is created, its selectedness must be set to
true if the element has a selected attribute. Whenever an option element's selected
attribute is added, its selectedness must be set to true.

The Option() constructor with two or more arguments overrides the initial state of
the selectedness state to always be false even if the third argument is true (implying
that a selected attribute is to be set).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 450 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 450 from 931

An option element's index is the number of option element that are in the same list of
options but that come before it in tree order. If the option element is not in a list of options,
then the option element's index is zero.

option . selected
Returns true if the element is selected, and false otherwise.

option . index
Returns the index of the element in its select element's options list.

option . form
Returns the element's form element, if any, or null otherwise.

option = new Option([text [, value [, defaultSelected [, selected]]]
])

Returns a new option element.
The text argument sets the contents of the element.

The value argument sets the value attribute.

The defaultSelected argument sets the selected attribute.
The selected argument sets whether or not the element is selected. If it is omitted,
even if the defaultSelected argument is true, the element is not selected.

The disabled and label DOM attributes must reflect the respective content attributes of
the same name. The defaultSelected DOM attribute must reflect the selected content
attribute.

The value DOM attribute, on getting, must return the value of the element's value content
attribute, if it has one, or else the value of the element's textContent DOM attribute. On
setting, the element's value content attribute must be set to the new value.

The selected DOM attribute must return true if the element's selectedness is true, and
false otherwise.

The index DOM attribute must return the element's index.

The text DOM attribute, on getting, must return the same value as the textContent DOM
attribute on the element, and on setting, must act as if the textContent DOM attribute on
the element had been set to the new value.

The form DOM attribute's behavior depends on whether the option element is in a select
element or not. If the option has a select element as its parent, or has a colgroup
element as its parent and that colgroup element has a select element as its parent, then
the form DOM attribute must return the same value as the form DOM attribute on that
select element. Otherwise, it must return null.

Several constructors are provided for creating HTMLOptionElement objects (in addition to
the factory methods from DOM Core such as createElement()): Option(), Option(text),
Option(text, value), Option(text, value, defaultSelected), and Option(text,
value, defaultSelected, selected). When invoked as constructors, these must return a

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 451 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 451 from 931

new HTMLOptionElement object (a new option element). If the text argument is present, the
new object must have as its only child a Node with node type TEXT_NODE (3) whose data is
the value of that argument. If the value argument is present, the new object must have a
value attribute set with the value of the argument as its value. If the defaultSelected
argument is present and true, the new object must have a selected attribute set with no
value. If the selected argument is present and true, the new object must have its
selectedness set to true; otherwise the fourth argument is absent or false, and the
selectedness must be set to false, even if the defaultSelected argument is present and
true.

4.10.10 The textarea element

Status: Last call for comments

Categories
Flow content.
Phrasing content.
Interactive content.
Listed, labelable, submittable, and resettable form-associated element.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Text.

Content attributes:
Global attributes
autofocus
cols
disabled
form
maxlength
name
placeholder
readonly
required
rows
wrap

DOM interface:
interface HTMLTextAreaElement : HTMLElement {

 attribute boolean autofocus;

 attribute unsigned long cols;

 attribute boolean disabled;

 readonly attribute HTMLFormElement form;

 attribute unsigned long maxLength;

 attribute DOMString name;

 attribute DOMString placeholder;

 attribute boolean readOnly;

 attribute boolean required;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 452 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 452 from 931

 attribute unsigned long rows;

 attribute DOMString wrap;

 readonly attribute DOMString type;

 attribute DOMString defaultValue;

 attribute DOMString value;

 readonly attribute unsigned long textLength;

 readonly attribute boolean willValidate;

 readonly attribute ValidityState validity;

 readonly attribute DOMString validationMessage;

 boolean checkValidity();

 void setCustomValidity(in DOMString error);

 readonly attribute NodeList labels;

 void select();

 attribute unsigned long selectionStart;

 attribute unsigned long selectionEnd;

 void setSelectionRange(in unsigned long start, in unsigned long end);

};

The textarea element represents a multiline plain text edit control for the element's raw
value. The contents of the control represent the control's default value.

The raw value of a textarea control must be initially the empty string.

The readonly attribute is a boolean attribute used to control whether the text can be edited
by the user or not.

Constraint validation: If the readonly attribute is specified on a textarea element, the
element is barred from constraint validation.

A textarea element is mutable if it is neither disabled nor has a readonly attribute
specified.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 453 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 453 from 931

When a textarea is mutable, its raw value should be editable by the user. Any time the
user causes the element's raw value to change, the user agent must queue a task to fire a
simple event that bubbls called input at the textarea element, then broadcast forminput
events at the textarea element's form owner. User agents may wait for a suitable break in
the user's interaction before queuing the task; for example, a user agent could wait for the
user to have not hit a key for 100ms, so as to only fire the event when the user pauses,
instead of continuously for each keystroke.

A textarea element has a dirty value flag, which must be initially set to false, and must
be set to true whenever the user interacts with the control in a way that changes the raw
value.

When the textarea element's textContent DOM attribute changes value, if the element's
dirty value flag is false, then the element's raw value must be set to the value of the
element's textContent DOM attribute.

The reset algorithm for textarea elements is to set the element's value to the value of the
element's textContent DOM attribute.

The cols attribute specifies the expected maximum number of characters per line. If the
cols attribute is specified, its value must be a valid non-negative integer greater than zero.
If applying the rules for parsing non-negative integers to the attribute's value results in a
number greater than zero, then the element's character width is that value; otherwise, it
is 20.

The user agent may use the textarea element's character width as a hint to the user as to
how many characters the server prefers per line (e.g. for visual user agents by making the
width of the control be that many characters). In visual renderings, the user agent should
wrap the user's input in the rendering so that each line is no wider than this number of
characters.

The rows attribute specifies the number of lines to show. If the rows attribute is specified,
its value must be a valid non-negative integer greater than zero. If applying the rules for
parsing non-negative integers to the attribute's value results in a number greater than
zero, then the element's character height is that value; otherwise, it is 2.

Visual user agents should set the height of the control to the number of lines given by
character height.

The wrap attribute is an enumerated attribute with two keywords and states: the soft
keyword which maps to the Soft state, and the hard keyword which maps to the Hard
state. The missing value default is the Soft state.

If the element's wrap attribute is in the Hard state, the cols attribute must be specified.

The element's value is defined to be the element's raw value with the following
transformation applied:

1. Replace every occurrence of a U+000D CARRIAGE RETURN (CR) character not
followed by a U+000A LINE FEED (LF) character, and every occurrence of a
U+000A LINE FEED (LF) character not proceeded by a U+000D CARRIAGE

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 454 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 454 from 931

RETURN (CR) character, by a two-character string consisting of a U+000D
CARRIAGE RETURN - U+000A LINE FEED (CRLF) character pair.

2. If the element's wrap attribute is in the Hard state, insert U+000D CARRIAGE
RETURN - U+000A LINE FEED (CRLF) character pairs into the string using a UA-
defined algorithm so that each line so that each line has no more than character
width characters. The purposes of this requirement, lines are delimited by the start
of the string, the end of the string, and U+000D CARRIAGE RETURN - U+000A
LINE FEED (CRLF) character pairs.

The maxlength attribute is a form control maxlength attribute controlled by the textarea
element's dirty value flag.

If the textarea element has a maximum allowed value length, then the element's children
must be such that the code-point length of the value of the element's textContent DOM
attribute is equal to or less than the element's maximum allowed value length.

The required attribute is a boolean attribute. When specified, the user will be required to
enter a value before submitting the form.

Constraint validation: If the element has its required attribute specified, and the element
is mutable, and the element's value is the empty string, then the element is suffering from
being missing.

The placeholder attribute represents a hint (a word or short phrase) intended to aid the
user with data entry. A hint could be a sample value or a brief description of the expected
format. The attribute, if specified, must have a value that contains no U+000A LINE FEED
(LF) or U+000D CARRIAGE RETURN (CR) characters.

For a longer hint or other advisory text, the title attribute is more appropriate.

The placeholder attribute should not be used as an alternative to a label.

User agents should present this hint to the user, after having stripped line breaks from it,
when the element's value is the empty string and the control is not focused (e.g. by
displaying it inside a blank unfocused control).

The form attribute is used to explicitly associate the textarea element with its form owner.
The name attribute represents the element's name. The disabled attribute is used to make
the control non-interactive and to prevent its value from being submitted. The autofocus
attribute controls focus.

textarea . type
Returns the string "textarea".

textarea . value
Returns the current value of the element.
Can be set, to change the value.

The cols, placeholder, required, rows, and wrap attributes must reflect the respective
content attributes of the same name. The cols and rows attributes are limited to only

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 455 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 455 from 931

positive non-zero numbers. The maxLength DOM attribute must reflect the maxlength
content attribute. The readOnly DOM attribute must reflect the readonly content attribute.

The type DOM attribute must return the value "textarea".

The defaultValue DOM attribute must act like the element's textContent DOM attribute.

The value attribute must, on getting, return the element's raw value; on setting, it must set
the element's raw value to the new value.

The textLength DOM attribute must return the code-point length of the element's value.

The willValidate, validity, and validationMessage attributes, and the checkValidity()
and setCustomValidity() methods, are part of the constraint validation API. The labels
attribute provides a list of the element's labels. The select(), selectionStart,
selectionEnd, and setSelectionRange() methods and attributes expose the element's
text selection.

4.10.11 The keygen element

Status: First draft

Categories
Flow content.
Phrasing content.
Interactive content.
Listed, labelable, submittable, and resettable form-associated element.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Empty.

Content attributes:
Global attributes
autofocus
challenge
disabled
form
keytype
name

DOM interface:
interface HTMLKeygenElement : HTMLElement {

 attribute boolean autofocus;

 attribute DOMString challenge;

 attribute boolean disabled;

 readonly attribute HTMLFormElement form;

 attribute DOMString keytype;

 attribute DOMString name;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 456 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 456 from 931

 readonly attribute DOMString type;

 readonly attribute boolean willValidate;

 readonly attribute ValidityState validity;

 readonly attribute DOMString validationMessage;

 boolean checkValidity();

 void setCustomValidity(in DOMString error);

 readonly attribute NodeList labels;

};

The keygen element represents a key pair generator control. When the control's form is
submitted, the private key is stored in the local keystore, and the public key is packaged
and sent to the server.

The challenge attribute may be specified. Its value will be packaged with the submitted
key.

The keytype attribute is an enumerated attribute. The following table lists the keywords
and states for the attribute — the keywords in the left column map to the states listed in
the cell in the second column on the same row as the keyword.

Keyword State
rsa RSA

The invalid value default state is the unknown state. The missing value default state is the
RSA state.

The user agent may expose a user interface for each keygen element to allow the user to
configure settings of the element's key pair generator, e.g. the key length.

The reset algorithm for keygen elements is to set these various configuration settings back
to their defaults.

The element's value is the string returned from the following algorithm:

1. Use the appropriate step from the following list:

If the keytype attribute is in the RSA state
Generate an RSA key pair using the settings given by the user, if appropriate.

Select an RSA signature algorithm from those listed in section 2.2.1 ("RSA
Signature Algorithm") of RFC 3279. [RFC3279]

Otherwise, the keytype attribute is in the unknown state

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 457 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 457 from 931

The given key type is not supported. Return the empty string and abort this
algorithm.

Let private key be the generated private key.

Let public key be the generated public key.

Let signature algorithm be the selected signature algorithm.

2. If the element has a challenge attribute, then let challenge be that attribute's value.
Otherwise, let challenge be the empty string.

3. Let algorithm be an ASN.1 AlgorithmIdentifier structure as defined by RFC 5280,
with the algorithm field giving the ASN.1 OID used to identify signature algorithm,
using the OIDs defined in section 2.2 ("Signature Algorithms") of RFC 3279, and
the parameters field set up as required by RFC 3279 for AlgorithmIdentifier
structures for that algorithm. [X690] [RFC5280] [RFC3279]

4. Let spki be an ASN.1 SubjectPublicKeyInfo structure as defined by RFC 5280,
with the algorithm field set to the algorithm structure from the previous step, and
the subjectPublicKey field set to the BIT STRING value resulting from ASN.1 DER
encoding the public key. [X690] [RFC5280]

5. Let publicKeyAndChallenge be an ASN.1 PublicKeyAndChallenge structure as
defined below, with the spki field set to the spki structure from the previous step,
and the challenge field set to the string challenge obtained earlier. [X690]

6. Let signature be the BIT STRING value resulting from ASN.1 DER encoding the
signature generated by applying the signature algorithm to the byte string obtained
by ASN.1 DER encoding the publicKeyAndChallenge structure, using private key
as the signing key. [X690]

7. Let signedPublicKeyAndChallenge be an ASN.1 SignedPublicKeyAndChallenge
structure as defined below, with the publicKeyAndChallenge field set to the
publicKeyAndChallenge structure, the signatureAlgorithm field set to the algorithm
structure, and the signature field set to the BIT STRING signature from the
previous step. [X690]

8. Return the result of base64 encoding the result of ASN.1 DER encoding the
signedPublicKeyAndChallenge structure. [RFC3548] [X690]

The data objects used by the above algorithm are defined as follows. These definitions
use the same "ASN.1-like" syntax defined by RFC 5280. [RFC5280]

PublicKeyAndChallenge ::= SEQUENCE {
 spki SubjectPublicKeyInfo,
 challenge IA5STRING
}

SignedPublicKeyAndChallenge ::= SEQUENCE {
 publicKeyAndChallenge PublicKeyAndChallenge,
 signatureAlgorithm AlgorithmIdentifier,
 signature BIT STRING
}

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 458 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 458 from 931

Constraint validation: The keygen element is barred from constraint validation.

The form attribute is used to explicitly associate the keygen element with its form owner.
The name attribute represents the element's name. The disabled attribute is used to make
the control non-interactive and to prevent its value from being submitted. The autofocus
attribute controls focus.

keygen . type
Returns the string "keygen".

The challenge and keytype DOM attributes must reflect the respective content attributes
of the same name.

The type DOM attribute must return the value "keygen".

The willValidate, validity, and validationMessage attributes, and the checkValidity()
and setCustomValidity() methods, are part of the constraint validation API. The labels
attribute provides a list of the element's labels.

This specification does not specify how the private key generated is to be used. It is
expected that after receiving the SignedPublicKeyAndChallenge (SPKAC) structure,
the server will generate a client certificate and offer it back to the user for
download; this certificate, once downloaded and stored in the key store along with
the private key, can then be used to authenticate to services that use SSL and
certificate authentication.

4.10.12 The output element

Status: Last call for comments

Categories
Flow content.
Phrasing content.
Listed and resettable form-associated element.

Contexts in which this element may be used:
Where phrasing content is expected.

Content model:
Phrasing content.

Content attributes:
Global attributes
for
form
name

DOM interface:
interface HTMLOutputElement : HTMLElement {

 attribute DOMString htmlFor;

 readonly attribute HTMLFormElement form;

 attribute DOMString name;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 459 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 459 from 931

 readonly attribute DOMString type;

 attribute DOMString defaultValue;

 attribute DOMString value;

 readonly attribute boolean willValidate;

 readonly attribute ValidityState validity;

 readonly attribute DOMString validationMessage;

 boolean checkValidity();

 void setCustomValidity(in DOMString error);

};

The output element represents the result of a calculation.

The for content attribute allows an explicit relationship to be made between the result of a
calculation and the elements that represent the values that went into the calculation or that
otherwise influenced the calculation. The for attribute, if specified, must contain a string
consisting of an unordered set of unique space-separated tokens, each of which must
have the value of an ID of an element in the same Document.

The form attribute is used to explicitly associate the output element with its form owner.
The name attribute represents the element's name.

The element has a value mode flag which is either value or default. Initially, the value
mode flag must be set to default.

When the value mode flag is in mode default, the contents of the element represent both
the value of the element and its default value. When the value mode flag is in mode value,
the contents of the element represent the value of the element only, and the default value
is only accessible using the defaultValue DOM attribute.

The element also has a default value. Initially, the default value must be the empty string.

Whenever the element's descendants are changed in any way, if the value mode flag is in
mode default, the element's default value must be set to the value of the element's
textContent DOM attribute.

The reset algorithm for output elements is to set the element's textContent DOM attribute
to the value of the element's defaultValue DOM attribute (thus replacing the element's
child nodes), and then to set the element's value mode flag to default.

output . value [= value]
Returns the element's current value.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 460 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 460 from 931

Can be set, to change the value.
output . defaultValue [= value]

Returns the element's current default value.
Can be set, to change the default value.

output . type
Returns the string "output".

The value DOM attribute must act like the element's textContent DOM attribute, except
that on setting, in addition, before the child nodes are changed, the element's value mode
flag must be set to value.

The defaultValue DOM attribute, on getting, must return the element's default value. On
setting, the attribute must set the element's default value, and, if the element's value mode
flag is in the mode default, set the element's textContent DOM attribute as well.

The type attribute must return the string "output".

The htmlFor DOM attribute must reflect the for content attribute.

The willValidate, validity, and validationMessage attributes, and the checkValidity()
and setCustomValidity() methods, are part of the constraint validation API.

Constraint validation: output elements are always barred from constraint validation.

4.10.13 Association of controls and forms

Status: Last call for comments

A form-associated element can have a relationship with a form element, which is called
the element's form owner. If a form-associated element is not associated with a form
element, its form owner is said to be null.

A form-associated element is, by default, associated with its nearest ancestor form
element (as described below), but may have a form attribute specified to override this.

If a form-associated element has a form attribute specified, then its value must be the ID
of a form element in the element's owner Document.

When a form-associated element is created, its form owner must be initialized to null (no
owner).

When a form-associated element is to be associated with a form, its form owner must be
set to that form.

When a form-associated element's ancestor chain changes, e.g. because it or one of its
ancestors was inserted or removed from a Document, then the user agent must reset the
form owner of that element.

When a form-associated element's form attribute is added, removed, or has its value
changed, then the user agent must reset the form owner of that element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 461 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 461 from 931

When a form-associated element has a form attribute and the ID of any of the form
elements in the Document changes, then the user agent must reset the form owner of that
form-associated element.

When the user agent is to reset the form owner of a form-associated element, it must run
the following steps:

1. If the element's form owner is not null, and the element's form content attribute is
not present, and the element's form owner is one of the ancestors of the element
after the change to the ancestor chain, then do nothing, and abort these steps.

2. Let the element's form owner be null.

3. If the element has a form content attribute, then run these substeps:

1. If the first element in the Document to have an ID that is case-sensitively
equal to the element's form content attribute's value is a form element, then
associate the form-associated element with that form element.

2. Abort the "reset the form owner" steps.

4. Otherwise, if the form-associated element in question has an ancestor form
element, then associate the form-associated element with the nearest such
ancestor form element.

5. Otherwise, the element is left unassociated.

In the following non-conforming snippet:

...
 <form id="a">
 <div id="b"></div>
 </form>
 <script>
 document.getElementById('b').innerHTML =
 '<table><tr><td><form id="c"><input id="d"></table>' +
 '<input id="e">';
 </script>
...

The form owner of "d" would be the inner nested form "c", while the form owner of "e"
would be the outer form "a".

This is because despite the association of "e" with "c" in the HTML parser, when the
innerHTML algorithm moves the nodes from the temporary document to the "b" element,
the nodes see their ancestor chain change, and thus all the "magic" associations done by
the parser are reset to normal ancestor associations.

This example is a non-conforming document, though, as it is a violation of the content
models to nest form elements.

element . form
Returns the element's form owner.
Returns null if there isn't one.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 462 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 462 from 931

Form-associated elements have a form DOM attribute, which, on getting, must return the
element's form owner, or null if there isn't one.

Constraint validation: If an element has no form owner, it is barred from constraint
validation.

4.10.14 Attributes common to form controls

4.10.14.1 Naming form controls

Status: Last call for comments

The name content attribute gives the name of the form control, as used in form submission
and in the form element's elements object. If the attribute is specified, its value must not
be the empty string.

Constraint validation: If an element does not have a name attribute specified, or its name
attribute's value is the empty string, then it is barred from constraint validation.

The name DOM attribute must reflect the name content attribute.

4.10.14.2 Enabling and disabling form controls

Status: Last call for comments

The disabled content attribute is a boolean attribute.

A form control is disabled if its disabled attribute is set, or if it is a descendant of a
fieldset element whose disabled attribute is set.

A form control that is disabled must prevent any click events that are queued on the user
interaction task source from being dispatched on the element.

Constraint validation: If an element is disabled, it is barred from constraint validation.

The disabled DOM attribute must reflect the disabled content attribute.

4.10.14.3 A form control's value

Form controls have a value and a checkedness. (The latter is only used by input
elements.) These are used to describe how the user interacts with the control.

4.10.14.4 Autofocusing a form control

Status: Last call for comments

The autofocus content attribute allows the user to indicate that a control is to be focused
as soon as the page is loaded, allowing the user to just start typing without having to
manually focus the main control.

The autofocus attribute is a boolean attribute.

There must not be more than one element in the document with the autofocus attribute
specified.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 463 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 463 from 931

Whenever an element with the autofocus attribute specified is inserted into a document,
the user agent should queue a task that checks to see if the element is focusable, and if
so, runs the focusing steps for that element. User agents may also change the scrolling
position of the document, or perform some other action that brings the element to the
user's attention. The task source for this task is the DOM manipulation task source.

User agents may ignore this attribute if the user has indicated (for example, by starting to
type in a form control) that he does not wish focus to be changed.

Focusing the control does not imply that the user agent must focus the browser
window if it has lost focus.

The autofocus DOM attribute must reflect the content attribute of the same name.

In the following snippet, the text control would be focused when the document was loaded.

<input maxlength="256" name="q" value="" autofocus>
<input type="submit" value="Search">

4.10.14.5 Limiting user input length

Status: Last call for comments

A form control maxlength attribute, controlled by a dirty value flag declares a limit on the
number of characters a user can input.

If an element has its form control maxlength attribute specified, the attribute's value must
be a valid non-negative integer. If the attribute is specified and applying the rules for
parsing non-negative integers to its value results in a number, then that number is the
element's maximum allowed value length. If the attribute is omitted or parsing its value
results in an error, then there is no maximum allowed value length.

Constraint validation: If an element has a maximum allowed value length, and its dirty
value flag is true, and the code-point length of the element's value is greater than the
element's maximum allowed value length, then the element is suffering from being too
long.

User agents may prevent the user from causing the element's value to be set to a value
whose code-point length is greater than the element's maximum allowed value length.

4.10.14.6 Form submission

Attributes for form submission can be specified both on form elements and on submit
button (elements that represent buttons that submit forms, e.g. an input element whose
type attribute is in the Submit Button state).

The attributes for form submission that may be specified on form elements are action,
enctype, method, novalidate, and target.

The corresponding attributes for form submission that may be specified on submit buttons
are formaction, formenctype, formmethod, formnovalidate, and formtarget. When
omitted, they default to the values given on the corresponding attributes on the form
element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 464 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 464 from 931

The action and formaction content attributes, if specified, must have a value that is a
valid URL.

The action of an element is the value of the element's formaction attribute, if the element
is a submit button and has such an attribute, or the value of its form owner's action
attribute, if it has one, or else the empty string.

The method and formmethod content attributes are enumerated attributes with the following
keywords and states:

• The keyword GET, mapping to the state GET, indicating the HTTP GET method.
• The keyword POST, mapping to the state POST, indicating the HTTP POST method.
• The keyword PUT, mapping to the state PUT, indicating the HTTP PUT method.
• The keyword DELETE, mapping to the state DELETE, indicating the HTTP DELETE

method.

The missing value default for these attributes is the GET state.

The method of an element is one of those four states. If the element is a submit button
and has a formmethod attribute, then the element's method is that attribute's state;
otherwise, it is the form owner's method attribute's state.

The enctype and formenctype content attributes are enumerated attributes with the
following keywords and states:

• The "application/x-www-form-urlencoded" keyword and corresponding state.
• The "multipart/form-data" keyword and corresponding state.
• The "text/plain" keyword and corresponding state.

The missing value default for these attributes is the application/x-www-form-urlencoded
state.

The enctype of an element is one of those three states. If the element is a submit button
and has a formenctype attribute, then the element's enctype is that attribute's state;
otherwise, it is the form owner's enctype attribute's state.

The target and formtarget content attributes, if specified, must have values that are valid
browsing context names or keywords.

The target of an element is the value of the element's formtarget attribute, if the element
is a submit button and has such an attribute; or the value of its form owner's target
attribute, if it has such an attribute; or, if one of the child nodes of the head element is a
base element with a target attribute, then the value of the target attribute of the first such
base element; or, if there is no such element, the empty string.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 465 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 465 from 931

The novalidate and formnovalidate content attributes are boolean attributes. If present,
they indicate that the form is not to be validated during submission.

The no-validate state of an element is true if the element is a submit button and the
element's formnovalidate attribute is present, or if the element's form owner's novalidate
attribute is present, and false otherwise.

This attribute is useful to include "save" buttons on forms that have validation constraints,
to allow users to save their progress even though they haven't fully entered the data in the
form. The following example shows a simple form that has two required fields. There are
three buttons: one to submit the form, which requires both fields to be filled in; one to save
the form so that the user can come back and fill it in later; and one to cancel the form
altogether.

<form action="editor.cgi" method="post">
 <p><label>Name: <input required name=fn></label></p>
 <p><label>Essay: <textarea name=essay></textarea></label></p>
 <p><input type=submit name=submit value="Submit essay"></p>
 <p><input type=submit formnovalidate name=save value="Save essay"></p>
 <p><input type=submit formnovalidate name=cancel value="Cancel"></p>
</form>

The action, method, enctype, and target DOM attributes must reflect the respective
content attributes of the same name. The noValidate DOM attribute must reflect the
novalidate content attribute. The formAction DOM attribute must reflect the formaction
content attribute. The formEnctype DOM attribute must reflect the formenctype content
attribute. The formMethod DOM attribute must reflect the formmethod content attribute. The
formNoValidate DOM attribute must reflect the formnovalidate content attribute. The
formTarget DOM attribute must reflect the formtarget content attribute.

4.10.15 Constraints

4.10.15.1 Definitions

A listed form-associated element is a candidate for constraint validation unless a
condition has barred the element from constraint validation. (For example, an element
is barred from constraint validation if it is an output or fieldset element.)

An element can have a custom validity error message defined. Initially, an element
must have its custom validity error message set to the empty string. When its value is not
the empty string, the element is suffering from a custom error. It can be set using the
setCustomValidity() method. The user agent should use the custom validity error
message when alerting the user to the problem with the control.

An element can be constrained in various ways. The following is the list of validity states
that a form control can be in, making the control invalid for the purposes of constraint
validation. (The definitions below are non-normative; other parts of this specification define
more precisely when each state applies or does not.)

Suffering from being missing

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 466 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 466 from 931

When a control has no value but has a required attribute (input required,
textarea required).

Suffering from a type mismatch
When a control that allows arbitrary user input has a value that is not in the
correct syntax (E-mail, URL).

Suffering from a pattern mismatch
When a control has a value that doesn't satisfy the pattern attribute.

Suffering from being too long
When a control has a value that is too long for the form control maxlength
attribute (input maxlength, textarea maxlength).

Suffering from an underflow
When a control has a value that is too low for the min attribute.

Suffering from an overflow
When a control has a value that is too high for the max attribute.

Suffering from a step mismatch
When a control has a value that doesn't fit the rules given by the step
attribute.

Suffering from a custom error
When a control's custom validity error message (as set by the element's
setCustomValidity() method) is not the empty string.

An element can still suffer from these states even when the element is disabled;
thus these states can be represented in the DOM even if validating the form during
submission wouldn't indicate a problem to the user.

An element satisfies its constraints if it is not suffering from any of the above validity
states.

4.10.15.2 Constraint validation

Status: Last call for comments

When the user agent is required to statically validate the constraints of form element
form, it must run the following steps, which return either a positive result (all the controls in
the form are valid) or a negative result (there are invalid controls) along with a (possibly
empty) list of elements that are invalid and for which no script has claimed responsibility:

1. Let controls be a list of all the submittable elements whose form owner is form, in
tree order.

2. Let invalid controls be an initially empty list of elements.

3. For each element field in controls, in tree order, run the following substeps:

1. If field is not a candidate for constraint validation, then move on to the next
element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 467 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 467 from 931

2. Otherwise, if field satisfies its constraints, then move on to the next element.

3. Otherwise, add field to invalid controls.

4. If invalid controls is empty, then return a positive result and abort these steps.

5. Let unhandled invalid controls be an initially empty list of elements.

6. For each element field in invalid controls, if any, in tree order, run the following
substeps:

1. Fire a simple event called invalid that is cancelable at field.

2. If the event was not canceled, then add field to unhandled invalid controls.

7. Return a negative result with the list of elements in the unhandled invalid controls
list.

If a user agent is to interactively validate the constraints of form element form, then the
user agent must run the following steps:

1. Statically validate the constraints of form, and let unhandled invalid controls be the
list of elements returned if the result was negative.

2. If the result was positive, then return that result and abort these steps.

3. Report the problems with the constraints of at least one of the elements given in
unhandled invalid controls to the user. User agents may focus one of those
elements in the process, by running the focusing steps for that element, and may
change the scrolling position of the document, or perform some other action that
brings the element to the user's attention. User agents may report more than one
constraint violation. User agents may coalesce related constraint violation reports if
appropriate (e.g. if multiple radio buttons in a group are marked as required, only
one error need be reported). If one of the controls is not visible to the user (e.g. it
has the hidden attribute set) then user agents may report a script error.

4. Return a negative result.

4.10.15.3 The constraint validation API

Status: Last call for comments

element . willValidate
Returns true if the element will be validated when the form is submitted; false
otherwise.

element . setCustomValidity(message)
Sets a custom error, so that the element would fail to validate. The given message
is the message to be shown to the user when reporting the problem to the user.
If the argument is the empty string, clears the custom error.

element . validity . valueMissing

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 468 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 468 from 931

Returns true if the element has no value but is a required field; false otherwise.
element . validity . typeMismatch

Returns true if the element's value is not in the correct syntax; false otherwise.
element . validity . patternMismatch

Returns true if the element's value doesn't match the provided pattern; false
otherwise.

element . validity . tooLong
Returns true if the element's value is longer than the provided maximum length;
false otherwise.

element . validity . rangeUnderflow
Returns true if the element's value is lower than the provided minimum; false
otherwise.

element . validity . rangeOverflow
Returns true if the element's value is higher than the provided maximum; false
otherwise.

element . validity . stepMismatch
Returns true if the element's value doesn't fit the rules given by the step attribute;
false otherwise.

element . validity . customError
Returns true if the element has a custom error; false otherwise.

element . validity . valid
Returns true if the element's value has no validity problems; false otherwise.

valid = element . checkValidity()
Returns true if the element's value has no validity problems; false otherwise. Fires
an invalid event at the element in the latter case.

element . validationMessage
Returns the error message that would be shown to the user if the element was to
be checked for validity.

The willValidate attribute must return true if an element is a candidate for constraint
validation, and false otherwise (i.e. false if any conditions are barring it from constraint
validation).

The setCustomValidity(message), when invoked, must set the custom validity error
message to the value of the given message argument.

In the following example, a script checks the value of a form control each time it is edited,
and whenever it is not a valid value, uses the setCustomValidity() method to set an
appropriate message.

<label>Feeling: <input name=f type="text" oninput="check(this)"></label>
<script>
 function check(input) {

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 469 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 469 from 931

 if (input.value == "good" ||
 input.value == "fine" ||
 input.value == "tired") {
 input.setCustomValidity('"' + input.value + '" is not a feeling.');
 } else {
 // input is fine -- reset the error message
 input.setCustomValidity('');
 }
 }
</script>

The validity attribute must return a ValidityState object that represents the validity
states of the element. This object is live, and the same object must be returned each time
the element's validity attribute is retrieved.

interface ValidityState {
 readonly attribute boolean valueMissing;
 readonly attribute boolean typeMismatch;
 readonly attribute boolean patternMismatch;
 readonly attribute boolean tooLong;
 readonly attribute boolean rangeUnderflow;
 readonly attribute boolean rangeOverflow;
 readonly attribute boolean stepMismatch;
 readonly attribute boolean customError;
 readonly attribute boolean valid;
};

A ValidityState object has the following attributes. On getting, they must return true if the
corresponding condition given in the following list is true, and false otherwise.

valueMissing
The control is suffering from being missing.

typeMismatch
The control is suffering from a type mismatch.

patternMismatch
The control is suffering from a pattern mismatch.

tooLong
The control is suffering from being too long.

rangeUnderflow
The control is suffering from an underflow.

rangeOverflow
The control is suffering from an overflow.

stepMismatch
The control is suffering from a step mismatch.

customError
The control is suffering from a custom error.

valid
None of the other conditions are true.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 470 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 470 from 931

When the checkValidity() method is invoked, if the element is a candidate for constraint
validation and does not satisfy its constraints, the user agent must fire a simple event
called invalid that is cancelable (but has no default action) at the element and return
false. Otherwise, it must only return true without doing anything else.

The validationMessage attribute must return the empty string if the element is not a
candidate for constraint validation or if it is one but it satisfies its constraints; otherwise, it
must return a suitably localized message that the user agent would show the user if this
were the only form with a validity constraint problem. If the element is suffering from a
custom error, then the custom validity error message should be present in the return
value.

4.10.15.4 Security

Servers should not rely on client-side validation. Client-side validation can be intentionally
bypassed by hostile users, and unintentionally bypassed by users of older user agents or
automated tools that do not implement these features. The constraint validation features
are only intended to improve the user experience, not to provide any kind of security
mechanism.

4.10.16 Form submission

Status: Last call for comments

4.10.16.1 Introduction

This section is non-normative.

When forms are submitted, the data in the form is converted into the form specified by the
enctype, and then sent to the destination specified by the action using the given method.

For example, take the following form:

<form action="/find.cgi" method=get>
 <input type=text name=t>
 <input type=search name=q>
 <input type=submit>
</form>

If the user types in "cats" in the first field and "fur" in the second, and then hits the submit
button, then the user agent will load .../find.cgi?t=cats&q=fur.

On the other hand, consider this form:

<form action="/find.cgi" method=post enctype="multipart/form-data">
 <input type=text name=t>
 <input type=search name=q>
 <input type=submit>
</form>

Given the same user input, the result on submission is quite different: the user agent
instead does an HTTP POST to the given URL, with as the entity body something like the
following text:

------kYFrd4jNJEgCervE

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 471 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 471 from 931

Content-Disposition: form-data; name="t"

cats
------kYFrd4jNJEgCervE
Content-Disposition: form-data; name="q"

fur
------kYFrd4jNJEgCervE--

4.10.16.2 Implicit submission

Status: Last call for comments

User agents may establish a button in each form as being the form's default button. This
should be the first submit button in tree order whose form owner is that form element, but
user agents may pick another button if another would be more appropriate for the
platform. If the platform supports letting the user submit a form implicitly (for example, on
some platforms hitting the "enter" key while a text field is focused implicitly submits the
form), then doing so must cause the form's default button's activation behavior, if any, to
be run.

Consequently, if the default button is disabled, the form is not submitted when such
an implicit submission mechanism is used. (A button has no activation behavior
when disabled.)

If the form has no submit button, then the implicit submission mechanism must just submit
the form element from the form element itself.

4.10.16.3 Form submission algorithm

Status: Last call for comments

When a form form is submitted from an element submitter (typically a button), the user
agent must run the following steps:

1. If form is in a Document that has no associated browsing context or whose browsing
context has its sandboxed forms browsing context flag set, then abort these steps
without doing anything.

2. If form is already being submitted (i.e. the form was submitted again while
processing the events fired from the next two steps, probably from a script
redundantly calling the submit() method on form), then abort these steps. This
doesn't affect the earlier instance of this algorithm.

3. If the submitter is anything but a form element, and the submitter element's no-
validate state is false, then interactively validate the constraints of form and
examine the result: if the result is negative (the constraint validation concluded that
there were invalid fields and probably informed the user of this) then abort these
steps.

4. If the submitter is anything but a form element, then fire a simple event that is
cancelable called submit, at form. If the event's default action is prevented (i.e. if
the event is canceled) then abort these steps. Otherwise, continue (effectively the
default action is to perform the submission).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 472 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 472 from 931

5. Let controls be a list of all the submittable elements whose form owner is form, in
tree order.

6. Let the form data set be a list of name-value-type tuples, initially empty.

7. Constructing the form data set. For each element field in controls, in tree order,
run the following substeps:

1. If any of the following conditions are met, then skip these substeps for this
element:

 The field element has a datalist element ancestor.
 The field element is disabled.
 The field element is a button but it is not submitter.
 The field element is an input element whose type attribute is in the

Checkbox state and whose checkedness is false.
 The field element is an input element whose type attribute is in the

Radio Button state and whose checkedness is false.
 The field element is an input element whose type attribute is in the

File Upload state but the control does not have any files selected.
 The field element is an object element that is not using a plugin.

Otherwise, process field as follows:

2. Let type be the value of the type DOM attribute of field.

3. If the field element is an input element whose type attribute is in the Image
Button state, then run these further nested substeps:

1. If the field element has an name attribute specified and value is not the
empty string, let name be that value followed by a single U+002E
FULL STOP (.) character. Otherwise, let name be the empty string.

2. Let namex be the string consisting of the concatenation of name and a
single U+0078 LATIN SMALL LETTER X (x) character.

3. Let namey be the string consisting of the concatenation of name and a
single U+0079 LATIN SMALL LETTER Y (y) character.

4. The field element is submitter, and before this algorithm was invoked
the user indicated a coordinate. Let x be the x-component of the
coordinate selected by the user, and let y be the y-component of the
coordinate selected by the user.

5. Append an entry in the form data set with the name namex, the value
x, and the type type.

6. Append an entry in the form data set with the name namey and the
value y, and the type type.

7. Skip the remaining substeps for this element: if there are any more
elements in controls, return to the top of the constructing the form

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 473 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 473 from 931

data set step, otherwise, jump to the next step in the overall form
submission algorithm.

4. If the field element does not have a name attribute specified, or its name
attribute's value is the empty string, skip these substeps for this element: if
there are any more elements in controls, return to the top of the constructing
the form data set step, otherwise, jump to the next step in the overall form
submission algorithm.

5. Let name be the value of the field element's name attribute.

6. If the field element is a select element, then for each option element in the
select element whose selectedness is true, append an entry in the form
data set with the name as the name, the value of the option element as the
value, and type as the type.

7. Otherwise, if the field element is an input element whose type attribute is in
the Checkbox state or the Radio Button state, then run these further nested
substeps:

0. If the field element has a value attribute specified, then let value be
the value of that attribute; otherwise, let value be the string "on".

1. Append an entry in the form data set with name as the name, value as
the value, and type as the type.

8. Otherwise, if the field element is an input element whose type attribute is in
the File Upload state, then for each file selected in the input element,
append an entry in the form data set with the name as the name, the file
(consisting of the name, the type, and the body) as the value, and type as
the type.

9. Otherwise, if the field element is an object element: try to obtain a form
submission value from the plugin, and if that is successful, append an entry
in the form data set with name as the name, the returned form submission
value as the value, and the string "object" as the type.

10. Otherwise, append an entry in the form data set with name as the name, the
value of the field element as the value, and type as the type.

8. Let action be the submitter element's action.

9. If action is the empty string, let action be the document's address.

This step is a willful violation of RFC 3986, which would require base URL
processing here. This violation is motivated by a desire for compatibility with
legacy content. [RFC3986]

10. Resolve the URL action, relative to the submitter element. If this fails, abort these
steps. Otherwise, let action be the resulting absolute URL.

11. Let scheme be the <scheme> of the resulting absolute URL.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 474 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 474 from 931

12. Let enctype be the submitter element's enctype.

13. Let method be the submitter element's method.

14. Let target be the submitter element's target.

15. Select the appropriate row in the table below based on the value of scheme as
given by the first cell of each row. Then, select the appropriate cell on that row
based on the value of method as given in the first cell of each column. Then, jump
to the steps named in that cell and defined below the table.

 GET POST PUT DELETE
http Mutate action Submit as entity

body
Submit as entity
body

Delete action

https Mutate action Submit as entity
body

Submit as entity
body

Delete action

ftp Get action Get action Get action Get action
javascript Get action Get action Get action Get action

data Get action Post to data: Put to data: Get action
mailto Mail with

headers
Mail as body Mail with headers Mail with

headers

16. If scheme is not one of those listed in this table, then the behavior is not defined by
this specification. User agents should, in the absence of another specification
defining this, act in a manner analogous to that defined in this specification for
similar schemes.

17. The behaviors are as follows:

18. Mutate action
19. Let query be the result of encoding the form data set using the application/x-www-

form-urlencoded encoding algorithm, interpreted as a US-ASCII string.

20. Let destination be a new URL that is equal to the action except that its <query>
component is replaced by query (adding a U+003F QUESTION MARK (?)
character if appropriate).

21. Let target browsing context be the form submission target browsing context.

22. Navigate target browsing context to destination. If target browsing context was
newly created for this purpose by the steps above, then it must be navigated with
replacement enabled.

23. Submit as entity body
24. Let entity body be the result of encoding the form data set using the appropriate

form encoding algorithm.

25. Let target browsing context be the form submission target browsing context.

26. Let MIME type be determined as follows:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 475 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 475 from 931

27. If enctype is application/x-www-form-urlencoded
28. Let MIME type be "application/x-www-form-urlencoded".
29. If enctype is multipart/form-data
30. Let MIME type be "multipart/form-data".
31. If enctype is text/plain
32. Let MIME type be "text/plain".
33. Navigate target browsing context to action using the HTTP method given by

method and with entity body as the entity body, of type MIME type. If target
browsing context was newly created for this purpose by the steps above, then it
must be navigated with replacement enabled.

34. Delete action
35. Let target browsing context be the form submission target browsing context.

36. Navigate target browsing context to action using the DELETE method. If target
browsing context was newly created for this purpose by the steps above, then it
must be navigated with replacement enabled.

37. Get action
38. Let target browsing context be the form submission target browsing context.

39. Navigate target browsing context to action. If target browsing context was newly
created for this purpose by the steps above, then it must be navigated with
replacement enabled.

40. Post to data:
41. Let data be the result of encoding the form data set using the appropriate form

encoding algorithm.

42. If action contains the string "%%%%" (four U+0025 PERCENT SIGN characters), then
%-escape all bytes in data that, if interpreted as US-ASCII, do not match the
unreserved production in the URI Generic Syntax, and then, treating the result as a
US-ASCII string, further %-escape all the U+0025 PERCENT SIGN characters in
the resulting string and replace the first occurrence of "%%%%" in action with the
resulting double-escaped string. [RFC3986]

43. Otherwise, if action contains the string "%%" (two U+0025 PERCENT SIGN
characters in a row, but not four), then %-escape all characters in data that, if
interpreted as US-ASCII, do not match the unreserved production in the URI
Generic Syntax, and then, treating the result as a US-ASCII string, replace the first
occurrence of "%%" in action with the resulting escaped string. [RFC3986]

44. Let target browsing context be the form submission target browsing context.

45. Navigate target browsing context to the potentially modified action. If target
browsing context was newly created for this purpose by the steps above, then it
must be navigated with replacement enabled.

46. Put to data:
47. Let data be the result of encoding the form data set using the appropriate form

encoding algorithm.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 476 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 476 from 931

48. Let MIME type be determined as follows:

49. If enctype is application/x-www-form-urlencoded
50. Let MIME type be "application/x-www-form-urlencoded".
51. If enctype is multipart/form-data
52. Let MIME type be "multipart/form-data".
53. If enctype is text/plain
54. Let MIME type be "text/plain".
55. Let destination be the result of concatenating the following:

1. The string "data:".
2. The value of MIME type.
3. The string ";base64,".
4. A base-64 encoded representation of data. [RFC2045]

Let target browsing context be the form submission target browsing context.

Navigate target browsing context to destination. If target browsing context was
newly created for this purpose by the steps above, then it must be navigated with
replacement enabled.

Mail with headers
Let headers be the resulting encoding the form data set using the application/x-
www-form-urlencoded encoding algorithm, interpreted as a US-ASCII string.

Replace occurrences of U+002B PLUS SIGN characters (+) in headers with the
string "%20".

Let destination consist of all the characters from the first character in action to the
character immediately before the first U+003F QUESTION MARK character (?), if
any, or the end of the string if there are none.

Append a single U+003F QUESTION MARK character (?) to destination.

Append headers to destination.

Let target browsing context be the form submission target browsing context.

Navigate target browsing context to destination. If target browsing context was
newly created for this purpose by the steps above, then it must be navigated with
replacement enabled.

Mail as body
Let body be the resulting encoding the form data set using the appropriate form
encoding algorithm and then %-escaping all the bytes in the resulting byte string
that, when interpreted as US-ASCII, do not match the unreserved production in the
URI Generic Syntax. [RFC3986]

Let destination have the same value as action.

If destination does not contain a U+003F QUESTION MARK character (?), append
a single U+003F QUESTION MARK character (?) to destination. Otherwise,
append a single U+0026 AMPERSAND character (&).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 477 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 477 from 931

Append the string "body=" to destination.

Append body, interpreted as a US-ASCII string, to destination.

Let target browsing context be the form submission target browsing context.

Navigate target browsing context to destination. If target browsing context was
newly created for this purpose by the steps above, then it must be navigated with
replacement enabled.

The form submission target browsing context is obtained, when needed by the
behaviors described above, as follows: If the user indicated a specific browsing
context to use when submitting the form, then that is the target browsing context.
Otherwise, apply the rules for choosing a browsing context given a browsing
context name using target as the name and the browsing context of form as the
context in which the algorithm is executed; the resulting browsing context is the
target browsing context.

The appropriate form encoding algorithm is determined as follows:

If enctype is application/x-www-form-urlencoded
Use the application/x-www-form-urlencoded encoding algorithm.
If enctype is multipart/form-data
Use the multipart/form-data encoding algorithm.
If enctype is text/plain
Use the text/plain encoding algorithm.

4.10.16.4 URL-encoded form data

Status: Last call for comments

The application/x-www-form-urlencoded encoding algorithm is as follows:

1. Let result be the empty string.

2. If the form element has an accept-charset attribute, then, taking into account the
characters found in the form data set's names and values, and the character
encodings supported by the user agent, select a character encoding from the list
given in the form's accept-charset attribute that is an ASCII-compatible character
encoding. If none of the encodings are supported, then let the selected character
encoding be UTF-8.

Otherwise, if the document's character encoding is an ASCII-compatible character
encoding, then that is the selected character encoding.

Otherwise, let the selected character encoding be UTF-8.

3. Let charset be the preferred MIME name of the selected character encoding.

4. If the entry's name is "_charset_" and its type is "hidden", replace its value with
charset.

5. If the entry's type is "file", replace its value with the file's filename only.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 478 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 478 from 931

6. For each entry in the form data set, perform these substeps:

1. For each character in the entry's name and value that cannot be expressed
using the selected character encoding, replace the character by a string
consisting of a U+0026 AMPERSAND character (&), a U+0023 NUMBER
SIGN character (#), one or more characters in the range U+0030 DIGIT
ZERO (0) to U+0039 DIGIT NINE (9) representing the Unicode code point of
the character in base ten, and finally a U+003B SEMICOLON character (;).

2. For each character in the entry's name and value, apply the following
subsubsteps:

1. If the character isn't in the range U+0020, U+002A, U+002D, U+002E,
U+0030 .. U+0039, U+0041 .. U+005A, U+005F, U+0061 .. U+007A
then replace the character with a string formed as follows: Start with
the empty string, and then, taking each byte of the character when
expressed in the selected character encoding in turn, append to the
string a U+0025 PERCENT SIGN character (%) followed by two
characters in the ranges U+0030 DIGIT ZERO (0) to U+0039 DIGIT
NINE (9) and U+0041 LATIN CAPITAL LETTER A to U+005A LATIN
CAPITAL LETTER Z representing the hexadecimal value of the byte
(zero-padded if necessary).

2. If the character is a U+0020 SPACE character, replace it with a single
U+002B PLUS SIGN character (+).

3. If the entry's name is "isindex", its type is "text", and this is the first entry in
the form data set, then append the value to result and skip the rest of the
substeps for this entry, moving on to the next entry, if any, or the next step in
the overall algorithm otherwise.

4. If this is not the first entry, append a single U+0026 AMPERSAND character
(&) to result.

5. Append the entry's name to result.

6. Append a single U+003D EQUALS SIGN character (=) to result.

7. Append the entry's value to result.

7. Encode result as US-ASCII and return the resulting byte stream.

4.10.16.5 Multipart form data

Status: Last call for comments

The multipart/form-data encoding algorithm is to encode the form data set using the
rules described by RFC2388, Returning Values from Forms: multipart/form-data, and
return the resulting byte stream. [RFC2388]

Each entry in the form data set is a field, the name of the entry is the field name and the
value of the entry is the field value.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 479 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 479 from 931

The order of parts must be the same as the order of fields in the form data set. Multiple
entries with the same name must be treated as distinct fields.

4.10.16.6 Plain text form data

Status: Last call for comments

The text/plain encoding algorithm is as follows:

1. Let result be the empty string.

2. If the form element has an accept-charset attribute, then, taking into account the
characters found in the form data set's names and values, and the character
encodings supported by the user agent, select a character encoding from the list
given in the form's accept-charset attribute. If none of the encodings are
supported, then let the selected character encoding be UTF-8.

Otherwise, the selected character encoding is the document's character encoding.

3. Let charset be the preferred MIME name of the selected character encoding.

4. If the entry's name is "_charset_" and its type is "hidden", replace its value with
charset.

5. If the entry's type is "file", replace its value with the file's filename only.

6. For each entry in the form data set, perform these substeps:

1. Append the entry's name to result.

2. Append a single U+003D EQUALS SIGN character (=) to result.

3. Append the entry's value to result.

4. Append a U+000D CARRIAGE RETURN (CR) U+000A LINE FEED (LF)
character pair to result.

7. Encode result using the selected character encoding and return the resulting byte
stream.

4.10.17 Resetting a form

Status: Last call for comments

When a form form is reset, the user agent must invoke the reset algorithm of each
resettable elements whose form owner is form, and must then broadcast formchange
events from form.

Each resettable element defines its own reset algorithm. Changes made to form controls
as part of these algorithms do not count as changes caused by the user (and thus, e.g.,
do not cause input events to fire).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 480 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 480 from 931

4.10.18 Event dispatch

When the user agent is to broadcast forminput events or broadcast formchange events
from a form element form, it must run the following steps:

1. Let controls be a list of all the resettable elements whose form owner is form.

2. If the user agent was to broadcast forminput events, let event name be forminput.
Otherwise the user agent was to broadcast formchange events; let event name be
formchange.

3. For each element in controls, in tree order, fire a simple event called event name at
the element.

4.11 Interactive elements

4.11.1 The details element

Status: Last call for comments

Categories
Flow content.
Interactive content.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
One legend element followed by flow content.

Content attributes:
Global attributes
open

DOM interface:
interface HTMLDetailsElement : HTMLElement {

 attribute boolean open;

};

The details element represents additional information or controls which the user can
obtain on demand.

The details element is not appropriate for footnotes. Please see the section on
footnotes for details on how to mark up footnotes.

The first element child of a details element, if it is a legend element, represents the
summary of the details.

If the first element is not a legend element, the UA should provide its own legend (e.g.
"Details").

The open content attribute is a boolean attribute. If present, it indicates that the details are
to be shown to the user. If the attribute is absent, the details are not to be shown.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 481 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 481 from 931

If the attribute is removed, then the details should be hidden. If the attribute is added, the
details should be shown.

The user agent should allow the user to request that the details be shown or hidden. To
honor a request for the details to be shown, the user agent must set the open attribute on
the element to the value open. To honor a request for the details to be hidden, the user
agent must remove the open attribute from the element.

The open attribute must reflect the open content attribute.

4.11.2 The command element

Status: Working draft

Categories
Metadata content.
Flow content.
Phrasing content.

Contexts in which this element may be used:
Where metadata content is expected.
Where phrasing content is expected.

Content model:
Empty.

Content attributes:
Global attributes
type
label
icon
disabled
checked
radiogroup
Also, the title attribute has special semantics on this element.

DOM interface:
interface HTMLCommandElement : HTMLElement {

 attribute DOMString type;

 attribute DOMString label;

 attribute DOMString icon;

 attribute boolean disabled;

 attribute boolean checked;

 attribute DOMString radiogroup;

};

The command element represents a command that the user can invoke.

The type attribute indicates the kind of command: either a normal command with an
associated action, or a state or option that can be toggled, or a selection of one item from
a list of items.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 482 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 482 from 931

The attribute is an enumerated attribute with three keywords and states. The keyword
"command" maps to the Command state, the checkbox" maps to the Checkbox, and the
"radio" keyword maps to the Radio state. The missing value default is the Command
state.

The Command state
The element represents a normal command with an associated action.

The Checkbox state
The element represents a state or option that can be toggled.

The Radio state
The element represents a selection of one item from a list of items.

The label attribute gives the name of the command, as shown to the user.

The title attribute gives a hint describing the command, which might be shown to the
user to help him.

The icon attribute gives a picture that represents the command. If the attribute is
specified, the attribute's value must contain a valid URL. To obtain the absolute URL of
the icon, the attribute's value must be resolved relative to the element.

The disabled attribute is a boolean attribute that, if present, indicates that the command is
not available in the current state.

The distinction between disabled and hidden is subtle. A command would be
disabled if, in the same context, it could be enabled if only certain aspects of the
situation were changed. A command would be marked as hidden if, in that situation,
the command will never be enabled. For example, in the context menu for a water
faucet, the command "open" might be disabled if the faucet is already open, but the
command "eat" would be marked hidden since the faucet could never be eaten.

The checked attribute is a boolean attribute that, if present, indicates that the command is
selected. The attribute must be omitted unless the type attribute is in either the Checkbox
state or the Radio state.

The radiogroup attribute gives the name of the group of commands that will be toggled
when the command itself is toggled, for commands whose type attribute has the value
"radio". The scope of the name is the child list of the parent element. The attribute must
be omitted unless the type attribute is in the Radio state.

The type, label, icon, disabled, checked, and radiogroup DOM attributes must reflect the
respective content attributes of the same name.

The element's activation behavior depends on the value of the type attribute of the
element, as follows:

If the type attribute is in the Checkbox state
If the element has a checked attribute, the UA must remove that attribute.
Otherwise, the UA must add a checked attribute, with the literal value checked. The
UA must then fire a click event at the element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 483 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 483 from 931

If the type attribute is in the Radio state
If the element has a parent, then the UA must walk the list of child nodes of that
parent element, and for each node that is a command element, if that element has a
radiogroup attribute whose value exactly matches the current element's (treating
missing radiogroup attributes as if they were the empty string), and has a checked
attribute, must remove that attribute.

Then, the element's checked attribute attribute must be set to the literal value
checked and the user agent must fire a click event at the element.

Otherwise
The element has no activation behavior.

Firing a synthetic click event at the element does not cause any of the actions
described above to happen.

command elements are not rendered unless they form part of a menu.

4.11.3 The menu element

Status: Working draft

Categories
Flow content.
If the element's type attribute is in the tool bar state: Interactive content.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Either: Zero or more li elements.
Or: Flow content.

Content attributes:
Global attributes
type
label

DOM interface:
interface HTMLMenuElement : HTMLElement {

 attribute DOMString type;

 attribute DOMString label;

};

The menu element represents a list of commands.

The type attribute is an enumerated attribute indicating the kind of menu being declared.
The attribute has three states. The context keyword maps to the context menu state, in
which the element is declaring a context menu. The toolbar keyword maps to the tool
bar state, in which the element is declaring a tool bar. The attribute may also be omitted.
The missing value default is the list state, which indicates that the element is merely a list
of commands that is neither declaring a context menu nor defining a tool bar.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 484 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 484 from 931

If a menu element's type attribute is in the context menu state, then the element represents
the commands of a context menu, and the user can only interact with the commands if
that context menu is activated.

If a menu element's type attribute is in the tool bar state, then the element represents a list
of active commands that the user can immediately interact with.

If a menu element's type attribute is in the list state, then the element either represents an
unordered list of items (each represented by an li element), each of which represents a
command that the user can perform or activate, or, if the element has no li element
children, flow content describing available commands.

The label attribute gives the label of the menu. It is used by user agents to display nested
menus in the UI. For example, a context menu containing another menu would use the
nested menu's label attribute for the submenu's menu label.

The type and label DOM attributes must reflect the respective content attributes of the
same name.

4.11.3.1 Introduction

This section is non-normative.

The menu element is used to define context menus and tool bars.

For example, the following represents a toolbar with three menu buttons on it, each of
which has a dropdown menu with a series of options:

<menu type="toolbar">

 <menu label="File">
 <button type="button" onclick="fnew()">New...</button>
 <button type="button" onclick="fopen()">Open...</button>
 <button type="button" onclick="fsave()" id="save">Save</button>
 <button type="button" onclick="fsaveas()">Save as...</button>
 </menu>

 <menu label="Edit">
 <button type="button" onclick="ecopy()">Copy</button>
 <button type="button" onclick="ecut()">Cut</button>
 <button type="button" onclick="epaste()">Paste</button>
 </menu>

 <menu label="Help">
 Help
 About
 </menu>

</menu>

In a supporting user agent, this might look like this:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 485 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 485 from 931

In a legacy user agent, the above would look like a bulleted list with three items, the first of
which has four buttons, the second of which has three, and the third of which has two
nested bullet points with two items consisting of links.

The following implements a similar toolbar, with a single button whose values, when
selected, redirect the user to Web sites.

<form action="redirect.cgi">
 <menu type="toolbar">
 <label for="goto">Go to...</label>
 <menu label="Go">
 <select id="goto"
 onchange="if (this.options[this.selectedIndex].value)
 window.location =
this.options[this.selectedIndex].value">
 <option value="" selected="selected"> Select site: </option>
 <option value="http://www.apple.com/"> Apple </option>
 <option value="http://www.mozilla.org/"> Mozilla </option>
 <option value="http://www.opera.com/"> Opera </option>
 </select>
 <input type="submit" value="Go">
 </menu>
 </menu>
</form>

The behavior in supporting user agents is similar to the example above, but here the
legacy behaviour consists of a single select element with a submit button. The submit
button doesn't appear in the toolbar, because it is not a direct child of the menu element or
of its li children.

4.11.3.2 Building menus and tool bars

A menu (or tool bar) consists of a list of zero or more of the following components:

• Commands, which can be marked as default commands
• Separators
• Other menus (which allows the list to be nested)

The list corresponding to a particular menu element is built by iterating over its child nodes.
For each child node in tree order, the required behavior depends on what the node is, as
follows:

An element that defines a command
Append the command to the menu, respecting its facets.

An hr element

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 486 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 486 from 931

An option element that has a value attribute set to the empty string, and has a
disabled attribute, and whose textContent consists of a string of one or more
hyphens (U+002D HYPHEN-MINUS)

Append a separator to the menu.
An li element
A label element

Iterate over the children of the element.
A menu element with no label attribute
A select element

Append a separator to the menu, then iterate over the children of the menu or
select element, then append another separator.

A menu element with a label attribute
An optgroup element with a label attribute

Append a submenu to the menu, using the value of the element's label attribute as
the label of the menu. The submenu must be constructed by taking the element
and creating a new menu for it using the complete process described in this
section.

Any other node
Ignore the node.

Once all the nodes have been processed as described above, the user agent must the
post-process the menu as follows:

1. Any menu item with no label, or whose label is the empty string, must be removed.
2. Any sequence of two or more separators in a row must be collapsed to a single

separator.
3. Any separator at the start or end of the menu must be removed.

4.11.3.3 Context menus

The contextmenu attribute gives the element's context menu. The value must be the ID of
a menu element in the DOM. If the node that would be obtained by the invoking the
getElementById() method using the attribute's value as the only argument is null or not a
menu element, then the element has no assigned context menu. Otherwise, the element's
assigned context menu is the element so identified.

When an element's context menu is requested (e.g. by the user right-clicking the element,
or pressing a context menu key), the UA must fire a simple event called contextmenu that
bubbles and is cancelable at the element for which the menu was requested.

Typically, therefore, the firing of the contextmenu event will be the default action of a
mouseup or keyup event. The exact sequence of events is UA-dependent, as it will
vary based on platform conventions.

The default action of the contextmenu event depends on whether the element or one of its
ancestors has a context menu assigned (using the contextmenu attribute) or not. If there is
no context menu assigned, the default action must be for the user agent to show its
default context menu, if it has one.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 487 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 487 from 931

If the element or one of its ancestors does have a context menu assigned, then the user
agent must fire a simple event called show at the menu element of the context menu of the
nearest ancestor (including the element itself) with one assigned.

The default action of this event is that the user agent must show a context menu built from
the menu element.

The user agent may also provide access to its default context menu, if any, with the
context menu shown. For example, it could merge the menu items from the two menus
together, or provide the page's context menu as a submenu of the default menu.

If the user dismisses the menu without making a selection, nothing in particular happens.

If the user selects a menu item that represents a command, then the UA must invoke that
command's Action.

Context menus must not, while being shown, reflect changes in the DOM; they are
constructed as the default action of the show event and must remain like that until
dismissed.

User agents may provide means for bypassing the context menu processing model,
ensuring that the user can always access the UA's default context menus. For example,
the user agent could handle right-clicks that have the Shift key depressed in such a way
that it does not fire the contextmenu event and instead always shows the default context
menu.

The contextMenu attribute must reflect the contextmenu content attribute.

4.11.3.4 Tool bars

When a menu element has a type attribute in the tool bar state, then the user agent must
build the menu for that menu element, and use the result in the rendering.

The user agent must reflect changes made to the menu's DOM, by immediately rebuilding
the menu.

4.11.4 Commands

A command is the abstraction behind menu items, buttons, and links.

Commands are defined to have the following facets:

Type
The kind of command: "command", meaning it is a normal command; "radio",
meaning that triggering the command will, amongst other things, set the Checked
State to true (and probably uncheck some other commands); or "checkbox",
meaning that triggering the command will, amongst other things, toggle the value of
the Checked State.

ID
The name of the command, for referring to the command from the markup or from
script. If a command has no ID, it is an anonymous command.

Label
The name of the command as seen by the user.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 488 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 488 from 931

Hint
A helpful or descriptive string that can be shown to the user.

Icon
An absolute URL identifying a graphical image that represents the action. A
command might not have an Icon.

Access Key
A key combination selected by the user agent that triggers the command. A
command might not have an Access Key.

Hidden State
Whether the command is hidden or not (basically, whether it should be shown in
menus).

Disabled State
Whether the command is relevant and can be triggered or not.

Checked State
Whether the command is checked or not.

Action
The actual effect that triggering the command will have. This could be a scripted
event handler, a URL to which to navigate, or a form submission.

These facets are exposed on elements using the command API:

element . commandType
Exposes the Type facet of the command.

element . id
Exposes the ID facet of the command.

element . label
Exposes the Label facet of the command.

element . title
Exposes the Hint facet of the command.

element . icon
Exposes the Icon facet of the command.

element . accessKeyLabel
Exposes the Access Key facet of the command.

element . hidden
Exposes the Hidden State facet of the command.

element . disabled
Exposes the Disabled State facet of the command.

element . checked
Exposes the Checked State facet of the command.

element . click()
Triggers the Action of the command.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 489 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 489 from 931

The commandType attribute must return a string whose value is either "command", "radio", or
"checked", depending on whether the Type of the command defined by the element is
"command", "radio", or "checked" respectively. If the element does not define a command,
it must return null.

The label attribute must return the command's Label, or null if the element does not
define a command or does not specify a Label. This attribute will be shadowed by the
label DOM attribute on option and command elements.

The icon attribute must return the absolute URL of the command's Icon. If the element
does not specify an icon, or if the element does not define a command, then the attribute
must return null. This attribute will be shadowed by the icon DOM attribute on command
elements.

The disabled attribute must return true if the command's Disabled State is that the
command is disabled, and false if the command is not disabled. This attribute is not
affected by the command's Hidden State. If the element does not define a command, the
attribute must return false. This attribute will be shadowed by the disabled attribute on
button, input, option, and command elements.

The checked attribute must return true if the command's Checked State is that the
command is checked, and false if it is that the command is not checked. If the element
does not define a command, the attribute must return false. This attribute will be
shadowed by the checked attribute on input and command elements.

The ID facet is exposed by the the id DOM attribute, the Hint facet is exposed by the
title DOM attribute, the AccessKey facet is exposed by the accessKeyLabel DOM
attribute, and the Hidden State facet is exposed by the hidden DOM attribute.

document . commands

Returns an HTMLCollection of the elements in the Document that define commands
and have IDs.

The commands attribute of the document's HTMLDocument interface must return an
HTMLCollection rooted at the Document node, whose filter matches only elements that
define commands and have IDs.

User agents may expose the commands whose Hidden State facet is false (visible), e.g. in
the user agent's menu bar. User agents are encouraged to do this especially for
commands that have Access Keys, as a way to advertise those keys to the user.

4.11.4.1 Using the a element to define a command

An a element with an href attribute defines a command.

The Type of the command is "command".

The ID of the command is the value of the id attribute of the element, if the attribute is
present and not empty. Otherwise the command is an anonymous command.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 490 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 490 from 931

The Label of the command is the string given by the element's textContent DOM
attribute.

The Hint of the command is the value of the title attribute of the element. If the attribute
is not present, the Hint is the empty string.

The Icon of the command is the absolute URL obtained from resolving the value of the src
attribute of the first img element descendant of the element, relative to that element, if
there is such an element and resolving its attribute is successful. Otherwise, there is no
Icon for the command.

The AccessKey of the command is the element's assigned access key, if any.

The Hidden State of the command is true (hidden) if the element has a hidden attribute,
and false otherwise.

The Disabled State facet of the command is always false. (The command is always
enabled.)

The Checked State of the command is always false. (The command is never checked.)

The Action of the command is to fire a click event at the element.

4.11.4.2 Using the button element to define a command

A button element always defines a command.

The Type, ID, Label, Hint, Icon, Access Key, Hidden State, Checked State, and Action
facets of the command are determined as for a elements (see the previous section).

The Disabled State of the command mirrors the disabled state of the button.

4.11.4.3 Using the input element to define a command

An input element whose type attribute is in one of the Submit Button, Reset Button,
Image Button, Button, Radio Button, or Checkbox states defines a command.

The Type of the command is "radio" if the type attribute is in the Radio Button state,
"checkbox" if the type attribute is in the Checkbox state, and "command" otherwise.

The ID of the command is the value of the id attribute of the element, if the attribute is
present and not empty. Otherwise the command is an anonymous command.

The Label of the command depends on the Type of the command:

If the Type is "command", then it is the string given by the value attribute, if any, and a
UA-dependent, locale-dependent value that the UA uses to label the button itself if the
attribute is absent.

Otherwise, the Type is "radio" or "checkbox". If the element is a labeled control, the
textContent of the first label element in tree order whose labeled control is the element in
question is the Label (in DOM terms, this is the string given by

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 491 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 491 from 931

element.labels[0].textContent). Otherwise, the value of the value attribute, if present, is
the Label. Otherwise, the Label is the empty string.

The Hint of the command is the value of the title attribute of the input element. If the
attribute is not present, the Hint is the empty string.

If the element's type attribute is in the Image Button state, and the element has a src
attribute, and that attribute's value can be successfully resolved relative to the element,
then the Icon of the command is the absolute URL obtained from resolving that attribute
that way. Otherwise, there is no Icon for the command.

The AccessKey of the command is the element's assigned access key, if any.

The Hidden State of the command is true (hidden) if the element has a hidden attribute,
and false otherwise.

The Disabled State of the command mirrors the disabled state of the control.

The Checked State of the command is true if the command is of Type "radio" or
"checkbox" and the element is checked attribute, and false otherwise.

The Action of the command, if the element has a defined activation behavior, is to run
synthetic click activation steps on the element. Otherwise, it is just to fire a click event at
the element.

4.11.4.4 Using the option element to define a command

An option element with an ancestor select element and either no value attribute or a
value attribute that is not the empty string defines a command.

The Type of the command is "radio" if the option's nearest ancestor select element has
no multiple attribute, and "checkbox" if it does.

The ID of the command is the value of the id attribute of the element, if the attribute is
present and not empty. Otherwise the command is an anonymous command.

The Label of the command is the value of the option element's label attribute, if there is
one, or the value of the option element's textContent DOM attribute if there isn't.

The Hint of the command is the string given by the element's title attribute, if any, and
the empty string if the attribute is absent.

There is no Icon for the command.

The AccessKey of the command is the element's assigned access key, if any.

The Hidden State of the command is true (hidden) if the element has a hidden attribute,
and false otherwise.

The Disabled State of the command is true (disabled) if the element is disabled or if its
nearest ancestor select element is disabled, and false otherwise.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 492 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 492 from 931

The Checked State of the command is true (checked) if the element's selectedness is
true, and false otherwise.

The Action of the command depends on its Type. If the command is of Type "radio" then it
must pick the option element. Otherwise, it must toggle the option element.

4.11.4.5 Using the command element to define a command

A command element defines a command.

The Type of the command is "radio" if the command's type attribute is "radio", "checkbox" if
the attribute's value is "checkbox", and "command" otherwise.

The ID of the command is the value of the id attribute of the element, if the attribute is
present and not empty. Otherwise the command is an anonymous command.

The Label of the command is the value of the element's label attribute, if there is one, or
the empty string if it doesn't.

The Hint of the command is the string given by the element's title attribute, if any, and
the empty string if the attribute is absent.

The Icon for the command is the absolute URL obtained from resolving the value of the
element's icon attribute, relative to the element, if it has such an attribute and resolving it
is successful. Otherwise, there is no Icon for the command.

The AccessKey of the command is the element's assigned access key, if any.

The Hidden State of the command is true (hidden) if the element has a hidden attribute,
and false otherwise.

The Disabled State of the command is true (disabled) if the element has a disabled
attribute, and false otherwise.

The Checked State of the command is true (checked) if the element has a checked
attribute, and false otherwise.

The Action of the command, if the element has a defined activation behavior, is to run
synthetic click activation steps on the element. Otherwise, it is just to fire a click event at
the element.

4.11.4.6 Using the accesskey attribute on a label element to define a command

A label element that has an assigned access key and a labeled control and whose
labeled control defines a command, itself defines a command.

The Type of the command is "command".

The ID of the command is the value of the id attribute of the element, if the attribute is
present and not empty. Otherwise the command is an anonymous command.

The Label of the command is the string given by the element's textContent DOM
attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 493 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 493 from 931

The Hint of the command is the value of the title attribute of the element.

There is no Icon for the command.

The AccessKey of the command is the element's assigned access key.

The Hidden State, Disabled State, and Action facets of the command are the same as the
respective facets of the element's labeled control.

The Checked State of the command is always false. (The command is never checked.)

4.11.4.7 Using the accesskey attribute on a legend element to define a command

A legend element that has an assigned access key and is a child of a fieldset element
that has a descendant that is not a descendant of the legend element and is neither a
label element nor a legend element but that defines a command, itself defines a
command.

The Type of the command is "command".

The ID of the command is the value of the id attribute of the element, if the attribute is
present and not empty. Otherwise the command is an anonymous command.

The Label of the command is the string given by the element's textContent DOM
attribute.

The Hint of the command is the value of the title attribute of the element.

There is no Icon for the command.

The AccessKey of the command is the element's assigned access key.

The Hidden State, Disabled State, and Action facets of the command are the same as the
respective facets of the first element in tree order that is a descendant of the parent of the
legend element that defines a command but is not a descendant of the legend element
and is neither a label nor a legend element.

The Checked State of the command is always false. (The command is never checked.)

4.11.4.8 Using the accesskey attribute to define a command on other elements

An element that has an assigned access key defines a command.

If one of the other sections that define elements that define commands define that this
element defines a command, then that section applies to this element, and this section
does not. Otherwise, this section applies to that element.

The Type of the command is "command".

The ID of the command is the value of the id attribute of the element, if the attribute is
present and not empty. Otherwise the command is an anonymous command.

The Label of the command depends on the element. If the element is a labeled control,
the textContent of the first label element in tree order whose labeled control is the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 494 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 494 from 931

element in question is the Label (in DOM terms, this is the string given by
element.labels[0].textContent). Otherwise, the Label is the textContent of the element
itself.

The Hint of the command is the value of the title attribute of the element. If the attribute
is not present, the Hint is the empty string.

There is no Icon for the command.

The AccessKey of the command is the element's assigned access key.

The Hidden State of the command is true (hidden) if the element has a hidden attribute,
and false otherwise.

The Disabled State facet of the command is always false. (The command is always
enabled.)

The Checked State of the command is always false. (The command is never checked.)

The Action of the command, if the element has a defined activation behavior, is to run
synthetic click activation steps on the element. Otherwise, if the element is focusable, the
Action of the command is to run the focusing steps for the element and then to fire a click
event at the element. Otherwise, Action of the command is just to fire a click event at the
element.

4.12 Miscellaneous elements

4.12.1 The legend element

Status: Last call for comments

Categories
None.

Contexts in which this element may be used:
As the first child of a fieldset element.
As the first child of a details element.
As the first or last child of a figure element, if there are no other legend element
children of that element.

Content model:
When the parent node is a figure element: flow content, but with no descendant
figure elements.
Otherwise: phrasing content.

Content attributes:
Global attributes

DOM interface:
interface HTMLLegendElement : HTMLElement {

 readonly attribute HTMLFormElement form;

};

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 495 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 495 from 931

The legend element represents a title or explanatory caption for the rest of the contents of
the legend element's parent element.

legend . form
Returns the element's form element, if any, or null otherwise.

The form DOM attribute's behavior depends on whether the legend element is in a
fieldset element or not. If the legend has a fieldset element as its parent, then the form
DOM attribute must return the same value as the form DOM attribute on that fieldset
element. Otherwise, it must return null.

4.12.2 The div element

Status: Implemented and widely deployed

Categories
Flow content.
formatBlock candidate.

Contexts in which this element may be used:
Where flow content is expected.

Content model:
Flow content.

Content attributes:
Global attributes

DOM interface:
interface HTMLDivElement : HTMLElement {};

The div element has no special meaning at all. It represents its children. It can be used
with the class, lang, and title attributes to mark up semantics common to a group of
consecutive elements.

Authors are strongly encouraged to view the div element as an element of last
resort, for when no other element is suitable. Use of the div element instead of more
appropriate elements leads to poor accessibility for readers and poor
maintainability for authors.

For example, a blog post would be marked up using article, a chapter using section, a
page's navigation aids using nav, and a group of form controls using fieldset.

On the other hand, div elements can be useful for stylistic purposes or to wrap multiple
paragraphs within a section that are all to be annotated in a similar way. In the following
example, we see div elements used as a way to set the language of two paragraphs at
once, instead of setting the language on the two paragraph elements separately:

<article lang="en-US">
 <h1>My use of language and my cats</h1>
 <p>My cat's behavior hasn't changed much since her absence, except
 that she plays her new physique to the neighbors regularly, in an
 attempt to get pets.</p>
 <div lang="en-GB">
 <p>My other cat, coloured black and white, is a sweetie. He followed
 us to the pool today, walking down the pavement with us. Yesterday

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 496 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 496 from 931

 he apparently visited our neighbours. I wonder if he recognises that
 their flat is a mirror image of ours.</p>
 <p>Hm, I just noticed that in the last paragraph I used British
 English. But I'm supposed to write in American English. So I
 shouldn't say "pavement" or "flat" or "colour"...</p>
 </div>
 <p>I should say "sidewalk" and "apartment" and "color"!</p>
</article>

4.13 Matching HTML elements using selectors

Status: Working draft

There are a number of dynamic selectors that can be used with HTML. This section
defines when these selectors match HTML elements.

:link
:visited

All a elements that have an href attribute, all area elements that have an href
attribute, and all link elements that have an href attribute, must match one of
:link and :visited.

:active
The :active pseudo-class must match the following elements between the time the
user begins to activate the element and the time the user stops activating the
element:

• a elements that have an href attribute
• area elements that have an href attribute
• link elements that have an href attribute
• button elements that are not disabled
• input elements whose type attribute is in the Submit Button, Image Button,

Reset Button, or Button state
• command elements that do not have a disabled attribute
• any other element, if it is specially focusable

For example, if the user is using a keyboard to push a button element by
pressing the space bar, the element would match this pseudo-class in between
the time that the element received the keydown event and the time the element
received the keyup event.

:enabled
The :enabled pseudo-class must match the following elements:

• a elements that have an href attribute
• area elements that have an href attribute
• link elements that have an href attribute
• button elements that are not disabled
• input elements whose type attribute are not in the Hidden state and that are

not disabled
• select elements that are not disabled
• textarea elements that are not disabled
• option elements that do not have a disabled attribute

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 497 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 497 from 931

• command elements that do not have a disabled attribute
• li elements that are children of menu elements, and that have a child

element that defines a command, if the first such element's Disabled State
facet is false (not disabled)

:disabled
The :disabled pseudo-class must match the following elements:

• button elements that are disabled
• input elements whose type attribute are not in the Hidden state and that are

disabled
• select elements that are disabled
• textarea elements that are disabled
• option elements that have a disabled attribute
• command elements that have a disabled attribute
• li elements that are children of menu elements, and that have a child

element that defines a command, if the first such element's Disabled State
facet is true (disabled)

:checked
The :checked pseudo-class must match the following elements:

• input elements whose type attribute is in the Checkbox state and whose
checkedness state is true

• input elements whose type attribute is in the Radio Button state and whose
checkedness state is true

• command elements whose type attribute is in the Checkbox state and that
have a checked attribute

• command elements whose type attribute is in the Radio state and that have a
checked attribute

:indeterminate
The :indeterminate pseudo-class must match input elements whose type
attribute is in the Checkbox state and whose indeterminate DOM attribute is set to
true.

:default
The :default pseudo-class must match the following elements:

• button elements that are their form's default button
• input elements whose type attribute is in the Submit Button or Image Button

state, and that are their form's default button

:valid
The :valid pseudo-class must match all elements that are candidates for
constraint validation and that satisfy their constraints.

:invalid
The :invalid pseudo-class must match all elements that are candidates for
constraint validation but that do not satisfy their constraints.

:in-range

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 498 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 498 from 931

The :in-range pseudo-class must match all elements that are candidates for
constraint validation and that are neither suffering from an underflow nor suffering
from an overflow.

:out-of-range
The :out-of-range pseudo-class must match all elements that are candidates for
constraint validation and that are suffering from an underflow or suffering from an
overflow.

:required
The :required pseudo-class must match the following elements:

• input elements that are required
• textarea elements that have a required attribute

:optional
The :optional pseudo-class must match the following elements:

• button elements
• input elements that are not required
• select elements
• textarea elements that do not have a required attribute

:read-only
:read-write

The :read-write pseudo-class must match the following elements:

• input elements to which the readonly attribute applies, but that are not
immutable (i.e. that do not have the readonly attribute specified and that are
not disabled)

• textarea elements that do not have a readonly attribute, and that are not
disabled

• any element that is editable

The :read-only pseudo-class must match all other HTML elements.

Another section of this specification defines the target element used with the
:target pseudo-class.

This specification does not define when an element matches the :hover, :focus, or
:lang() dynamic pseudo-classes, as those are all defined in sufficient detail in a
language-agnostic fashion in the Selectors specification. [SELECTORS]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 499 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 499 from 931

5 Microdata

Status: First draft. ISSUE-76 (Microdata/RDFa) blocks progress to Last Call

5.1 Introduction

5.1.1 Overview

This section is non-normative.

Sometimes, it is desirable to annotate content with specific machine-readable labels, e.g.
to allow generic scripts to provide services that are customised to the page, or to enable
content from a variety of cooperating authors to be processed by a single script in a
consistent manner.

For this purpose, authors can use the microdata features described in this section.
Microdata allows nested groups of name-value pairs to be added to documents, in parallel
with the existing content.

5.1.2 The basic syntax

This section is non-normative.

At a high level, microdata consists of a group of name-value pairs. The groups are called
items, and each name-value pair is a property. Items and properties are represented by
regular elements.

To create an item, the item attribute is used.

To add a property to an item, the itemprop attribute is used on one of the item's
descendants.

Here there are two items, each of which have the property "name":

<div item>
 <p>My name is Elizabeth.</p>
</div>

<div item>
 <p>My name is Daniel.</p>
</div>

Properties generally have values that are strings.

Here the item has three properties:

<div item>
 <p>My name is Neil.</p>
 <p>My band is called Four Parts Water.</p>
 <p>I am British.</p>
</div>

Properties can also have values that are URLs. This is achieved using the a element and
its href attribute, the img element and its src attribute, or other elements that link to or
embed external resources.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 500 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 500 from 931

In this example, the item has one property, "image", whose value is a URL:

<div item>

</div>

Properties can also have values that are dates, times, or dates and times. This is
achieved using the time element and its datetime attribute.

In this example, the item has one property, "birthday", whose value is a date:

<div item>
 I was born on <time itemprop="birthday" datetime="2009-05-10">May 10th
2009</time>.
</div>

Properties can also themselves be groups of name-value pairs, by putting the item
attribute on the element that declares the property.

Items that are not part of others are called top-level microdata items.

In this example, the outer item represents a person, and the inner one represents a band:

<div item>
 <p>Name: Amanda</p>
 <p>Band: Jazz
Band (12 players)</p>
</div>

The outer item here has two properties, "name" and "band". The "name" is "Amanda", and
the "band" is an item in its own right, with two properties, "name" and "size". The "name"
of the band is "Jazz Band", and the "size" is "12".

The outer item in this example is a top-level microdata item.

Properties don't have to be given as descendants of the element with the item attribute.
They can be associated with a specific item using the subject attribute, which takes the ID
of the element with the item attribute.

This example is the same as the previous one, but all the properties are separated from
their items:

<div item id="amanda"></div>
<p>Name: Amanda</p>
<div subject="amanda" itemprop="band" item id="jazzband"></div>
<p>Band: Jazz Band</p>
<p>Size: 12 players</p>

This gives the same result as the previous example. The first item has two properties,
"name", set to "Amanda", and "band", set to another item. That second item has two
further properties, "name", set to "Jazz Band", and "size", set to "12".

An item can have multiple properties with the same name and different values.

This example describes an ice cream, with two flavors:

<div item>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 501 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 501 from 931

 <p>Flavors in my favorite ice cream:</p>

 <li itemprop="flavor">Lemon sorbet
 <li itemprop="flavor">Apricot sorbet

</div>

This thus results in an item with two properties, both "flavor", having the values "Lemon
sorbet" and "Apricot sorbet".

An element introducing a property can also introduce multiple properties at once, to avoid
duplication when some of the properties have the same value.

Here we see an item with two properties, "favorite-color" and "favorite-fruit", both set to the
value "orange":

<div item>
 orange
</div>

It's important to note that there is no relationship between the microdata and the content of
the document where the microdata is marked up.

There is no semantic difference, for instance, between the following two examples:

<figure>

 <legend>The Castle
(1986)</legend>
</figure>
<meta itemprop="name" content="The Castle">
<figure>

 <legend>The Castle (1986)</legend>
</figure>

Both have a figure with a caption, and both, completely unrelated to the figure, have an
item with a name-value pair with the name "name" and the value "The Castle". The only
difference is that if the user drags the caption out of the document, in the former case, the
item will be included in the drag-and-drop data. In neither case is the image in any way
associated with the item.

5.1.3 Typed items

This section is non-normative.

The examples in the previous section show how information could be marked up on a
page that doesn't expect its microdata to be re-used. Microdata is most useful, though,
when it is used in contexts where other authors and readers are able to cooperate to
make new uses of the markup.

For this purpose, it is necessary to give each item a type, such as "com.example.person",
or "org.example.cat", or "net.example.band". Types are identified in three ways:

• As URLs.
• As reversed DNS labels.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 502 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 502 from 931

• Using the names of predefined types, which are described below.

URLs are self-explanatory. Reversed DNS labels are strings such as
"org.example.animals.cat" or "com.example.band".

The type for an item is given as the value of the item attribute.

Here, the item is "org.example.animals.cat":

<section item="org.example.animal.cat">
 <h1 itemprop="name">Hedral</h1>
 <p itemprop="desc">Hedral is a male american domestic
 shorthair, with a fluffy black fur with white paws and belly.</p>
 <img itemprop="img" src="hedral.jpeg" alt="" title="Hedral, age 18
months">
</section>

In this example the "org.example.animals.cat" item has three properties, a "name"
("Hedral"), a "desc" ("Hedral is..."), and an "img" ("hedral.jpeg").

An item can only have one type. The type gives the context for the properties: a property
named "class" given for an item with the type "com.example.census.person" might refer to
the class of an individual, while a property named "class" given for an item with the type
"com.example.school.teacher" might refer to the classroom a teacher has been assigned.

5.1.4 Selecting names when defining vocabularies

This section is non-normative.

Using microdata means using a vocabulary. For some purposes, an ad-hoc vocabulary is
adequate. For others, a vocabulary will need to be designed. Where possible, authors are
encouraged to re-use existing vocabularies, as this makes content re-use easier.

When designing new vocabularies, identifiers can be created either using URLs, reversed
DNS labels, or, for properties, as plain words (with no dots or colons). For URLs conflicts
with other vocabularies can be avoided by only using identifiers that correspond to pages
that the author has control over. Similarly, for reversed DNS labels conflicts can be
avoided by using a domain name that the author has control over, or by using suffixes that
correspond to the path components of pages that the author has control over.

For instance, if Jon and Adam both write content at example.com, at
http://example.com/jon/... and http://example.com/adam/... respectively, then they
could select identifiers of the form "com.example.jon.name" and
"com.example.adam.name" respectively.

Properties whose names are just plain words can only be used within the context of the
types for which they are intended; properties named using URLs or reversed DNS labels
can be reused in items of any type. If an item has no type, and is not part of another item,
then if its properties have names that are just plain words, they are not intended to be
globally unique, and are instead only intended for limited use. Generally speaking, authors
are encouraged to use either properties with globally unique names (URLs, reversed DNS
labels) or ensure that their items are typed.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 503 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 503 from 931

Here, an item is an "org.example.animals.cat", and most of the properties have names
that are words defined in the context of that type. There are also a few additional
properties whose names come from other vocabularies.

<section item="org.example.animal.cat">
 <h1 itemprop="name com.example.fn">Hedral</h1>
 <p itemprop="desc">Hedral is a male american domestic
 shorthair, with a fluffy <span
 itemprop="com.example.color">black fur with <span
 itemprop="com.example.color">white paws and belly.</p>
 <img itemprop="img" src="hedral.jpeg" alt="" title="Hedral, age 18
months">
</section>

This example has one item with two types and the following properties:

Property Value
name Hedral
com.example.fn Hedral
desc Hedral is a male american domestic shorthair, with a fluffy black fur

with white paws and belly.
com.example.color black
com.example.color white
img .../hedral.jpeg

5.1.5 Predefined vocabularies

ISSUE-73 (predefined-voc) blocks progress to Last Call

This section is non-normative.

To make the most common tasks simpler, certain vocabularies have been predefined.
These use short names for types and properties.

For example, the vCard vocabulary can be used to mark up people's names:

George Washington

This creates a single item with a single name-value pair, with the name "fn" and the value
"George Washington". This is defined to map to the following vCard:

BEGIN:VCARD
PROFILE:VCARD
VERSION:3.0
SOURCE:document's address
FN:George Washington
N:Washington;George;;;
END:VCARD

5.1.6 Using the microdata DOM API

This section is non-normative.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 504 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 504 from 931

The microdata becomes even more useful when scripts can use it to expose information
to the user, for example offering it in a form that can be used by other applications.

The document.getItems(typeNames) method provides access to the top-level microdata
items. It returns a NodeList containing the items with the specified types, or all types if no
argument is specified.

Each item is represented in the DOM by the element on which the relevant item attribute
is found. The type of that element can be obtained using the element.item DOM attribute.

This sample shows how the getItems() method can be used to obtain a list of all the top-
level microdata items of one type given in the document:

var cats = document.getItems("com.example.feline");

Once an element representing an item has been obtained, its properties can be extracted
using the properties DOM attribute. This attribute returns an HTMLPropertyCollection,
which can be enumerated to go through each element that adds one or more properties to
the item. It can also be indexed by name, which will return an object with a list of the
elements that add properties with that name.

Each element that adds a property also has a content DOM attribute that returns its value.

This sample gets the first item of type "net.example.user" and then pops up an alert using
the "name" property from that item.

var user = document.getItems('net.example.user')[0];
alert('Hello ' + user.properties['name'][0].content + '!');

The HTMLPropertyCollection object, when indexed by name in this way, actually returns a
PropertyNodeList object with all the matching properties. The PropertyNodeList object
can be used to obtained all the values at once using its contents attribute, which returns
an array of all the values.

In an earlier example, a "org.example.animals.cat" item had two "com.example.color"
values. This script looks up the first such item and then lists all its values.

var cat = document.getItems('org.example.animals.cat')[0];
var colors = cat.properties['com.example.color'].contents;
var result;
if (colors.length == 0) {
 result = 'Color unknown.';
} else if (colors.length == 1) {
 result = 'Color: ' + colors[0];
} else {
 result = 'Colors:';
 for (var i = 0; i < colors.length; i += 1)
 result += ' ' + colors[i];
}

It's also possible to get a list of all the property names using the object's names DOM
attribute.

This example creates a big list with a nested list for each item on the page, each with of all
the property names used in that item.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 505 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 505 from 931

var outer = document.createElement('ul');
for (var item = 0; item < document.items.length; item += 1) {
 var itemLi = document.createElement('li');
 var inner = document.createElement('ul');
 for (var name = 0; name < document.items[item].names.length; name +=
1) {
 var propLi = document.createElement('li');

propLi.appendChild(document.createTextNode(document.items[item].names[na
me]));
 inner.appendChild(propLi);
 }
 itemLi.appendChild(inner);
 outer.appendChild(itemLi);
}
document.body.appendChild(outer);

If faced with the following from an earlier example:

<section item="org.example.animal.cat">
 <h1 itemprop="name com.example.fn">Hedral</h1>
 <p itemprop="desc">Hedral is a male american domestic
 shorthair, with a fluffy <span
 itemprop="com.example.color">black fur with <span
 itemprop="com.example.color">white paws and belly.</p>
 <img itemprop="img" src="hedral.jpeg" alt="" title="Hedral, age 18
months">
</section>

...it would result in the following output:

•
o name
o com.example.fn
o desc
o com.example.color
o img

(The duplicate occurrence of "com.example.color" is not included in the list.)

5.2 Encoding microdata

5.2.1 The microdata model

The microdata model consists of groups of name-value pairs known as items.

Each group has zero or more types, each name has one or more values, and each value
is either a string or another group of name-value pairs.

5.2.2 Items: the item attribute

Every HTML element may have an item attribute specified.

An element with the item attribute specified creates a new item, a group of name-value
pairs.

The attribute, if specified, must have a value that is either:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 506 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 506 from 931

• The empty string, or
• A valid URL that is an absolute URL for which the string

"http://www.w3.org/1999/xhtml/custom#" is not a prefix match, or
• A valid reversed DNS identifier, or
• A predefined type.

The item type of an element with an item attribute is the value of the element's item
attribute. If the attribute's value is the empty string, the element is said to have no item
type.

5.2.3 Associating names with items

The subject attribute may be specified on any HTML element to associate the element
with an element with an item attribute. If the subject attribute is specified, the attribute's
value must be the ID of an element with an item attribute, in the same Document as the
element with the subject attribute.

An element's corresponding item is determined by its position in the DOM and by any
subject attributes on the element, and is defined as follows:

If the element has a subject attribute
If there is an element in the document with an ID equal to the value of the subject
attribute, and if the first such element has an item attribute specified, then that
element is the corresponding item. Otherwise, there is no corresponding item.

If the element has no subject attribute but does have an ancestor with an item
attribute specified

The nearest ancestor element with the item attribute specified is the element's
corresponding item.

If the element has neither subject attribute nor an ancestor with an item attribute
specified

The element has no corresponding item.

The list of elements that create items but do not themselves have a corresponding item
forms the list of top-level microdata items.

5.2.4 Names: the itemprop attribute

Every HTML element that has a corresponding item may have an itemprop attribute
specified.

An element with the itemprop attribute specified adds one or more name-value pairs to its
corresponding item.

The itemprop attribute, if specified, must have a value that is an unordered set of unique
space-separated tokens representing the names of the name-value pairs that it adds. The
attribute's value must have at least one token.

Each token must be either:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 507 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 507 from 931

• A valid URL that is an absolute URL for which the string
"http://www.w3.org/1999/xhtml/custom#" is not a prefix match, or

• A valid reversed DNS identifier, or
• A predefined global property name allowed in this situation, or
• If the item's item type is a predefined type: a predefined property name allowed in

this situation, or
• If the item has no item type but it is itself the value of a property whose property

name is a predefined property name: a predefined property name allowed in this
situation, or

• If the item's item type is not a predefined type and the item is not the value of a
property whose property name is a predefined property name: a string that contains
no U+002E FULL STOP (.) or U+003A COLON (:) characters, and that is not a
predefined global property name.

The property names of an element are the tokens that the element's itemprop attribute is
found to contain when its value is split on spaces, with the order preserved but with
duplicates removed (leaving only the first occurrence of each name).

With an item, the properties are unordered with respect to each other, except for
properties with the same name, which are ordered in tree order.

In the following example, the "a" property has the values "1" and "2", in that order, but
whether the "a" property comes before the "b" property or not is not important:

<div item>
 <p itemprop="a">1</p>
 <p itemprop="a">2</p>
 <p itemprop="b">test</p>
</div>

Thus, the following is equivalent:

<div item>
 <p itemprop="b">test</p>
 <p itemprop="a">1</p>
 <p itemprop="a">2</p>
</div>

As is the following:

<div item>
 <p itemprop="a">1</p>
 <p itemprop="b">test</p>
 <p itemprop="a">2</p>
</div>

5.2.5 Values

The property value of a name-value pair added by an element with an itemprop attribute
depends on the element, as follows:

If the element also has an item attribute
The value is the item created by the element.

If the element is a meta element

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 508 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 508 from 931

The value is the value of the element's content attribute, if any, or the empty string
if there is no such attribute.

If the element is an audio, embed, iframe, img, source, or video element
The value is the absolute URL that results from resolving the value of the element's
src attribute relative to the element at the time the attribute is set, or the empty
string if there is no such attribute or if resolving it results in an error.

If the element is an a, area, or link element
The value is the absolute URL that results from resolving the value of the element's
href attribute relative to the element at the time the attribute is set, or the empty
string if there is no such attribute or if resolving it results in an error.

If the element is an object element
The value is the absolute URL that results from resolving the value of the element's
data attribute relative to the element at the time the attribute is set, or the empty
string if there is no such attribute or if resolving it results in an error.

If the element is a time element with a datetime attribute
The value is the value of the element's datetime attribute.

Otherwise
The value is the element's textContent.

The URL property elements are the a, area, audio, embed, iframe, img, link, object,
source, and video elements.

If a property's value is an absolute URL, the property must be specified using an URL
property element.

5.3 Microdata DOM API
document . getItems([types])

Returns a NodeList of the elements in the Document that create items, that are not
part of other items, and that are of one of the types given in the argument, if any
are listed.
The types argument is interpreted as a space-separated list of types.

element . properties
If the element has an item attribute, returns an HTMLPropertyCollection object with
all the element's properties. Otherwise, an empty HTMLPropertyCollection object.

element . content [= value]
Returns the element's value.
Can be set, to change the element's value.

The document.getItems(typeNames) method takes an optional string that contains an
unordered set of unique space-separated tokens representing types. When called, the
method must return a live NodeList object containing all the elements in the document, in
tree order, that are each top-level microdata items with a type equal to one of the types
specified in that argument, having obtained the types by splitting the string on spaces. If
there are no tokens specified in the argument, or if the argument is missing, then the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 509 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 509 from 931

method must return a NodeList containing all the top-level microdata items in the
document.

The item DOM attribute on elements must reflect the element's item content attribute.

The itemprop DOM attribute on elements must reflect the element's itemprop content
attribute.

The properties DOM attribute on elements must return an HTMLPropertyCollection
rooted at the Document node, whose filter matches only elements that have property
names and have a corresponding item that is equal to the element on which the attribute
was invoked.

The content DOM attribute's behavior depends on the element, as follows:

If the element is a meta element
The attribute must act as it would if it was reflecting the element's content content
attribute.

If the element is an audio, embed, iframe, img, source, or video element
The attribute must act as it would if it was reflecting the element's src content
attribute.

If the element is an a, area, or link element
The attribute must act as it would if it was reflecting the element's href content
attribute.

If the element is an object element
The attribute must act as it would if it was reflecting the element's data content
attribute.

If the element is a time element with a datetime attribute
The attribute must act as it would if it was reflecting the element's datetime content
attribute.

Otherwise
The attribute must act the same as the element's textContent attribute.

The subject DOM attribute on elements must reflect the element's subject content
attribute.

5.4 Predefined vocabularies

ISSUE-73 (predefined-voc) blocks progress to Last Call

A number of predefined types exist, for describing common structures. Each such type
has a set of predefined property names that are used to describe data of that type. In
addition, there are some predefined global property names that can be used for any
item.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 510 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 510 from 931

5.4.1 General

The predefined global property name about can be used to name an item for the purposes
of identifying or refering to the data defined in that item.

A single property with the name about may be present within each item. Its value must be
an absolute URL.

5.4.2 vCard

An item with the predefined type vcard represents a person's or organization's contact
information.

The following are the type's predefined property names. They are based on the
vocabulary defined in the vCard specification and its extensions, where more information
on how to interpret the values can be found. [RFC2426] [RFC4770]

fn
Gives the formatted text corresponding to the name of the person or organization.

The value must be text.

Exactly one property with the name fn must be present within each item with the
type vcard.

n
Gives the structured name of the person or organization.

The value must be an item with zero or more of each of the family-name, given-
name, additional-name, honorific-prefix, and honorific-suffix properties.

Unless one of the conditions given below applies, exactly one property with the
name n must be present within each item with the type vcard.

If one of the following conditions does apply, then the n may be omitted:

The item with the type vcard has both an fn property and an org property, and
they both have values that are strings and those strings are identical when
compared in a case-sensitive manner.
The contact information must be for an organization.

The item with the type vcard has an fn property whose value consists of a
string with zero space characters.
The value of the fn property must be a nickname.

The item with the type vcard has an fn property whose value consists of a
string with exactly one sequence of space characters, which occurs neither
at the immediate start nor the immediate end of the string.
The value of the fn property must be a name in one of the following forms:

• Last, First
• Last F.
• Last F

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 511 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 511 from 931

• First Last
family-name (inside n)

Gives the family name of the person, or the full name of the organization.

The value must be text.

Any number of properties with the name family-name may be present within the
item that forms the value of the n property of an item with the type vcard.

given-name (inside n)
Gives the given-name of the person.

The value must be text.

Any number of properties with the name given-name may be present within the item
that forms the value of the n property of an item with the type vcard.

additional-name (inside n)
Gives the any additional names of the person.

The value must be text.

Any number of properties with the name additional-name may be present within
the item that forms the value of the n property of an item with the type vcard.

honorific-prefix (inside n)
Gives the honorific prefix of the person.

The value must be text.

Any number of properties with the name honorific-prefix may be present within
the item that forms the value of the n property of an item with the type vcard.

honorific-suffix (inside n)
Gives the honorific suffix of the person.

The value must be text.

Any number of properties with the name honorific-suffix may be present within
the item that forms the value of the n property of an item with the type vcard.

nickname
Gives the nickname of the person or organization.

The nickname is the descriptive name given instead of or in addition to the
one belonging to a person, place, or thing. It can also be used to specify a
familiar form of a proper name specified by the fn or n properties.

The value must be text.

Any number of properties with the name nickname may be present within each item
with the type vcard.

photo

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 512 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 512 from 931

Gives a photograph of the person or organization.

The value must be an absolute URL.

Any number of properties with the name photo may be present within each item
with the type vcard.

bday
Gives the birth date of the person or organization.

The value must be a valid date string.

A single property with the name bday may be present within each item with the type
vcard.

adr
Gives the delivery address of the person or organization.

The value must be an item with zero or more type, post-office-box, extended-
address, and street-address properties, and optionally a locality property,
optionally a region property, optionally a postal-code property, and optionally a
country-name property.

If no type properties are present within an item that forms the value of an adr
property of an item with the type vcard, then the address type strings intl, postal,
parcel, and work are implied.

Any number of properties with the name adr may be present within each item with
the type vcard.

type (inside adr)
Gives the type of delivery address.

The value must be text that, when compared in a case-sensitive manner, is equal
to one of the address type strings.

Within each item with the type vcard, there must be no more than one adr property
item with a type property whose value is pref.

Any number of properties with the name type may be present within the item that
forms the value of an adr property of an item with the type vcard, but within each
such adr property item there must only be one type property per distinct value.

post-office-box (inside adr)
Gives the post office box component of the delivery address of the person or
organization.

The value must be text.

Any number of properties with the name post-office-box may be present within
the item that forms the value of an adr property of an item with the type vcard.

extended-address (inside adr)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 513 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 513 from 931

Gives an additional component of the delivery address of the person or
organization.

The value must be text.

Any number of properties with the name extended-address may be present within
the item that forms the value of an adr property of an item with the type vcard.

street-address (inside adr)
Gives the street address component of the delivery address of the person or
organization.

The value must be text.

Any number of properties with the name street-address may be present within the
item that forms the value of an adr property of an item with the type vcard.

locality (inside adr)
Gives the locality component (e.g. city) of the delivery address of the person or
organization.

The value must be text.

A single property with the name locality may be present within the item that forms
the value of an adr property of an item with the type vcard.

region (inside adr)
Gives the region component (e.g. state or province) of the delivery address of the
person or organization.

The value must be text.

A single property with the name region may be present within the item that forms
the value of an adr property of an item with the type vcard.

postal-code (inside adr)
Gives the postal code component of the delivery address of the person or
organization.

The value must be text.

A single property with the name postal-code may be present within the item that
forms the value of an adr property of an item with the type vcard.

country-name (inside adr)
Gives the country name component of the delivery address of the person or
organization.

The value must be text.

A single property with the name country-name may be present within the item that
forms the value of an adr property of an item with the type vcard.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 514 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 514 from 931

label
Gives the formatted text corresponding to the delivery address of the person or
organization.

The value must be either text or an item with zero or more type properties and
exactly one value property.

If no type properties are present within an item that forms the value of a label
property of an item with the type vcard, or if the value of such a label property is
text, then the address type strings intl, postal, parcel, and work are implied.

Any number of properties with the name label may be present within each item
with the type vcard.

type (inside label)
Gives the type of delivery address.

The value must be text that, when compared in a case-sensitive manner, is equal
to one of the address type strings.

Within each item with the type vcard, there must be no more than one label
property item with a type property whose value is pref.

Any number of properties with the name type may be present within the item that
forms the value of a label property of an item with the type vcard, but within each
such label property item there must only be one type property per distinct value.

value (inside label)
Gives the actual formatted text corresponding to the delivery address of the person
or organization.

The value must be text.

Exactly one property with the name value must be present within the item that
forms the value of a label property of an item with the type vcard.

tel
Gives the telephone number of the person or organization.

The value must be either text that can be interpreted as a telephone number as
defined in the CCITT specifications E.163 and X.121, or an item with zero or more
type properties and exactly one value property. [E163] [X121]

If no type properties are present within an item that forms the value of a tel
property of an item with the type vcard, or if the value of such a tel property is text,
then the telephone type string voice is implied.

Any number of properties with the name tel may be present within each item with
the type vcard.

type (inside tel)
Gives the type of telephone number.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 515 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 515 from 931

The value must be text that, when compared in a case-sensitive manner, is equal
to one of the telephone type strings.

Within each item with the type vcard, there must be no more than one tel property
item with a type property whose value is pref.

Any number of properties with the name type may be present within the item that
forms the value of a tel property of an item with the type vcard, but within each
such tel property item there must only be one type property per distinct value.

value (inside tel)
Gives the actual telephone number of the person or organization.

The value must be text that can be interpreted as a telephone number as defined in
the CCITT specifications E.163 and X.121. [E163] [X121]

Exactly one property with the name value must be present within the item that
forms the value of a tel property of an item with the type vcard.

email
Gives the e-mail address of the person or organization.

The value must be either text or an item with zero or more type properties and
exactly one value property.

If no type properties are present within an item that forms the value of an email
property of an item with the type vcard, or if the value of such an email property is
text, then the e-mail type string internet is implied.

Any number of properties with the name email may be present within each item
with the type vcard.

type (inside email)
Gives the type of e-mail address.

The value must be text that, when compared in a case-sensitive manner, is equal
to one of the e-mail type strings.

Within each item with the type vcard, there must be no more than one email
property item with a type property whose value is pref.

Any number of properties with the name type may be present within the item that
forms the value of an email property of an item with the type vcard, but within each
such email property item there must only be one type property per distinct value.

value (inside email)
Gives the actual e-mail address of the person or organization.

The value must be text.

Exactly one property with the name value must be present within the item that
forms the value of an email property of an item with the type vcard.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 516 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 516 from 931

mailer
Gives the name of the e-mail software used by the person or organization.

The value must be text.

Any number of properties with the name mailer may be present within each item
with the type vcard.

tz
Gives the time zone of the person or organization.

The value must be text and must match the following syntax:

1. Either a U+002B PLUS SIGN character (+) or a U+002D HYPHEN-MINUS
character (-).

2. A valid non-negative integer that is exactly two digits long and that
represents a number in the range 00..23.

3. A U+003A COLON character (:).
4. A valid non-negative integer that is exactly two digits long and that

represents a number in the range 00..59.

Any number of properties with the name tz may be present within each item with
the type vcard.

geo
Gives the geographical position of the person or organization.

The value must be text and must match the following syntax:

1. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D
HYPHEN-MINUS character (-).

2. One or more digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT
NINE.

3. Optionally*, a U+002E FULL STOP character (.) followed by one or more
digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE.

4. A U+003B SEMICOLON character (;).
5. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D

HYPHEN-MINUS character (-).
6. One or more digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT

NINE.
7. Optionally*, a U+002E FULL STOP character (.) followed by one or more

digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE.

The optional components marked with an asterisk (*) should be included, and
should have dix digits each.

The value specifies latitude and longitude, in that order (i.e., "LAT LON"
ordering), in decimal degress. The longitude represents the location east and
west of the prime meridian as a positive or negative real number,
respectively. The latitude represents the location north and south of the
equator as a positive or negative real number, respectively.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 517 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 517 from 931

Any number of properties with the name geo may be present within each item with
the type vcard.

title
Gives the job title, functional position or function of the person or organization.

The value must be text.

Any number of properties with the name title may be present within each item
with the type vcard.

role
Gives the role, occupation, or business category of the person or organization.

The value must be text.

Any number of properties with the name role may be present within each item with
the type vcard.

logo
Gives the logo of the person or organization.

The value must be an absolute URL.

Any number of properties with the name logo may be present within each item with
the type vcard.

agent
Gives the contact information of another person who will act on behalf of the person
or organization.

The value must be either an item with the type vcard, or an absolute URL, or text.

Any number of properties with the name logo may be present within each item with
the type vcard.

org
Gives the name and units of the organization.

The value must be either text or an item with one organization-name property and
zero or more organization-unit properties.

Any number of properties with the name org may be present within each item with
the type vcard.

organization-name (inside org)
Gives the name of the organization.

The value must be text.

Exactly one property with the name organization-name must be present within the
item that forms the value of an org property of an item with the type vcard.

organization-unit (inside org)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 518 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 518 from 931

Gives the name of the organization unit.

The value must be text.

Any number of properties with the name organization-unit may be present within
the item that forms the value of the org property of an item with the type vcard.

categories
Gives the name of a category or tag that the person or organization could be
classified as.

The value must be text.

Any number of properties with the name categories may be present within each
item with the type vcard.

note
Gives supplemental information or a comment about the person or organization.

The value must be text.

Any number of properties with the name note may be present within each item with
the type vcard.

rev
Gives the revision date and time of the contact information.

The value must be text that is a valid global date and time string.

The value distinguishes the current revision of the information for other
renditions of the information.

Any number of properties with the name rev may be present within each item with
the type vcard.

sort-string
Gives the string to be used for sorting the person or organization.

The value must be text.

Any number of properties with the name sort-string may be present within each
item with the type vcard.

sound
Gives a sound file relating to the person or organization.

The value must be an absolute URL.

Any number of properties with the name sound may be present within each item
with the type vcard.

url
Gives a URL relating to the person or organization.

The value must be an absolute URL.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 519 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 519 from 931

Any number of properties with the name url may be present within each item with
the type vcard.

class
Gives the access classification of the information regarding the person or
organization.

The value must be text with one of the following values:

• public
• private
• confidential

This is merely advisory and cannot be considered a confidentiality measure.

Any number of properties with the name class may be present within each item
with the type vcard.

impp
Gives a URL for instant messaging and presence protocol communications with the
person or organization.

The value must be either an absolute URL or an item with zero or more type
properties and exactly one value property.

If no type properties are present within an item that forms the value of an impp
property of an item with the type vcard, or if the value of such an impp property is
an absolute URL, then no IMPP type strings are implied.

Any number of properties with the name impp may be present within each item with
the type vcard.

type (inside impp)
Gives the intended use of the IMPP URL.

The value must be text that, when compared in a case-sensitive manner, is equal
to one of the IMPP type strings.

Within each item with the type vcard, there must be no more than one impp
property item with a type property whose value is pref.

Any number of properties with the name type may be present within the item that
forms the value of an impp property of an item with the type vcard, but within each
such impp property item there must only be one type property per distinct value.

value (inside impp)
Gives the actual URL for instant messaging and presence protocol communications
with the person or organization.

The value must be an absolute URL.

Exactly one property with the name value must be present within the item that
forms the value of an impp property of an item with the type vcard.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 520 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 520 from 931

The address type strings are:

dom
Indicates a domestic delivery address.

intl
Indicates an international delivery address.

postal
Indicates a postal delivery address.

parcel
Indicates a parcel delivery address.

home
Indicates a residential delivery address.

work
Indicates a delivery address for a place of work.

pref
Indicates the preferred delivery address when multiple addresses are specified.

The telephone type strings are:

home
Indicates a residential number.

msg
Indicates a telephone number with voice messaging support.

work
Indicates a telephone number for a place of work.

voice
Indicates a voice telephone number.

fax
Indicates a facsimile telephone number.

cell
Indicates a cellular telephone number.

video
Indicates a video conferencing telephone number.

pager
Indicates a paging device telephone number.

bbs
Indicates a bulletin board system telephone number.

modem
Indicates a MODEM-connected telephone number.

car
Indicates a car-phone telephone number.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 521 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 521 from 931

isdn
Indicates an ISDN service telephone number.

pcs
Indicates a personal communication services telephone number.

pref
Indicates the preferred telephone number when multiple telephone numbers are
specified.

The e-mail type strings are:

internet
Indicates an Internet e-mail address.

x400
Indicates a X.400 addressing type.

pref
Indicates the preferred e-mail address when multiple e-mail addresses are
specified.

The IMPP type strings are:

personal
business

Indicates the type of communication for which this IMPP URL is appropriate.

home
work
mobile

Indicates the location of a device associated with this IMPP URL.

pref
Indicates the preferred address when multiple IMPP URLs are specified.

5.4.2.1 Examples

Here is a long example vcard for a fictional character called "Jack Bauer":

<section id="jack" item="vcard">
 <h1 itemprop="fn">Jack Bauer</h1>

 <p itemprop="org" item>
 Counter-Terrorist Unit
 (Los Angeles Division)
 </p>
 <p>

 10201 W. Pico Blvd.

 Los Angeles,
 CA
 90064

 United States

 34.052339;-118.410623
 </p>
 <h2>Assorted Contact Methods</h2>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 522 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 522 from 931

 <li itemprop="tel" item>+1 (310) 597
 3781 work
 <meta itemprop="type" content="pref">
 <a itemprop="url"
 href="http://en.wikipedia.org/wiki/Jack_Bauer">I'm on
 Wikipedia so you can leave a message on my user talk
 page.
 <a itemprop="url"
 href="http://www.jackbauerfacts.com/">Jack Bauer Facts
 <li itemprop="email">j.bauer@la.ctu.gov.invalid<
/li>
 <li itemprop="tel" item>+1 (310) 555
 3781 <meta itemprop="type" content="cell">mobile
 phone

 <p itemprop="note">If I'm out in the field, you may be better
 off contacting <span
 itemprop="fn">Chloe O'Brian if it's about
 work, or ask Tony Almeida if
 you're interested in the CTU five-a-side football team we're
 trying to get going.</p>
 <ins datetime="2008-07-20T21:00:00+0100">

 <meta itemprop="type" content="date-time">
 <meta itemprop="value" content="2008-07-20T21:00:00+0100">

 <p itemprop="tel" item>Update!
 My new home phone number is
 01632 960 123.
 </ins>
</section>

This example shows a site's contact details (using the address element) containing an
address with two street components:

<address item=vcard>
 <strong title="fn">Alfred Person

 1600 Amphitheatre Parkway

 Building 43, Second Floor

 Mountain View,
 CA <span itemprop="postal-
code">94043

</address>

5.4.3 vEvent

An item with the predefined type vevent represents an event.

The following are the type's predefined property names. They are based on the
vocabulary defined in the iCalendar specification, where more information on how to
interpret the values can be found. [RFC2445]

Only the parts of the iCalendar vocabulary relating to events are used here; this
vocabulary cannot express a complete iCalendar instance.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 523 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 523 from 931

attach
Gives the address of an associated document for the event.

The value must be an absolute URL.

Any number of properties with the name attach may be present within each item
with the type vevent.

categories
Gives the name of a category or tag that the event could be classified as.

The value must be text.

Any number of properties with the name categories may be present within each
item with the type vevent.

class
Gives the access classification of the information regarding the event.

The value must be text with one of the following values:

• public
• private
• confidential

This is merely advisory and cannot be considered a confidentiality measure.

A single property with the name class may be present within each item with the
type vevent.

comment
Gives a comment regarding the event.

The value must be text.

Any number of properties with the name comment may be present within each item
with the type vevent.

description
Gives a detailed description of the event.

The value must be text.

A single property with the name description may be present within each item with
the type vevent.

geo
Gives the geographical position of the event.

The value must be text and must match the following syntax:

1. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D
HYPHEN-MINUS character (-).

2. One or more digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT
NINE.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 524 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 524 from 931

3. Optionally*, a U+002E FULL STOP character (.) followed by one or more
digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE.

4. A U+003B SEMICOLON character (;).
5. Optionally, either a U+002B PLUS SIGN character (+) or a U+002D

HYPHEN-MINUS character (-).
6. One or more digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT

NINE.
7. Optionally*, a U+002E FULL STOP character (.) followed by one or more

digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE.

The optional components marked with an asterisk (*) should be included, and
should have dix digits each.

The value specifies latitude and longitude, in that order (i.e., "LAT LON"
ordering), in decimal degress. The longitude represents the location east and
west of the prime meridian as a positive or negative real number,
respectively. The latitude represents the location north and south of the
equator as a positive or negative real number, respectively.

A single property with the name geo may be present within each item with the type
vevent.

location
Gives the location of the event.

The value must be text.

A single property with the name location may be present within each item with the
type vevent.

resources
Gives a resource that will be needed for the event.

The value must be text.

Any number of properties with the name resources may be present within each
item with the type vevent.

status
Gives the confirmation status of the event.

The value must be text with one of the following values:

• tentative
• confirmed
• cancelled

A single property with the name status may be present within each item with the
type vevent.

summary
Gives a short summary of the event.

The value must be text.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 525 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 525 from 931

User agents should replace U+000A LINE FEED (LF) characters in the value by
U+0020 SPACE characters when using the value.

A single property with the name summary may be present within each item with the
type vevent.

dtend
Gives the date and time by which the event ends.

If the property with the name dtend is present within an item with the type vevent
that has a property with the name dtstart whose value is a valid date string, then
the value of the property with the name dtend must be text that is a valid date string
also. Otherwise, the value of the property must be text that is a valid global date
and time string.

In either case, the value be later in time than the value of the dtstart property of
the same item.

The time given by the dtend property is not inclusive. For day-long events,
therefore, the the dtend property's value will be the day after the end of the
event.

A single property with the name dtend may be present within each item with the
type vevent, so long as that vevent does not have a property with the name
duration.

dtstart
Gives the date and time at which the event starts.

The value must be text that is either a valid date string or a valid global date and
time string.

Exactly one property with the name dtstart must be present within each item with
the type vevent.

duration
Gives the date and time at which the event starts.

The value must be text that is a valid vevent duration string.

The duration represented is the sum of all the durations represented by integers in
the value.

A single property with the name duration may be present within each item with the
type vevent, so long as that vevent does not have a property with the name dtend.

transp
Gives whether the event is to be considered as consuming time on a calendar, for
the purpose of free-busy time searches.

The value must be text with one of the following values:

• opaque
• transparent

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 526 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 526 from 931

A single property with the name transp may be present within each item with the
type vevent.

contact
Gives the contact information for the event.

The value must be text.

Any number of properties with the name contact may be present within each item
with the type vevent.

url
Gives a URL for the event.

The value must be an absolute URL.

A single property with the name url may be present within each item with the type
vevent.

exdate
Gives a date and time at which the event does not occur despite the recurrence
rules.

The value must be text that is either a valid date string or a valid global date and
time string.

Any number of properties with the name exdate may be present within each item
with the type vevent.

exrule
Gives a rule for finding dates and times at which the event does not occur despite
the recurrence rules.

The value must be text that matches the RECUR value type defined in the
iCalendar specification. [RFC2445]

Any number of properties with the name exrule may be present within each item
with the type vevent.

rdate
Gives a date and time at which the event recurs.

The value must be text that is one of the following:

• A valid date string.
• A valid global date and time string.
• A valid global date and time string followed by a U+002F SOLIDUS character

(/) followed by a second valid global date and time string representing a later
time.

• A valid global date and time string followed by a U+002F SOLIDUS character
(/) followed by a valid vevent duration string.

Any number of properties with the name rdate may be present within each item
with the type vevent.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 527 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 527 from 931

rrule
Gives a rule for finding dates and times at which the event occurs.

The value must be text that matches the RECUR value type defined in the
iCalendar specification. [RFC2445]

Any number of properties with the name rrule may be present within each item
with the type vevent.

created
Gives the date and time at which the event information was first created in a
calendaring system.

The value must be text that is a valid global date and time string.

A single property with the name created may be present within each item with the
type vevent.

last-modified
Gives the date and time at which the event information was last modified in a
calendaring system.

The value must be text that is a valid global date and time string.

A single property with the name last-modified may be present within each item
with the type vevent.

sequence
Gives a revision number for the event information.

The value must be text that is a valid non-negative integer.

A single property with the name sequence may be present within each item with the
type vevent.

A string is a valid vevent duration string if it matches the following pattern:

1. A U+0050 LATIN CAPITAL LETTER P character.
2. One of the following:

o A valid non-negative integer followed by a U+0057 LATIN CAPITAL LETTER
W character. The integer represents a duration of that number of weeks.

o At least one, and possible both in this order, of the following:
1. A valid non-negative integer followed by a U+0044 LATIN CAPITAL

LETTER D character. The integer represents a duration of that
number of days.

2. A U+0054 LATIN CAPITAL LETTER T character followed by any one
of the following, or the first and second of the following in that order,
or the second and third of the following in that order, or all three of the
following in this order:

1. A valid non-negative integer followed by a U+0048 LATIN
CAPITAL LETTER H character. The integer represents a
duration of that number of hours.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 528 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 528 from 931

2. A valid non-negative integer followed by a U+004D LATIN
CAPITAL LETTER M character. The integer represents a
duration of that number of minutes.

3. A valid non-negative integer followed by a U+0053 LATIN
CAPITAL LETTER S character. The integer represents a
duration of that number of seconds.

5.4.3.1 Examples

Here is an example of a page that uses the vevent vocabulary to mark up an event:

<body item="vevent">
 ...
 <h1 itemprop="summary">Bluesday Tuesday: Money Road</h1>
 ...
 <time itemprop="dtstart" datetime="2009-05-05T19:00:00Z">May 5th @
7pm</time>
 (until <time itemprop="dtend" datetime="2009-05-
05T21:00:00Z">9pm</time>)
 ...
 <a href="http://livebrum.co.uk/2009/05/05/bluesday-tuesday-money-road"
 rel="bookmark" itemprop="url">Link to this page
 ...
 <p>Location: The RoadHouse</p>
 ...
 <p><input type=button value="Add to Calendar"
 onclick="location = getCalendar(this)"></p>
 ...
 <meta itemprop="description" content="via livebrum.co.uk">
</body>

The "getCalendar()" method could look like this:

function getCalendar(node) {
 while (node && !node.item.contains('vevent'))
 node = node.parentNode;
 if (!node) {
 alert('No event data found.');
 return;
 }
 var stamp = new Date();
 var stampString = '' + stamp.getUTCFullYear() + (stamp.getUTCMonth() +
1) + stamp.getUTCDate() + 'T' +
 stamp.getUTCHours() + stamp.getUTCMinutes() +
stamp.getUTCSeconds() + 'Z';
 var calendar =
'BEGIN:VCALENDAR\r\nPRODID:HTML\r\nVERSION:2.0\r\nBEGIN:VEVENT\r\nDTSTAM
P:' + stampString + '\r\n';
 for (var propIndex = 0; propIndex < node.properties.length; propIndex
+= 1) {
 var prop = node.properties[propIndex];
 var value = prop.contents;
 var parameters = '';
 if (prop.localName == 'time') {
 value = value.replace(/[:-]/g, '');
 if (prop.date && prop.time)
 parameters = ';VALUE=DATE';
 else
 parameters = ';VALUE=DATE-TIME';
 } else {

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 529 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 529 from 931

 value = value.replace(/\\/g, '\\n');
 value = value.replace(/;/g, '\\;');
 value = value.replace(/,/g, \\,');
 value = value.replace(/\n/g, '\\n');
 }
 for (var nameIndex = 0; nameIndex < prop.itemprop.length; nameIndex
+= 1) {
 var name = prop.itemprop[nameIndex];
 if (!name.match(':') && !name.match('.'))
 calendar += name.toUpperCase() + parameters + ':' + value +
'\r\n';
 }
 }
 calendar += 'END:VEVENT\r\nEND:VCALENDAR\r\n';
 return 'data:text/calendar;component=vevent,' + encodeURI(calendar);
}

The same page could offer some markup, such as the following, for copy-and-pasting into
blogs:

<div item="vevent">
 <p>I'm going to
 <strong itemprop="summary">Bluesday Tuesday: Money Road,
 <time itemprop="dtstart" datetime="2009-05-05T19:00:00Z">May 5th at
7pm</time>
 to <time itemprop="dtend" content="2009-05-05T21:00:00Z">9pm</time>,
 at The RoadHouse!</p>
 <p><a href="http://livebrum.co.uk/2009/05/05/bluesday-tuesday-money-
road"
 itemprop="url">See this event on livebrum.co.uk.</p>
 <meta itemprop="description" content="via livebrum.co.uk">
</div>

5.4.4 Licensing works

An item with the predefined type work represents a work (e.g. an article, an image, a
video, a song, etc). This type is primarily intended to allow authors to include licensing
information for works.

The following are the type's predefined property names.

title
Gives the name of the work.

A single property with the name title may be present within each item with the
type work.

author
Gives the name or contact information of one of the authors or creators of the work.

The value must be either an item with the type vcard, or text.

Any number of properties with the name author may be present within each item
with the type work.

license
Identifies one of the licenses under which the work is available.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 530 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 530 from 931

The value must be an absolute URL.

Any number of properties with the name license may be present within each item
with the type work.

In addition, exactly one property with the name about must be present within each item
with the type work, giving the URL of the work.

5.4.4.1 Examples

This example shows an embedded image entitiled My Pond, licensed under the Creative
Commons Attribution-Share Alike 3.0 United States License and the MIT license
simultaneously.

<figure item="work">

 <legend>
 <p><cite itemprop="title">My Pond</cite></p>
 <p><small>Licensed under the <a itemprop="license"
 href="http://creativecommons.org/licenses/by-sa/3.0/us/">Creative
 Commons Attribution-Share Alike 3.0 United States License
 and the <a itemprop="license"
 href="http://www.opensource.org/licenses/mit-license.php">MIT
 license.</small>
 </legend>
</figure>

5.5 Converting HTML to other formats

In all these algorithms, unless otherwise stated, operations that iterate over a series of
elements (whether items, properties, or otherwise) must do so in tree order.

A generic API upon which the vocaulary-specific conversions defined below (vCard,
iCalendar) can be built will need to provide the following information when given a
Document (or equivalent):

• The document's current address.
• The textContent of the title element, if any.
• The list of top-level microdata items.
• For each item, the list of properties that have that item as their corresponding item.
• For each property, its name.
• For each property, its value (which might be a further item).
• For each property, if its value is not itself an item, whether the element is a time

element, a URL property element, or another element.

5.5.1 JSON

Given a list of nodes nodes in a Document, a user agent must run the following algorithm to
extract the microdata from those nodes into a JSON form:

1. Let result be an empty object.

2. Let items be an empty array.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 531 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 531 from 931

3. For each node in nodes, check if the element is a top-level microdata item, and if it
is then get the object for that element and add it to items.

4. Add an entry to result called "items" whose value is the array items.

5. Return the result of serializing result to JSON.

When the user agent is to get the object for an item item, it must run the following
substeps:

1. Let result be an empty object.

2. Add an entry to result called "type" whose value is the item type of item.

3. Let properties be an empty object.

4. For each element element that has one or more property names and whose
corresponding item is item, run the following substeps:

1. Let value be the property value of element.

2. If value is an item, then get the object for value, and then replace value with
the object returned from those steps.

3. For each name name in element's property names, run the following
substeps:

1. If there is no entry named name in properties, then add an entry
named name to properties whose value is an empty array.

2. Append value to the entry named name in properties.

5. Add an entry to result called "properties" whose value is the array properties.

6. Return result.

5.5.2 RDF

To convert a Document to RDF, a user agent must run the following algorithm:

1. If the title element is not null, then generate the following triple:

subject
the document's current address
predicate
http://purl.org/dc/terms/title
object
the textContent of the title element, as a plain literal, with the language
information set from the language of the title element, if it is not unknown.

2. For each a, area, and link element in the Document, run these substeps:

1. If the element does not have a rel attribute, then skip this element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 532 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 532 from 931

2. If the element does not have an href attribute, then skip this element.

3. If resolving the element's href attribute relative to the element is not
successful, then skip this element.

4. Otherwise, split the value of the element's rel attribute on spaces, obtaining
list of tokens.

5. Convert each token in list of tokens to ASCII lowercase.

6. If list of tokens contains more than one instance of the token up, then
remove all such tokens.

7. Coalesce duplicate tokens in list of tokens.

8. If list of tokens contains both the tokens alternate and stylesheet, then
remove them both and replace them with the single (uppercase) token
ALTERNATE-STYLESHEET.

9. For each token token in list of tokens that contains neither a U+003A
COLON character (:) nor a U+002E FULL STOP character (.), generate the
following triple:

subject
the document's current address

predicate
the concatenation of the string "http://www.w3.org/1999/xhtml/vocab#" and token,
with any characters in token that are not valid in the <ifragment> production of the
IRI syntax being %-escaped [RFC3987]

object
the absolute URL that results from resolving the value of the element's href
attribute relative to the element

3. For each meta element in the Document that has a name attribute and a content
attribute, if the value of the name attribute contains neither a U+003A COLON
character (:) nor a U+002E FULL STOP character (.), generate the following triple:

subject
the document's current address
predicate
the concatenation of the string "http://www.w3.org/1999/xhtml/vocab#" and the
value of the element's name attribute, converted to ASCII lowercase, with any
characters in the value that are not valid in the <ifragment> production of the IRI
syntax being %-escaped [RFC3987]
object
the value of the element's content attribute, as a plain literal, with the language
information set from the language of the element, if it is not unknown.

4. For each article, section, blockquote, and q element in the Document that has a
cite attribute that resolves successfully relative to the element, generate the
following triple:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 533 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 533 from 931

subject
the document's current address
predicate
http://purl.org/dc/terms/source
object
the absolute URL that results from resolving the value of the element's cite
attribute relative to the element

5. For each element that is also a top-level microdata item, run the following steps:

1. Generate the triples for the item. Let item be the subject returned.

2. Generate the following triple:

subject
the document's current address

predicate
http://www.w3.org/1999/xhtml/vocab#item

object
item

3. If the element is, or is a descendant of, an address element that has no
article element ancestors, and the item has the type vcard, generate the
following triple:

subject
the document's current address

predicate
http://purl.org/dc/terms/creator

object
item

When the user agent is to generate the triples for an item item, it must follow the
following steps:

1. If of the elements whose corresponding item is item, there are any with a property
name equal to the string "about", and the first such element is a URL property
element, and its value is not an item, let subject be the value of that property.
Otherwise, let subject be a new blank node.

2. Let type be the item type of item.

3. If type is neither the empty string nor an absolute URL, then let type be the result of
concatenating the string "http://www.w3.org/1999/xhtml/custom#" with the type,
with any characters in type that are not valid in the <ifragment> production of the
IRI syntax being %-escaped.

4. If type is not the empty string, generate the following triple:

subject
subject
predicate
http://www.w3.org/1999/02/22-rdf-syntax-ns#type

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 534 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 534 from 931

object
type

5. For each element element that has one or more property names and whose
corresponding item is item, run the following substeps:

1. Let value be the property value of element.

2. If value is an item, then generate the triples for value, and then replace value
with the subject returned from those steps.

3. Otherwise, if element is not one of the URL property elements, let value be a
plain literal, with the language information set from the language of the
element, if it is not unknown.

4. For each name name in element's property names, run the following
substeps:

1. If name is equal to the string "about", skip this name.

2. Otherwise, if type is work, and name is equal to the string "title", let
name be the string "http://purl.org/dc/elements/1.1/title".

3. Otherwise, if type is work, and name is equal to the string "author", let
name be the string
"http://creativecommons.org/ns#attributionName".

4. Otherwise, if type is work, and name is equal to the string "license",
let name be the string
"http://www.w3.org/1999/xhtml/vocab#license".

5. Otherwise, if name is not an absolute URL, then let name be the
result of concatenating the string
"http://www.w3.org/1999/xhtml/custom#" with name, with any
characters in name that are not valid in the <ifragment> production of
the IRI syntax being %-escaped. [RFC3987]

6. Generate the following triple:

subject
subject

predicate
name

object
value

6. Return subject.

5.5.3 vCard

Given a list of nodes nodes in a Document, a user agent must run the following algorithm to
extract any vcard data represented by those nodes (only the first vCard is returned):

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 535 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 535 from 931

1. If none of the nodes in nodes are items with the type vcard, then there is no vCard.
Abort the algorithm, returning nothing.

2. Let node be the first node in nodes that is an item with the type vcard.

3. Let output be an empty string.

4. Add a vCard line with the type "BEGIN" and the value "VCARD" to output.

5. Add a vCard line with the type "PROFILE" and the value "VCARD" to output.

6. Add a vCard line with the type "VERSION" and the value "3.0" to output.

7. Add a vCard line with the type "SOURCE" and the result of escaping the vCard text
string that is the the document's current address as the value to output.

8. If the title element is not null, add a vCard line with the type "NAME" and with the
result of escaping the vCard text string obtained from the textContent of the title
element as the value to output.

9. If there is a property named about whose corresponding item is node and the
element of the first such property is a URL property element and has a value that is
not an item, add a vCard line with the type "UID" and with the result of escaping the
vCard text string that is that property's value as the value to output.

10. For each element element that has one or more property names and whose
corresponding item is node: for each name name in element's property names, run
the following substeps:

1. If name is equal to the string "about", skip this name.

2. Let parameters be an empty set of name-value pairs.

3. Run the appropriate set of substeps from the following list. The steps will set
a variable value, which is used in the next step.

If the property's value is an item subitem and name is n
1. Let n1 be the value of the first property named family-name in

subitem, or the empty string if there is no such property or the property's
value is itself an item.

2. Let n2 be the value of the first property named given-name in subitem,
or the empty string if there is no such property or the property's value is itself
an item.

3. Let n3 be the value of the first property named additional-name in
subitem, or the empty string if there is no such property or the property's
value is itself an item.

4. Let n4 be the value of the first property named honorific-prefix in
subitem, or the empty string if there is no such property or the property's
value is itself an item.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 536 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 536 from 931

5. Let n5 be the value of the first property named honorific-suffix in
subitem, or the empty string if there is no such property or the property's
value is itself an item.

6. Let value be the concatenation of the following, in this order:

1. The result of escaping the vCard text string n1
2. A U+003B SEMICOLON character (;)
3. The result of escaping the vCard text string n2
4. A U+003B SEMICOLON character (;)
5. The result of escaping the vCard text string n3
6. A U+003B SEMICOLON character (;)
7. The result of escaping the vCard text string n4
8. A U+003B SEMICOLON character (;)
9. The result of escaping the vCard text string n5

If the property's value is an item subitem and name is adr
7. Let value be the empty string.

8. Append to value the result of collecting vCard subproperties named
post-office-box in subitem.

9. Append a U+003B SEMICOLON character (;) to value.
10. Append to value the result of collecting vCard subproperties named

extended-address in subitem.

11. Append a U+003B SEMICOLON character (;) to value.
12. Append to value the result of collecting vCard subproperties named

street-address in subitem.

13. Append a U+003B SEMICOLON character (;) to value.
14. Append to value the result of collecting the first vCard subproperty

named locality in subitem.

15. Append a U+003B SEMICOLON character (;) to value.
16. Append to value the result of collecting the first vCard subproperty

named region in subitem.

17. Append a U+003B SEMICOLON character (;) to value.
18. Append to value the result of collecting the first vCard subproperty

named postal-code in subitem.

19. Append a U+003B SEMICOLON character (;) to value.
20. Append to value the result of collecting the first vCard subproperty

named country-name in subitem.

21. If there is a property named type in subitem, and the first such
property has a value that is not an item and whose value consists only of
alphanumeric ASCII characters, then add a parameter named "TYPE" whose
value is the value of that property to parameters.

If the property's value is an item subitem and name is org
22. Let value be the empty string.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 537 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 537 from 931

23. Append to value the result of collecting the first vCard subproperty
named organization-name in subitem.

24. For each property named organization-unit in subitem, run the
following steps:

1. If the value of the property is an item, then skip this property.

2. Append a U+003B SEMICOLON character (;) to value.

3. Append the result of escaping the vCard text string given by
the value of the property to value.

If the property's value is an item subitem with the type vcard and name
is agent

25. Let value be the result of escaping the vCard text string obtained from
extracting a vCard from the element that represents subitem.

26. Add a parameter named "VALUE" whose value is "VCARD" to
parameters.

If the property's value is an item and name is none of the above
27. Let value the result of collecting the first vCard subproperty named

value in subitem.

28. If there is a property named type in subitem, and the first such
property has a value that is not an item and whose value consists only of
alphanumeric ASCII characters, then add a parameter named "TYPE" whose
value is the value of that property to parameters.

Otherwise (the property's value is not an item)
29. Let value be the property's value.

30. If element is one of the URL property elements, add a parameter with
the name "VALUE" and the value "URI" to parameters.

31. Otherwise, if element is a time element and the value is a valid date
string, add a parameter with the name "VALUE" and the value "DATE" to
parameters.

32. Otherwise, if element is a time element and the value is a valid global
date and time string, add a parameter with the name "VALUE" and the value
"DATE-TIME" to parameters.

33. Prefix every U+005C REVERSE SOLIDUS character (\) in value with
another U+005C REVERSE SOLIDUS character (\).

34. Prefix every U+002C COMMA character (,) in value with a U+005C
REVERSE SOLIDUS character (\).

35. Unless name is geo, prefix every U+003B SEMICOLON character (;)
in value with a U+005C REVERSE SOLIDUS character (\).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 538 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 538 from 931

36. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED
character pair (CRLF) in value with a U+005C REVERSE SOLIDUS
character (\) followed by a U+006E LATIN SMALL LETTER N.

37. Replace every remaining U+000D CARRIAGE RETURN (CR) or
U+000A LINE FEED (LF) character in value with a U+005C REVERSE
SOLIDUS character (\) followed by a U+006E LATIN SMALL LETTER N.

4. Add a vCard line with the type name, the parameters parameters, and the
value value to output.

11. If there is no property named n whose corresponding item is node, then run the
following substeps:

1. If there is no property named fn whose corresponding item is node, then
skip the remainder of these substeps.

2. If the first property named fn whose corresponding item is node has a value
that is an item, then skip the remainder of these substeps.

3. Let fn be the value of the first property named fn whose corresponding item
is node.

4. If there is a property named org whose corresponding item is node, and the
value of the first such property is equal to fn (and is not an item), then add a
vCard line with the type "N" whose value is four U+003B SEMICOLON
characters (";;;;") to output. Then, skip the remainder of these substeps.

5. If the space characters in fn, if any, are not all contiguous, then skip the
remainder of these substeps.

6. Split fn on spaces, and let part one be the first resulting token, and part two
be the second, if any, or the empty string if there is no second token. (There
cannot be three, given the previous step.)

7. If the last character of part one is a U+002C COMMA character (,), then
remove that character from part one and add a vCard line with the type "N"
whose value is the concatenation of the following strings:

1. The result of escaping the vCard text string part one
2. A U+003B SEMICOLON character (;)
3. The result of escaping the vCard text string part two
4. Three U+003B SEMICOLON characters (;)

Then, skip the remainder of these substeps.

8. If part two is two Unicode code-points long and its second character is a
U+002E FULL STOP character (.), then add a vCard line with the type "N"
whose value is the concatenation of the following strings:

1. The result of escaping the vCard text string part one
2. A U+003B SEMICOLON character (;)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 539 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 539 from 931

3. The result of escaping the vCard text string consisting of the first
character of part two

4. Three U+003B SEMICOLON characters (;)

Then, skip the remainder of these substeps.

9. If part two is one Unicode code-point long, then add a vCard line with the
type "N" whose value is the concatenation of the following strings:

1. The result of escaping the vCard text string part one
2. A U+003B SEMICOLON character (;)
3. The result of escaping the vCard text string part two
4. Three U+003B SEMICOLON characters (;)

Then, skip the remainder of these substeps.

10. Add a vCard line with the type "N" whose value is the concatenation of the
following strings:

1. The result of escaping the vCard text string part two
2. A U+003B SEMICOLON character (;)
3. The result of escaping the vCard text string part one
4. Three U+003B SEMICOLON characters (;)

12. Add a vCard line with the type "END" and the value "VCARD" to output.

When the above algorithm says that the user agent is to add a vCard line consisting of a
type type, optionally some parameters, and a value value to a string output, it must run the
following steps:

1. Let line be an empty string.

2. Append type, converted to ASCII uppercase, to line.

3. If there are any parameters, then for each parameter, in the order that they were
added, run these substeps:

1. Append a U+003B SEMICOLON character (;) to line.

2. Append the parameter's name to line.

3. Append a U+003D EQUALS SIGN character (=) to line.

4. Append the parameter's value to line.

4. Append a U+003A COLON character (:) to line.

5. Append value to line.

6. Let maximum length be 75.

7. If and while line is longer than maximum length Unicode code points long, run the
following substeps:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 540 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 540 from 931

1. Append the first maximum length Unicode code points of line to output.

2. Remove the first maximum length Unicode code points from line.

3. Append a U+000D CARRIAGE RETURN character (CR) to output.

4. Append a U+000A LINE FEED character (LF) to output.

5. Append a U+0020 SPACE character to output.

6. Let maximum length be 74.

8. Append (what remains of) line to output.

9. Append a U+000D CARRIAGE RETURN character (CR) to output.

10. Append a U+000A LINE FEED character (LF) to output.

When the steps above require the user agent to obtain the result of collecting vCard
subproperties named subname in subitem, the user agent must run the following steps:

1. Let value be the empty string.

2. For each property named subname in the item subitem, run the following substeps:

1. If the value of the property is itself an item, then skip this property.

2. If this is not the first property named subname in subitem (ignoring any that
were skipped by the previous step), then append a U+002C COMMA
character (,) to value.

3. Append the result of escaping the vCard text string given by the value of the
property to value.

3. Return value.

When the steps above require the user agent to obtain the result of collecting the first
vCard subproperty named subname in subitem, the user agent must run the following
steps:

1. If there are no properties named subname in subitem, then abort these substeps,
returning the empty string.

2. If the value of the first property named subname in subitem is an item, then abort
these substeps, returning the empty string.

3. Return the result of escaping the vCard text string given by the value of the first
property named subname in subitem.

When the above algorithms say the user agent is to escape the vCard text string value,
the user agent must use the following steps:

1. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another
U+005C REVERSE SOLIDUS character (\).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 541 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 541 from 931

2. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE
SOLIDUS character (\).

3. Prefix every U+003B SEMICOLON character (;) in value with a U+005C REVERSE
SOLIDUS character (\).

4. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair
(CRLF) in value with a U+005C REVERSE SOLIDUS character (\) followed by a
U+006E LATIN SMALL LETTER N.

5. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE
FEED (LF) character in value with a U+005C REVERSE SOLIDUS character (\)
followed by a U+006E LATIN SMALL LETTER N.

6. Return the mutated value.

This algorithm can generate invalid vCard output, if the input does not conform to
the rules described for the vcard predefined type and predefined property names.

5.5.4 iCalendar

Given a list of nodes nodes in a Document, a user agent must run the following algorithm to
extract any vevent data represented by those nodes:

1. If none of the nodes in nodes are items with the type vevent, then there is no
vEvent data. Abort the algorithm, returning nothing.

2. Let output be an empty string.

3. Add an iCalendar line with the type "BEGIN" and the value "VCALENDAR" to output.

4. Add an iCalendar line with the type "PRODID" and the value equal to a user-agent
specific string representing the user agent to output.

5. Add an iCalendar line with the type "VERSION" and the value "2.0" to output.

6. For each node node in nodes that is an item with the type vevent, run the following
steps:

1. Add an iCalendar line with the type "BEGIN" and the value "VEVENT" to output.

2. Add an iCalendar line with the type "DTSTAMP" and a value consisting of an
iCalendar DATE-TIME string representing the current date and time, with the
annotation "VALUE=DATE-TIME", to output. [RFC2445]

3. If there is a property named about whose corresponding item is node and
the element of the first such property is a URL property element and has a
value that is not an item, add an iCalendar line with the type "UID" and that
property's value as the value to output.

4. For each element element that has one or more property names and whose
corresponding item is node: for each name name in element's property
names, run the appropriate set of substeps from the following list:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 542 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 542 from 931

If name is equal to the string "about"
If the property's value is an item

Skip the property.

If element is a time element
Let value be the result of stripping all U+002D HYPHEN-MINUS (-) and U+003A
COLON (:) characters from the property's value.

If the property's value is a valid date string then add an iCalendar line with the type
name and the value value to output, with the annotation "VALUE=DATE".

Otherwise, if the property's value is a valid global date and time string then add an
iCalendar line with the type name and the value value to output, with the annotation
"VALUE=DATE-TIME".

Otherwise skip the property.

Otherwise
Add an iCalendar line with the type name and the value value to output.

5. Add an iCalendar line with the type "END" and the value "VEVENT" to output.

7. Add an iCalendar line with the type "END" and the value "VCALENDAR" to output.

When the above algorithm says that the user agent is to add an iCalendar line consisting
of a type type, a value value, and optinally an annotation, to a string output, it must run the
following steps:

1. Let line be an empty string.

2. Append type, converted to ASCII uppercase, to line.

3. If there is an annotation:

1. Append a U+003B SEMICOLON character (;) to line.

2. Append the annotation to line.

4. Append a U+003A COLON character (:) to line.

5. Prefix every U+005C REVERSE SOLIDUS character (\) in value with another
U+005C REVERSE SOLIDUS character (\).

6. Prefix every U+002C COMMA character (,) in value with a U+005C REVERSE
SOLIDUS character (\).

7. Prefix every U+003B SEMICOLON character (;) in value with a U+005C REVERSE
SOLIDUS character (\).

8. Replace every U+000D CARRIAGE RETURN U+000A LINE FEED character pair
(CRLF) in value with a U+005C REVERSE SOLIDUS character (\) followed by a
U+006E LATIN SMALL LETTER N.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 543 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 543 from 931

9. Replace every remaining U+000D CARRIAGE RETURN (CR) or U+000A LINE
FEED (LF) character in value with a U+005C REVERSE SOLIDUS character (\)
followed by a U+006E LATIN SMALL LETTER N.

10. Append value to line.

11. Let maximum length be 75.

12. If and while line is longer than maximum length Unicode code points long, run the
following substeps:

1. Append the first maximum length Unicode code points of line to output.

2. Remove the first maximum length Unicode code points from line.

3. Append a U+000D CARRIAGE RETURN character (CR) to output.

4. Append a U+000A LINE FEED character (LF) to output.

5. Append a U+0020 SPACE character to output.

6. Let maximum length be 74.

13. Append (what remains of) line to output.

14. Append a U+000D CARRIAGE RETURN character (CR) to output.

15. Append a U+000A LINE FEED character (LF) to output.

This algorithm can generate invalid iCalendar output, if the input does not conform
to the rules described for the vevent predefined type and predefined property
names.

5.5.5 Atom

Given a Document source, a user agent must run the following algorithm to extract an
Atom feed:

1. If the Document source does not contain any article elements, then return nothing
and abort these steps. This algorithm can only be used with documents that contain
distinct articles.

2. Let R be an empty XML Document object whose address is user-agent defined.

3. Append a feed element in the Atom namespace to R.

4. For each element candidate that is, or is a descendant of, an address element that
has no article element ancestors, and that is an item that has the type vcard, if
there is a property property named fn whose corresponding item is candidate, and
the value of property is not an item, then append an author element in the Atom
namespace to the root element of R whose contents is a text node with its data set
to the value of property.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 544 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 544 from 931

5. If there is a link element whose rel attribute's value includes the keyword icon,
and that element also has an href attribute whose value successfully resolves
relative to the link element, then append an icon element in the Atom namespace
to the root element of R whose contents is a text node with its data set to the
absolute URL resulting from resolving the value of the href attribute.

6. Append an id element in the Atom namespace to the root element of R whose
contents is a text node with its data set to the document's current address.

7. Optionally: Let x be a link element in the Atom namespace. Add a rel attribute
whose value is the string "self" to x. Append a text node with its data set to the
(user-agent defined) address of R to x. Append x to the root element of R.

This step would be skipped when the document R has no convenient
address. The presence of the rel="self" link is a "should"-level requirement
in the Atom specification.

8. Let x be a link element in the Atom namespace. Add a rel attribute whose value is
the string "alternate" to x. If the document being converted is an HTML document,
add a type attribute whose value is the string "text/html" to x. Otherwise, the
document being converted is an XML document; add a type attribute whose value
is the string "application/xhtml+xml" to x. Append a text node with its data set to
the document's current address to x. Append x to the root element of R.

9. Let subheading text be the empty string.

10. Let heading be the first element of heading content whose nearest ancestor of
sectioning content is the the body element, if any, or null if there is none.

11. Take the appropriate action from the following list, as determined by the type of the
heading element:

If heading is null
Let heading text be the textContent of the title element, if there is one, or the
empty string otherwise.

If heading is a hgroup element
If heading contains no child h1–h6 elements, let heading text be the empty string.

Otherwise, let headings list be a list of all the h1–h6 element children of heading,
sorted first by descending rank and then in tree order (so h1s first, then h2s, etc,
with each group in the order they appear in the document). Then, let heading text
be the textContent of the first entry in headings list, and if there are multiple
entries, let subheading text be the textContent of the second entry in headings list.

If heading is an h1–h6 element
Let heading text be the textContent of heading.

12. Append a title element in the Atom namespace to the root element of R whose
contents is a text node with its data set to heading text.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 545 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 545 from 931

13. If subheading text is not the empty string, append a subtitle element in the Atom
namespace to the root element of R whose contents is a text node with its data set
to subheading text.

14. Let global update date have no value.

15. For each article element article that does not have an ancestor article element,
run the following steps:

1. Let E be an entry element in the Atom namespace, and append E to the
root element of R.

2. Let heading be the first element of heading content whose nearest ancestor
of sectioning content is article, if any, or null if there is none.

3. Take the appropriate action from the following list, as determined by the type
of the heading element:

If heading is null
Let heading text be the empty string.

If heading is a hgroup element
If heading contains no child h1–h6 elements, let heading text be the empty string.

Otherwise, let headings list be a list of all the h1–h6 element children of heading,
sorted first by descending rank and then in tree order (so h1s first, then h2s, etc,
with each group in the order they appear in the document). Then, let heading text
be the textContent of the first entry in headings list.

If heading is an h1–h6 element
Let heading text be the textContent of heading.

4. Append a title element in the Atom namespace to E whose contents is a
text node with its data set to heading text.

5. For each element candidate that is, or is a descendant of, an address
element whose nearest article element ancestor is article, and that is an
item that has the type vcard, if there is a property property named fn whose
corresponding item is candidate, and the value of property is not an item,
then append an author element in the Atom namespace to E whose
contents is a text node with its data set to the value of property.

6. Clone article and its descendants into an environment that has scripting
disabled, has no plugins, and fails any attempt to fetch any resources. Let
cloned article be the resulting clone article element.

7. Remove from the subtree rooted at cloned article any article elements
other than the cloned article itself, any header, footer, or nav elements
whose nearest ancestor of sectioning content is the cloned article, and the
first element of heading content whose nearest ancestor of sectioning
content is the cloned article, if any.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 546 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 546 from 931

8. If cloned article contains any ins or del elements with datetime attributes
whose values parse as global date and time strings without errors, then let
update date be the value of the datetime attribute that parses to the newest
global date and time.

Otherwise, let update date have no value.

This value is used below; it is calculated here because in certain cases
the next step mutates the cloned article.

9. If the document being converted is an HTML document, then: Let x be a
content element in the Atom namespace. Add a type attribute whose value
is the string "html" to x. Append a text node with its data set to the result of
running the HTML fragment serialization algorithm on cloned article to x.
Append x to E.

Otherwise, the document being converted is an XML document: Let x be a
content element in the Atom namespace. Add a type attribute whose value
is the string "xml" to x. Append a div element to x. Move all the child nodes
of the cloned article node to that div element, preserving their relative order.
Append x to E.

10. Establish the value of id and has-alternate from the first of the following to
apply:

If the article node has a descendant a or area element with an href
attribute that successfully resolves relative to that descendant and a
rel attribute whose value includes the bookmark keyword

Let id be the absolute URL resulting from resolving the value of the href attribute of
the first such a ot area element, relative to the element. Let has-alternate be true.

If the article node has an id attribute
Let id be the document's current address, with the fragment identifier (if any)
removed, and with a new fragment identifier specified, consisting of the value of the
article element's id attribute. Let has-alternate be false.

Otherwise
Let id be a user-agent defined undereferencable yet globally unique absolute URL.
Let has-alternate be false.

11. Append an id element in the Atom namespace to E whose contents is a text
node with its data set to id.

12. If has-alternate is true: Let x be a link element in the Atom namespace. Add
a rel attribute whose value is the string "alternate" to x. Append a text
node with its data set to id to x. Append x to E.

13. If article has a pubdate attribute, and parsing that attribute's value as a global
date and time string does not result in an error, then let publication date be
the value of that attribute.

Otherwise, let publication date have no value.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 547 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 547 from 931

14. If update date has no value but publication date does, then let update date
have the value of publication date.

Otherwise, if publication date has no value but update date does, then let
publication date have the value of update date.

15. If update date has a value, and global update date has no value or is less
recent than update date, then let global update date have the value of
update date.

16. If publication date and update date both still have no value, then let them
both value a value that is a valid global date and time string representing the
global date and time of the moment that this algorithm was invoked.

17. Append an published element in the Atom namespace to E whose contents
is a text node with its data set to publication date.

18. Append an updated element in the Atom namespace to E whose contents is
a text node with its data set to update date.

16. If global update date has no value, then let it have a value that is a valid global date
and time string representing the global date and time of the date and time of the
Document's source file's last modification, if it is known, or else of the moment that
this algorithm was invoked.

17. Insert an updated element in the Atom namespace into the root element of R before
the first entry in the Atom namespace whose contents is a text node with its data
set to global update date.

18. Return the Atom document R.

The Atom namespace is: http://www.w3.org/2005/Atom

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 548 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 548 from 931

6 Web browsers

This section describes features that apply most directly to Web browsers. Having said
that, unless specified elsewhere, the requirements defined in this section do apply to all
user agents, whether they are Web browsers or not.

6.1 Browsing contexts

A browsing context is an environment in which Document objects are presented to the
user.

A tab or window in a Web browser typically contains a browsing context, as does
an iframe or frames in a frameset.

Each browsing context has a corresponding WindowProxy object.

The collection of Documents is the browsing context's session history. At any time, one
Document in each browsing context is designated the active document.

Each Document has a collection of one or more views.

A view is a user agent interface tied to a particular media used for the presentation of a
particular Document object in some media. A view may be interactive. Each view is
represented by an AbstractView object. [DOMVIEWS]

The main view through which a user primarily interacts with a user agent is the default
view. The AbstractView object that represents this view must also implement the Window
interface, and is referred to as the Document's Window object. WindowProxy objects forward
everything to the active document's default view's Window object.

The defaultView attribute on the Document object's DocumentView interface must return the
browsing context's WindowProxy object, not the actual AbstractView object of the default
view. [DOMVIEWS]

The document attribute of an AbstractView object representing a view gives the view's
corresponding Document object. [DOMVIEWS]

In general, there is a 1-to-1 mapping from the Window object to the Document object. In
one particular case, a set of views can be reused for the presentation of a second
Document in the same browsing context, such that the mapping is then 2:1. This
occurs when a browsing context is navigated from the initial about:blank Document to
another, with replacement enabled.

Events that use the UIEvent interface are related to a specific view (the view in which the
event happened); when that view is the default view, the event object's view attribute's
must return the WindowProxy object of the browsing context of that view, not the actual
AbstractView object of the default view. [DOMEVENTS]

A typical Web browser has one obvious view per Document: the browser's window
(screen media). This is typically the default view. If a page is printed, however, a
second view becomes evident, that of the print media. The two views always share
the same underlying Document object, but they have a different presentation of that

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 549 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 549 from 931

object. A speech browser might have a different default view, using the speech
media.

A Document does not necessarily have a browsing context associated with it. In
particular, data mining tools are likely to never instantiate browsing contexts.

A browsing context can have a creator browsing context, the browsing context that was
responsible for its creation. Unless otherwise specified, a browsing context has no creator
browsing context.

If a browsing context A has a creator browsing context, then the Document that was the
active document of that creator browsing context at the time A was created is the creator
Document.

When a browsing context is first created, it must be created with a single Document in its
session history, whose address is about:blank, which is marked as being an HTML
document, and whose character encoding is UTF-8. The Document must have a single
child html node, which itself has a single child body node.

If the browsing context is created specifically to be immediately navigated, then that
initial navigation will have replacement enabled.

The origin of the about:blank Document is set when the Document is created. If the new
browsing context has a creator browsing context, then the origin of the about:blank
Document is the origin of the creator Document. Otherwise, the origin of the about:blank
Document is a globally unique identifier assigned when the new browsing context is
created.

6.1.1 Nested browsing contexts

Certain elements (for example, iframe elements) can instantiate further browsing
contexts. These are called nested browsing contexts. If a browsing context P has an
element E in one of its Documents D that nests another browsing context C inside it, then P
is said to be the parent browsing context of C, C is said to be a child browsing context
of P, C is said to be nested through D, and E is said to be the browsing context
container of C.

A browsing context A is said to be an ancestor of a browsing context B if there exists a
browsing context A' that is a child browsing context of A and that is itself an ancestor of B,
or if there is a browsing context P that is a child browsing context of A and that is the
parent browsing context of B.

The browsing context with no parent browsing context is the top-level browsing context
of all the browsing contexts nested within it (either directly or indirectly through other
nested browsing contexts).

The transitive closure of parent browsing contexts for a nested browsing context gives the
list of ancestor browsing contexts.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 550 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 550 from 931

A Document is said to be fully active when it is the active document of its browsing
context, and either its browsing context is a top-level browsing context, or the Document
through which that browsing context is nested is itself fully active.

Because they are nested through an element, child browsing contexts are always tied to a
specific Document in their parent browsing context. User agents must not allow the user to
interact with child browsing contexts of elements that are in Documents that are not
themselves fully active.

A nested browsing context can have a seamless browsing context flag set, if it is
embedded through an iframe element with a seamless attribute.

6.1.1.1 Navigating nested browsing contexts in the DOM
window . top

Returns the WindowProxy for the top-level browsing context.

window . parent
Returns the WindowProxy for the parent browsing context.

window . frameElement
Returns the Element for the browsing context container.
Returns null if there isn't one.

Throws a SECURITY_ERR exception in cross-origin situations.

The top DOM attribute on the Window object of a Document in a browsing context b must
return the WindowProxy object of its top-level browsing context (which would be its own
WindowProxy object if it was a top-level browsing context itself).

The parent DOM attribute on the Window object of a Document in a browsing context b must
return the WindowProxy object of the parent browsing context, if there is one (i.e. if b is a
child browsing context), or the WindowProxy object of the browsing context b itself,
otherwise (i.e. if it is a top-level browsing context).

The frameElement DOM attribute on the Window object of a Document d, on getting, must
run the following algorithm:

1. If d is not a Document in a child browsing context, return null and abort these steps.

2. If the parent browsing context's active document does not have the same effective
script origin as the script that is accessing the frameElement attribute, then throw a
SECURITY_ERR exception.

3. Otherwise, return the browsing context container for b.

6.1.2 Auxiliary browsing contexts

It is possible to create new browsing contexts that are related to a top level browsing
context without being nested through an element. Such browsing contexts are called
auxiliary browsing contexts. Auxiliary browsing contexts are always top-level browsing
contexts.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 551 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 551 from 931

An auxiliary browsing context has an opener browsing context, which is the browsing
context from which the auxiliary browsing context was created, and it has a furthest
ancestor browsing context, which is the top-level browsing context of the opener
browsing context when the auxiliary browsing context was created.

6.1.2.1 Navigating auxiliary browsing contexts in the DOM

The opener DOM attribute on the Window object must return the WindowProxy object of the
browsing context from which the current browsing context was created (its opener
browsing context), if there is one and it is still available.

6.1.3 Secondary browsing contexts

User agents may support secondary browsing contexts, which are browsing contexts
that form part of the user agent's interface, apart from the main content area.

6.1.4 Security

A browsing context A is allowed to navigate a second browsing context B if one of the
following conditions is true:

• Either the origin of the active document of A is the same as the origin of the active
document of B, or

• The browsing context A is a nested browsing context and its top-level browsing
context is B, or

• The browsing context B is an auxiliary browsing context and A is allowed to
navigate B's opener browsing context, or

• The browsing context B is not a top-level browsing context, but there exists an
ancestor browsing context of B whose active document has the same origin as the
active document of A (possibly in fact being A itself).

6.1.5 Groupings of browsing contexts

Each browsing context is defined as having a list of zero or more directly reachable
browsing contexts. These are:

• All the browsing context's child browsing contexts.
• The browsing context's parent browsing context.
• All the browsing contexts that have the browsing context as their opener browsing

context.
• The browsing context's opener browsing context.

The transitive closure of all the browsing contexts that are directly reachable browsing
contexts forms a unit of related browsing contexts.

Each unit of related browsing contexts is then further divided into the smallest number of
groups such that every member of each group has an effective script origin that, through
appropriate manipulation of the document.domain attribute, could be made to be the same
as other members of the group, but could not be made the same as members of any other
group. Each such group is a unit of related similar-origin browsing contexts.

Each unit of related similar-origin browsing contexts can have a first script which is used
to obtain, amongst other things, the script's base URL to resolve relative URLs used in

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 552 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 552 from 931

scripts running in that unit of related similar-origin browsing contexts. Initially, there is no
first script.

6.1.6 Browsing context names

Browsing contexts can have a browsing context name. By default, a browsing context
has no name (its name is not set).

A valid browsing context name is any string with at least one character that does not
start with a U+005F LOW LINE character. (Names starting with an underscore are
reserved for special keywords.)

A valid browsing context name or keyword is any string that is either a valid browsing
context name or that is an ASCII case-insensitive match for one of: _blank, _self,
_parent, or _top.

The rules for choosing a browsing context given a browsing context name are as
follows. The rules assume that they are being applied in the context of a browsing context.

1. If the given browsing context name is the empty string or _self, then the chosen
browsing context must be the current one.

2. If the given browsing context name is _parent, then the chosen browsing context
must be the parent browsing context of the current one, unless there isn't one, in
which case the chosen browsing context must be the current browsing context.

3. If the given browsing context name is _top, then the chosen browsing context must
be the most top-level browsing context of the current one.

4. If the given browsing context name is not _blank and there exists a browsing
context whose name is the same as the given browsing context name, and the
current browsing context is allowed to navigate that browsing context, and the user
agent determines that the two browsing contexts are related enough that it is ok if
they reach each other, then that browsing context must be the chosen one. If there
are multiple matching browsing contexts, the user agent should select one in some
arbitrary consistent manner, such as the most recently opened, most recently
focused, or more closely related.

5. Otherwise, a new browsing context is being requested, and what happens depends
on the user agent's configuration and/or abilities:

If the current browsing context has the sandboxed navigation browsing
context flag set.
The user agent may offer to create a new top-level browsing context or reuse an
existing top-level browsing context. If the user picks one of those options, then the
designated browsing context must be the chosen one (the browsing context's name
isn't set to the given browsing context name). Otherwise (if the user agent doesn't
offer the option to the user, or if the user declines to allow a browsing context to be
used) there must not be a chosen browsing context.

If the user agent has been configured such that in this instance it will create a
new browsing context, and the browsing context is being requested as part
of following a hyperlink whose link types include the noreferrer keyword

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 553 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 553 from 931

A new top-level browsing context must be created. If the given browsing context
name is not _blank, then the new top-level browsing context's name must be the
given browsing context name (otherwise, it has no name). The chosen browsing
context must be this new browsing context.

If it is immediately navigated, then the navigation will be done with
replacement enabled.

If the user agent has been configured such that in this instance it will create a
new browsing context, and the noreferrer keyword doesn't apply
A new auxiliary browsing context must be created, with the opener browsing
context being the current one. If the given browsing context name is not _blank,
then the new auxiliary browsing context's name must be the given browsing context
name (otherwise, it has no name). The chosen browsing context must be this new
browsing context.

If it is immediately navigated, then the navigation will be done with replacement
enabled.

If the user agent has been configured such that in this instance it will reuse
the current browsing context
The chosen browsing context is the current browsing context.

If the user agent has been configured such that in this instance it will not find
a browsing context
There must not be a chosen browsing context.

User agent implementors are encouraged to provide a way for users to configure
the user agent to always reuse the current browsing context.

6.2 The WindowProxy object

As mentioned earlier, each browsing context has a WindowProxy object. This object is
unusual in that it must proxy all operations to the Window object of the browsing context's
active document. It is thus indistinguishable from that Window object in every way, except
that it is not equal to it.

6.3 The Window object

[OverrideBuiltins]
interface Window {
 // the current browsing context
 readonly attribute WindowProxy window;
 readonly attribute WindowProxy self;
 attribute DOMString name;
 [PutForwards=href] readonly attribute Location location;
 readonly attribute History history;
 readonly attribute UndoManager undoManager;
 Selection getSelection();
 [Replaceable] readonly attribute BarProp locationbar;
 [Replaceable] readonly attribute BarProp menubar;
 [Replaceable] readonly attribute BarProp personalbar;
 [Replaceable] readonly attribute BarProp scrollbars;
 [Replaceable] readonly attribute BarProp statusbar;
 [Replaceable] readonly attribute BarProp toolbar;
 void close();

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 554 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 554 from 931

 void focus();
 void blur();

 // other browsing contexts
 readonly attribute WindowProxy frames;
 readonly attribute unsigned long length;
 readonly attribute WindowProxy top;
 [Replaceable] readonly attribute WindowProxy opener;
 readonly attribute WindowProxy parent;
 readonly attribute Element frameElement;
 WindowProxy open(optional in DOMString url, optional in DOMString target,
optional in DOMString features, optional in DOMString replace);
 getter WindowProxy (in unsigned long index);
 getter WindowProxy (in DOMString name);

 // the user agent
 readonly attribute Navigator navigator;
 readonly attribute ApplicationCache applicationCache;

 // user prompts
 void alert(in DOMString message);
 boolean confirm(in DOMString message);
 DOMString prompt(in DOMString message, optional in DOMString default);
 void print();
 any showModalDialog(in DOMString url, optional in any argument);

 // cross-document messaging
 void postMessage(in any message, in DOMString targetOrigin);
 void postMessage(in any message, in MessagePortArray ports, in DOMString
targetOrigin);

 // event handler DOM attributes
 attribute Function onabort;
 attribute Function onafterprint;
 attribute Function onbeforeprint;
 attribute Function onbeforeunload;
 attribute Function onblur;
 attribute Function oncanplay;
 attribute Function oncanplaythrough;
 attribute Function onchange;
 attribute Function onclick;
 attribute Function oncontextmenu;
 attribute Function ondblclick;
 attribute Function ondrag;
 attribute Function ondragend;
 attribute Function ondragenter;
 attribute Function ondragleave;
 attribute Function ondragover;
 attribute Function ondragstart;
 attribute Function ondrop;
 attribute Function ondurationchange;
 attribute Function onemptied;
 attribute Function onended;
 attribute Function onerror;
 attribute Function onfocus;
 attribute Function onformchange;
 attribute Function onforminput;
 attribute Function onhashchange;
 attribute Function oninput;
 attribute Function oninvalid;
 attribute Function onkeydown;
 attribute Function onkeypress;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 555 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 555 from 931

 attribute Function onkeyup;
 attribute Function onload;
 attribute Function onloadeddata;
 attribute Function onloadedmetadata;
 attribute Function onloadstart;
 attribute Function onmessage;
 attribute Function onmousedown;
 attribute Function onmousemove;
 attribute Function onmouseout;
 attribute Function onmouseover;
 attribute Function onmouseup;
 attribute Function onmousewheel;
 attribute Function onoffline;
 attribute Function ononline;
 attribute Function onpause;
 attribute Function onplay;
 attribute Function onplaying;
 attribute Function onpopstate;
 attribute Function onprogress;
 attribute Function onratechange;
 attribute Function onreadystatechange;
 attribute Function onredo;
 attribute Function onresize;
 attribute Function onscroll;
 attribute Function onseeked;
 attribute Function onseeking;
 attribute Function onselect;
 attribute Function onshow;
 attribute Function onstalled;
 attribute Function onstorage;
 attribute Function onsubmit;
 attribute Function onsuspend;
 attribute Function ontimeupdate;
 attribute Function onundo;
 attribute Function onunload;
 attribute Function onvolumechange;
 attribute Function onwaiting;
};

window . window
window . frames
window . self

These attributes all return window.

The Window object must also implement the EventTarget interface.

The window, frames, and self DOM attributes must all return the Window object's browsing
context's WindowProxy object.

6.3.1 Security

User agents must raise a SECURITY_ERR exception whenever any of the members of a
Window object are accessed by scripts whose effective script origin is not the same as the
Window object's Document's effective script origin, with the following exceptions:

• The location object
• The postMessage() method with two arguments
• The postMessage() method with three arguments

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 556 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 556 from 931

• The frames attribute
• The dynamic nested browsing context properties

When a script whose effective script origin is not the same as the Window object's
Document's effective script origin attempts to access that Window object's methods or
attributes, the user agent must act as if any changes to the Window object's properties,
getters, setters, etc, were not present.

For members that return objects (including function objects), each distinct effective script
origin that is not the same as the Window object's Document's effective script origin must be
provided with a separate set of objects. These objects must have the prototype chain
appropriate for the script for which the objects are created (not those that would be
appropriate for scripts whose script's global object is the Window object in question).

For instance, if two frames containing Documents from different origins access the same
Window object's postMessage() method, they will get distinct objects that are not equal.

6.3.2 APIs for creating and navigating browsing contexts by name
window = window . open([url [, target [, features [, replace]]]])

Opens a window to show url (defaults to about:blank), and returns it. The target
argument gives the name of the new window. If a window exists with that name
already, it is reused. The replace attribute, if true, means that whatever page is
currently open in that window will be removed from the window's session history.
The features argument is ignored.

window . name [= value]
Returns the name of the window.
Can be set, to change the name.

window . close()
Closes the window.

The open() method on Window objects provides a mechanism for navigating an existing
browsing context or opening and navigating an auxiliary browsing context.

The method has four arguments, though they are all optional.

The first argument, url, must be a valid URL for a page to load in the browsing context. If
no arguments are provided, or if the first argument is the empty string, then the url
argument defaults to "about:blank". The argument must be resolved to an absolute URL
(or an error), relative to the first script's base URL, when the method is invoked.

The second argument, target, specifies the name of the browsing context that is to be
navigated. It must be a valid browsing context name or keyword. If fewer than two
arguments are provided, then the name argument defaults to the value "_blank".

The third argument, features, has no effect and is supported for historical reasons only.

The fourth argument, replace, specifies whether or not the new page will replace the page
currently loaded in the browsing context, when target identifies an existing browsing

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 557 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 557 from 931

context (as opposed to leaving the current page in the browsing context's session history).
When three or fewer arguments are provided, replace defaults to false.

When the method is invoked, the user agent must first select a browsing context to
navigate by applying the rules for choosing a browsing context given a browsing context
name using the target argument as the name and the browsing context of the script as the
context in which the algorithm is executed, unless the user has indicated a preference, in
which case the browsing context to navigate may instead be the one indicated by the
user.

For example, suppose there is a user agent that supports control-clicking a link to
open it in a new tab. If a user clicks in that user agent on an element whose onclick
handler uses the window.open() API to open a page in an iframe, but, while doing so,
holds the control key down, the user agent could override the selection of the target
browsing context to instead target a new tab.

Then, the user agent must navigate the selected browsing context to the absolute URL (or
error) obtained from resolving url earlier. If the replace is true, then replacement must be
enabled; otherwise, it must not be enabled unless the browsing context was just created
as part of the the rules for choosing a browsing context given a browsing context name.
The navigation must be done with the browsing context of the first script as the source
browsing context.

The method must return the WindowProxy object of the browsing context that was
navigated, or null if no browsing context was navigated.

The name attribute of the Window object must, on getting, return the current name of the
browsing context, and, on setting, set the name of the browsing context to the new value.

The name gets reset when the browsing context is navigated to another domain.

The close() method on Window objects should, if the corresponding browsing context A is
an auxiliary browsing context that was created by a script (as opposed to by an action of
the user), and if the browsing context of the script that invokes the method is allowed to
navigate the browsing context A, close the browsing context A (and may discard it too).

6.3.3 Accessing other browsing contexts
window . length

Returns the number of child browsing contexts.
window[index]

Returns the indicated child browsing context.

The length DOM attribute on the Window interface must return the number of child
browsing contexts of the Document.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 558 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 558 from 931

The indices of the supported indexed properties on the Window object at any instant are
the numbers in the range 0 .. n-1, where n is the number of child browsing contexts of the
Document. If n is zero then there are no supported indexed properties.

When a Window object is indexed to retrieve an indexed property index, the value
returned must be the indexth child browsing context of the Document, sorted in the tree
order of the elements nesting those browsing contexts.

These properties are the dynamic nested browsing context properties.

6.3.4 Named access on the Window object
window[name]

Returns the indicated child browsing context.

The Window interface supports named properties. The names of the supported named
properties at any moment consist of:

• The value of the name content attribute for all a, applet, area, embed, frame,
frameset, form, iframe, img, and object elements in the active document that have
a name content attribute, and,

• The value of the id content attribute of any HTML element in the active document
with an id content attribute.

When the Window object is indexed for property retrieval using a name name, then the
user agent must return the value obtained using the following steps:

1. Let elements be the list of named elements with the name name in the active
document.

There will be at least one such element, by definition.

2. If elements contains an iframe element, then return the WindowProxy object of the
nested browsing context represented by the first such iframe element in tree order,
and abort these steps.

3. Otherwise, if elements has only one element, return that element and abort these
steps.

4. Otherwise return an HTMLCollection rooted at the Document node, whose filter
matches only named elements with the name name.

Named elements with the name name, for the purposes of the above algorithm, are those
that are either:

• a, applet, area, embed, form, frame, frameset, iframe, img, or object elements that
have a name content attribute whose value is name, or

• HTML elements elements that have an id content attribute whose value is name.

6.3.5 Garbage collection and browsing contexts

A browsing context has a strong reference to each of its Documents and its WindowProxy
object, and the user agent itself has a strong reference to its top-level browsing contexts.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 559 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 559 from 931

A Document has a strong reference to each of its views and their AbstractView objects.

When a browsing context is to discard a Document, that means that it is to lose the strong
reference from the Document's browsing context to the Document, and that any tasks
associated with the Document in any task source must be removed without being run.

The browsing context's default view's Window object has a strong reference to its
Document object through the document attribute of the AbstractView interface. Thus,
references from other scripts to either of those objects will keep both alive.
[DOMVIEWS]

Whenever a Document object is discarded, it is also removed from the list of the
worker's Documents of each worker whose list contains that Document.

When a browsing context is discarded, the strong reference from the user agent itself to
the browsing context must be severed, and all the Document objects for all the entries in
the browsing context's session history must be discarded as well.

User agents may discard top-level browsing contexts at any time (typically, in response to
user requests, e.g. when a user closes a window containing one or more top-level
browsing contexts). Other browsing contexts must be discarded once their WindowProxy
object is eligible for garbage collection.

6.3.6 Browser interface elements

To allow Web pages to integrate with Web browsers, certain Web browser interface
elements are exposed in a limited way to scripts in Web pages.

Each interface element is represented by a BarProp object:

interface BarProp {
 attribute boolean visible;
};

window . locationbar . visible
Returns true if the location bar is visible; otherwise, returns false.

window . menubar . visible
Returns true if the menu bar is visible; otherwise, returns false.

window . personalbar . visible
Returns true if the personal bar is visible; otherwise, returns false.

window . scrollbars . visible
Returns true if the scroll bars are visible; otherwise, returns false.

window . statusbar . visible
Returns true if the status bar is visible; otherwise, returns false.

window . toolbar . visible
Returns true if the tool bar is visible; otherwise, returns false.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 560 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 560 from 931

The visible attribute, on getting, must return either true or a value determined by the user
agent to most accurately represent the visibility state of the user interface element that the
object represents, as described below. On setting, the new value must be discarded.

The following BarProp objects exist for each Document object in a browsing context. Some
of the user interface elements represented by these objects might have no equivalent in
some user agents; for those user agents, unless otherwise specified, the object must act
as if it was present and visible (i.e. its visible attribute must return true).

The location bar BarProp object
Represents the user interface element that contains a control that displays the URL
of the active document, or some similar interface concept.

The menu bar BarProp object
Represents the user interface element that contains a list of commands in menu
form, or some similar interface concept.

The personal bar BarProp object
Represents the user interface element that contains links to the user's favorite
pages, or some similar interface concept.

The scrollbar BarProp object
Represents the user interface element that contains a scrolling mechanism, or
some similar interface concept.

The status bar BarProp object
Represents a user interface element found immediately below or after the
document, as appropriate for the default view's media. If the user agent has no
such user interface element, then the object may act as if the corresponding user
interface element was absent (i.e. its visible attribute may return false).

The tool bar BarProp object
Represents the user interface element found immediately above or before the
document, as appropriate for the default view's media. If the user agent has no
such user interface element, then the object may act as if the corresponding user
interface element was absent (i.e. its visible attribute may return false).

The locationbar attribute must return the location bar BarProp object.

The menubar attribute must return the menu bar BarProp object.

The personalbar attribute must return the personal bar BarProp object.

The scrollbars attribute must return the scrollbar BarProp object.

The statusbar attribute must return the status bar BarProp object.

The toolbar attribute must return the tool bar BarProp object.

6.4 Origin

The origin of a resource and the effective script origin of a resource are both either
opaque identifiers or tuples consisting of a scheme component, a host component, a port
component, and optionally extra data.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 561 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 561 from 931

The extra data could include the certificate of the site when using encrypted
connections, to ensure that if the site's secure certificate changes, the origin is
considered to change as well.

These characteristics are defined as follows:

For URLs
The origin and effective script origin of the URL is whatever is returned by the
following algorithm:

1. Let url be the URL for which the origin is being determined.

2. Parse url.

3. If url identifies a resource that is its own trust domain (e.g. it identifies an e-
mail on an IMAP server or a post on an NNTP server) then return a globally
unique identifier specific to the resource identified by url, so that if this
algorithm is invoked again for URLs that identify the same resouce, the
same identifier will be returned.

4. If url does not use a server-based naming authority, or if parsing url failed, or
if url is not an absolute URL, then return a new globally unique identifier.

5. Let scheme be the <scheme> component of url, converted to ASCII
lowercase.

6. If the UA doesn't support the protocol given by scheme, then return a new
globally unique identifier.

7. If scheme is "file", then the user agent may return a UA-specific value.

8. Let host be the <host> component of url.

9. Apply the IDNA ToASCII algorithm to host, with both the AllowUnassigned
and UseSTD3ASCIIRules flags set. Let host be the result of the ToASCII
algorithm.

If ToASCII fails to convert one of the components of the string, e.g. because
it is too long or because it contains invalid characters, then return a new
globally unique identifier. [RFC3490]

10. Let host be the result of converting host to ASCII lowercase.

11. If there is no <port> component, then let port be the default port for the
protocol given by scheme. Otherwise, let port be the <port> component of
url.

12. Return the tuple (scheme, host, port).

In addition, if the URL is in fact associated with a Document object that was created
by parsing the resource obtained from fetching URL, and this was done over a
secure connection, then the server's secure certificate may be added to the origin
as additional data.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 562 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 562 from 931

For scripts
The origin and effective script origin of a script are determined from another
resource, called the owner:

If a script is in a script element
The owner is the Document to which the script element belongs.
If a script is in an event handler content attribute
The owner is the Document to which the attribute node belongs.
If a script is a function or other code reference created by another script
The owner is the script that created it.
If a script is a javascript: URL that was returned as the location of an HTTP
redirect (or equivalent in other protocols)
The owner is the URL that redirected to the javascript: URL.
If a script is a javascript: URL in an attribute
The owner is the Document of the element on which the attribute is found.
If a script is a javascript: URL in a style sheet
The owner is the URL of the style sheet.
If a script is a javascript: URL to which a browsing context is being
navigated, the URL having been provided by the user (e.g. by using a
bookmarklet)
The owner is the Document of the browsing context's active document.
If a script is a javascript: URL to which a browsing context is being
navigated, the URL having been declared in markup
The owner is the Document of the element (e.g. an a or area element) that declared
the URL.
If a script is a javascript: URL to which a browsing context is being
navigated, the URL having been provided by script
The owner is the script that provided the URL.
The origin of the script is then equal to the origin of the owner, and the effective
script origin of the script is equal to the effective script origin of the owner.

For Document objects and images
If a Document is in a browsing context whose sandboxed origin browsing
context flag was set when the Document was created
The origin is a globally unique identifier assigned when the Document is created.
If a Document or image was returned by the XMLHttpRequest API
The origin and effective script origin are equal to the origin and effective script
origin of the Document object of the Window object from which the XMLHttpRequest
constructor was invoked. (That is, they track the Document to which the
XMLHttpRequest object's Document pointer pointed when it was created.) [XHR]
If a Document or image was generated from a javascript: URL
The origin is equal to the origin of the script of that javascript: URL.
If a Document or image was served over the network and has an address that
uses a URL scheme with a server-based naming authority
The origin is the origin of the address of the Document or the URL of the image, as
appropriate.
If a Document or image was generated from a data: URL that was returned as
the location of an HTTP redirect (or equivalent in other protocols)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 563 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 563 from 931

The origin is the origin of the URL that redirected to the data: URL.
If a Document or image was generated from a data: URL found in another
Document or in a script
The origin is the origin of the Document or script in which the data: URL was found.
If a Document has the address "about:blank"
The origin of the Document is the origin it was assigned when its browsing context
was created.
If a Document or image was obtained in some other manner (e.g. a data: URL
typed in by the user, a Document created using the createDocument() API, a
data: URL returned as the location of an HTTP redirect, etc)
The origin is a globally unique identifier assigned when the Document or image is
created.
When a Document is created, unless stated otherwise above, its effective script
origin is initialized to the origin of the Document. However, the document.domain
attribute can be used to change it.

For audio and video elements
If value of the media element's currentSrc attribute is the empty string, the origin is
the same as the origin of the element's Document's origin.

Otherwise, the origin is equal to the origin of the absolute URL given by the media
element's currentSrc attribute.

The Unicode serialization of an origin is the string obtained by applying the following
algorithm to the given origin:

1. If the origin in question is not a scheme/host/port tuple, then return the literal string
"null" and abort these steps.

2. Otherwise, let result be the scheme part of the origin tuple.

3. Append the string "://" to result.

4. Apply the IDNA ToUnicode algorithm to each component of the host part of the
origin tuple, and append the results — each component, in the same order,
separated by U+002E FULL STOP characters (".") — to result.

5. If the port part of the origin tuple gives a port that is different from the default port
for the protocol given by the scheme part of the origin tuple, then append a U+003A
COLON character (":") and the given port, in base ten, to result.

6. Return result.

The ASCII serialization of an origin is the string obtained by applying the following
algorithm to the given origin:

1. If the origin in question is not a scheme/host/port tuple, then return the literal string
"null" and abort these steps.

2. Otherwise, let result be the scheme part of the origin tuple.

3. Append the string "://" to result.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 564 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 564 from 931

4. Apply the IDNA ToASCII algorithm the host part of the origin tuple, with both the
AllowUnassigned and UseSTD3ASCIIRules flags set, and append the results
result.

If ToASCII fails to convert one of the components of the string, e.g. because it is
too long or because it contains invalid characters, then return the empty string and
abort these steps. [RFC3490]

5. If the port part of the origin tuple gives a port that is different from the default port
for the protocol given by the scheme part of the origin tuple, then append a U+003A
COLON character (":") and the given port, in base ten, to result.

6. Return result.

Two origins are said to be the same origin if the following algorithm returns true:

1. Let A be the first origin being compared, and B be the second origin being
compared.

2. If A and B are both opaque identifiers, and their value is equal, then return true.

3. Otherwise, if either A or B or both are opaque identifiers, return false.

4. If A and B have scheme components that are not identical, return false.

5. If A and B have host components that are not identical, return false.

6. If A and B have port components that are not identical, return false.

7. If either A or B have additional data, but that data is not identical for both, return
false.

8. Return true.

6.4.1 Relaxing the same-origin restriction
document . domain [= domain]

Returns the current domain used for security checks.
Can be set to a value that removes subdomains, to allow pages on other
subdomains of the same domain (if they do the same thing) to access each other.

The domain attribute on Document objects must be initialized to the document's domain, if it
has one, and the empty string otherwise. If the value is an IPv6 address, then the square
brackets from the host portion of the <host> component must be omitted from the
attribute's value.

On getting, the attribute must return its current value, unless the document was created by
XMLHttpRequest, in which case it must throw an INVALID_ACCESS_ERR exception.

On setting, the user agent must run the following algorithm:

1. If the document was created by XMLHttpRequest, throw an INVALID_ACCESS_ERR
exception and abort these steps.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 565 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 565 from 931

2. If the new value is an IP address, let new value be the new value. Otherwise, apply
the IDNA ToASCII algorithm to the new value, with both the AllowUnassigned and
UseSTD3ASCIIRules flags set, and let new value be the result of the ToASCII
algorithm.

If ToASCII fails to convert one of the components of the string, e.g. because it is
too long or because it contains invalid characters, then throw a SECURITY_ERR
exception and abort these steps. [RFC3490]

3. If new value is not exactly equal to the current value of the document.domain
attribute, then run these substeps:

1. If the current value is an IP address, throw a SECURITY_ERR exception and
abort these steps.

2. If new value, prefixed by a U+002E FULL STOP ("."), does not exactly match
the end of the current value, throw a SECURITY_ERR exception and abort
these steps.

3. If new value matches a suffix in the Public Suffix List, or, if new value,
prefixed by a U+002E FULL STOP ("."), matches the end of a suffix in the
Public Suffix List, then throw a SECURITY_ERR exception and abort these
steps. [PSL]

Suffixes must be compared after applying the IDNA ToASCII algorithm to
them, with both the AllowUnassigned and UseSTD3ASCIIRules flags set, in
an ASCII case-insensitive manner. [RFC3490]

4. Set the attribute's value to new value.

5. Set the host part of the effective script origin tuple of the Document to new value.

6. Set the port part of the effective script origin tuple of the Document to "manual
override" (a value that, for the purposes of comparing origins, is identical to
"manual override" but not identical to any other value).

The domain of a Document is the host part of the document's origin, if that is a
scheme/host/port tuple. If it isn't, then the document does not have a domain.

The domain attribute is used to enable pages on different hosts of a domain to
access each others' DOMs.

6.5 Scripting

6.5.1 Introduction

Various mechanisms can cause author-provided executable code to run in the context of a
document. These mechanisms include, but are probably not limited to:

• Processing of script elements.
• Processing of inline javascript: URLs (e.g. the src attribute of img elements, or an

@import rule in a CSS style element block).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 566 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 566 from 931

• Event handlers, whether registered through the DOM using addEventListener(), by
explicit event handler content attributes, by event handler DOM attributes, or
otherwise.

• Processing of technologies like XBL or SVG that have their own scripting features.

6.5.2 Enabling and disabling scripting

Scripting is enabled in a browsing context when all of the following conditions are true:

• The user agent supports scripting.
• The user has not disabled scripting for this browsing context at this time. (User

agents may provide users with the option to disable scripting globally, or in a finer-
grained manner, e.g. on a per-origin basis.)

• The browsing context does not have the sandboxed scripts browsing context flag
set.

Scripting is disabled in a browsing context when any of the above conditions are false
(i.e. when scripting is not enabled).

Scripting is enabled for a node if the Document object of the node (the node itself, if it is
itself a Document object) has an associated browsing context, and scripting is enabled in
that browsing context.

Scripting is disabled for a node if there is no such browsing context, or if scripting is
disabled in that browsing context.

6.5.3 Processing model

6.5.3.1 Definitions

A script has:

A script execution environment
The characteristics of the script execution environment depend on the language,
and are not defined by this specification.

In JavaScript, the script execution environment consists of the interpreter, the
stack of execution contexts, the global code and function code and the
Function objects resulting, and so forth.

A list of code entry-points
Each code entry-point represents a block of executable code that the script
exposes to other scripts and to the user agent.

Each Function object in a JavaScript script execution environment has a
corresponding code entry-point, for instance.

The main program code of the script, if any, is the initial code entry-point.
Typically, the code corresponding to this entry-point is executed immediately after
the script is parsed.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 567 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 567 from 931

In JavaScript, this corresponds to the execution context of the global code.

A relationship with the script's global object
An object that provides the APIs that the code can use.

This is typically a Window object. In JavaScript, this corresponds to the global
object.

When a script's global object is an empty object, it can't do anything that
interacts with the environment.

If the script's global object is a Window object, then in JavaScript, the this keyword
in the global scope must return the Window object's WindowProxy object.

This is a willful violation of the JavaScript specification current at the time of
writing (ECMAScript edition 3). The JavaScript specification requires that the
this keyword in the global scope return the global object, but this is not
compatible with the security design prevalent in implementations as
specified herein. [ECMA262]

A relationship with the script's browsing context
A browsing context that is assigned responsibility for actions taken by the script.

When a script creates and navigates a new top-level browsing context, the
opener attribute of the new browsing context's Window object will be set to the
script's browsing context's WindowProxy object.

A URL character encoding
A character encoding, set when the script is created, used to encode URLs. If the
character encoding is set from another source, e.g. a document's character
encoding, then the script's URL character encoding must follow the source, so that
if the source's changes, so does the script's.

A base URL
A URL, set when the script is created, used to resolve relative URLs. If the base
URL is set from another source, e.g. a document base URL, then the script's base
URL must follow the source, so that if the source's changes, so does the script's.

6.5.3.2 Calling scripts

When a user agent is to jump to a code entry-point for a script, for example to invoke an
event listener defined in that script, the user agent must run the following steps:

1. If the script's global object is a Window object whose Document object is not fully
active, then abort these steps without doing anything. The callback is not fired.

2. Set the first script to be the script being invoked.

3. Make the script execution environment for the script execute the code for the given
code entry-point.

4. Set the first script back to whatever it was when this algorithm started.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 568 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 568 from 931

This algorithm is not invoked by one script calling another.

6.5.3.3 Creating scripts

When the specification says that a script is to be created, given some script source, its
scripting language, a global object, a browsing context, a character encoding, and a base
URL, the user agent must run the following steps:

1. If scripting is disabled for browsing context passed to this algorithm, then abort
these steps, as if the script did nothing but return void.

2. Set up a script execution environment as appropriate for the scripting language.

3. Parse/compile/initialize the source of the script using the script execution
environment, as appropriate for the scripting language, and thus obtain the list of
code entry-points for the script. If the semantics of the scripting language and the
given source code are such that there is executable code to be immediately run,
then the initial code entry-point is the entry-point for that code.

4. Set up the script's global object, the script's browsing context, the script's URL
character encoding, and the script's base URL from the settings passed to this
algorithm.

5. Jump to the script's initial code entry-point.

When the user agent is to create an impotent script, given some script source, its
scripting language, and a browsing context, the user agent must create a script, using the
given script source and scripting language, using a new empty object as the global object,
and using the given browsing context as the browsing context. The character encoding
and base URL for the resulting script are not important as no APIs are exposed to the
script.

When the specification says that a script is to be created from a node node, given some
script source and its scripting language, the user agent must create a script, using the
given script source and scripting language, and using the script settings determined from
the node node.

The script settings determined from the node node are computed as follows:

1. Let document be the Document of node (or node itself if it is a Document).

2. The browsing context is the browsing context of document.

3. The global object is the Window object of document.

4. The character encoding is the character encoding of document. (This is a
reference, not a copy.)

5. The base URL is the base URL of document. (This is a reference, not a copy.)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 569 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 569 from 931

6.5.3.4 Killing scripts

User agents may impose resource limitations on scripts, for example CPU quotas,
memory limits, total execution time limits, or bandwidth limitations. When a script exceeds
a limit, the user agent may either throw a QUOTA_EXCEEDED_ERR exception, abort the script
without an exception, prompt the user, or throttle script execution.

For example, the following script never terminates. A user agent could, after waiting for a
few seconds, prompt the user to either terminate the script or let it continue.

<script>
 while (true) { /* loop */ }
</script>

User agents are encouraged to allow users to disable scripting whenever the user is
prompted either by a script (e.g. using the window.alert() API) or because of a script's
actions (e.g. because it has exceeded a time limit).

If scripting is disabled while a script is executing, the script should be terminated
immediately.

6.5.4 Event loops

6.5.4.1 Definitions

To coordinate events, user interaction, scripts, rendering, networking, and so forth, user
agents must use event loops as described in this section.

There must be at least one event loop per user agent, and at most one event loop per unit
of related similar-origin browsing contexts.

An event loop always has at least one browsing context. If an event loop's browsing
contexts all go away, then the event loop goes away as well. A browsing context always
has an event loop coordinating its activities.

Other specifications can define new kinds of event loops that aren't associated with
browsing contexts.

An event loop has one or more task queues. A task queue is an ordered list of tasks,
which can be:

Events
Asynchronously dispatching an Event object at a particular EventTarget object is a
task.

Not all events are dispatched using the task queue, many are dispatched
synchronously during other tasks.

Parsing
The HTML parser tokenizing a single byte, and then processing any resulting
tokens, is a task.

Callbacks
Calling a callback asynchronously is a task.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 570 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 570 from 931

Using a resource
When an algorithm fetches a resource, if the fetching occurs asynchronously then
the processing of the resource once some or all of the resource is available is a
task.

Reacting to DOM manipulation
Some elements have tasks that trigger in response to DOM manipulation, e.g.
when that element is inserted into the document.

When a user agent is to queue a task, it must add the given task to one of the task
queues of the relevant event loop. All the tasks from one particular task source (e.g. the
callbacks generated by timers, the events dispatched for mouse movements, the tasks
queued for the parser) must always be added to the same task queue, but tasks from
different task sources may be placed in different task queues.

For example, a user agent could have one task queue for mouse and key events (the
user interaction task source), and another for everything else. The user agent could
then give keyboard and mouse events preference over other tasks three quarters of
the time, keeping the interface responsive but not starving other task queues, and
never processing events from any one task source out of order.

Each task that is queued onto a task queue of an event loop defined by this specification
is associated with a Document; if the task was queued in the context of an element, then it
is the element's Document; if the task was queued in the context of a browsing context,
then it is the browsing context's active document at the time the task was queued; if the
task was queued by or for a script then the document is the script's browsing context's
active document at the time the task was queued.

A user agent is required to have one storage mutex. This mutex is used to control access
to shared state like cookies. At any one point, the storage mutex is either free, or owned
by a particular event loop or instance of the fetching algorithm.

Whenever a script calls into a plugin, and whenever a plugin calls into a script, the user
agent must release the storage mutex.

Other specifications can define other event loops; in particular, the Web Workers
specification does so.

6.5.4.2 Processing model

An event loop must continually run through the following steps for as long as it exists:

1. Run the oldest task on one of the event loop's task queues, ignoring tasks whose
associated Documents are not fully active. The user agent may pick any task queue.

2. If the storage mutex is now owned by the event loop, release it so that it is once
again free.

3. Remove that task from its task queue.

4. If any asynchronously-running algorithms are awaiting a stable state, then run
their synchronous section and then resume running their asynchronous
algorithm.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 571 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 571 from 931

A synchronous section never mutates the DOM, runs any script, or have any
other side-effects.

Steps in synchronous sections are marked with �.

5. If necessary, update the rendering or user interface of any Document or browsing
context to reflect the current state.

6. Return to the first step of the event loop.

Some of the algorithms in this specification, for historical reasons, require the user agent
to pause while running a task until some condition has been met. While a user agent has
a paused task, the corresponding event loop must not run further tasks, and any script in
the currently running task must block. User agents should remain responsive to user input
while paused, however, albeit in a reduced capacity since the event loop will not be doing
anything.

When a user agent is to obtain the storage mutex as part of running a task, it must run
through the following steps:

1. If the storage mutex is already owned by this task's event loop, then abort these
steps.

2. Otherwise, pause until the storage mutex can be taken by the event loop.

3. Take ownership of the storage mutex.

6.5.4.3 Generic task sources

The following task sources are used by a number of mostly unrelated features in this and
other specifications.

The DOM manipulation task source
This task source is used for features that react to DOM manipulations, such as
things that happen asynchronously when an element is inserted into the document.

The user interaction task source
This task source is used for features that react to user interaction, for example
keyboard or mouse input.

Asynchronous events sent in response to user input (e.g. click events) must be
dispatched using tasks queued with the user interaction task source.
[DOMEVENTS]

The networking task source
This task source is used for features that trigger in response to network activity.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 572 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 572 from 931

6.5.5 The javascript: protocol

When a URL using the javascript: protocol is dereferenced, the user agent must run
the following steps:

1. Let the script source be the string obtained using the content retrieval operation
defined for javascript: URLs. [JSURL]

2. Use the appropriate step from the following list:

If a browsing context is being navigated to a javascript: URL, and the active
document of that browsing context has the same origin as the script given by
that URL
Let address be the address of the active document of the browsing context being
navigated.

If address is about:blank, and the browsing context being navigated has a creator
browsing context, then let address be the address of the creator Document instead.

Create a script from the Document node of the active document, using the
aforementioned script source, and assuming the scripting language is JavaScript.

Let result be the return value of the initial code entry-point of this script. If an
exception was raised, let result be void instead. (The result will be void also if
scripting is disabled.)

When it comes time to set the document's address in the navigation algorithm, use
address as the override URL.

If the Document object of the element, attribute, or style sheet from which the
javascript: URL was reached has an associated browsing context
Create an impotent script using the aforementioned script source, with the scripting
language set to JavaScript, and with the Document's object's browsing context as
the browsing context.

Let result be the return value of the initial code entry-point of this script. If an
exception was raised, let result be void instead. (The result will be void also if
scripting is disabled.)

Otherwise
Let result be void.

3. If the result of executing the script is void (there is no return value), then the URL
must be treated in a manner equivalent to an HTTP resource with an HTTP 204 No
Content response.

Otherwise, the URL must be treated in a manner equivalent to an HTTP resource
with a 200 OK response whose Content-Type metadata is text/html and whose
response body is the return value converted to a string value.

Certain contexts, in particular img elements, ignore the Content-Type
metadata.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 573 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 573 from 931

So for example a javascript: URL for a src attribute of an img element would be
evaluated in the context of an empty object as soon as the attribute is set; it would then be
sniffed to determine the image type and decoded as an image.

A javascript: URL in an href attribute of an a element would only be evaluated when the
link was followed.

The src attribute of an iframe element would be evaluated in the context of the iframe's
own browsing context; once evaluated, its return value (if it was not void) would replace
that browsing context's document, thus changing the variables visible in that browsing
context.

6.5.6 Events

Status: Last call for comments

6.5.6.1 Event handler attributes

Many objects can have event handler attributes specified. These act as bubbling event
listeners for the object on which they are specified.

An event handler attribute, unless otherwise specified, can either have the value null or be
set to a Function object. Initially, an event handler attribute must be set to null.

Event handler attributes are exposed in one or two ways.

The first way, common to all event handler attributes, is as an event handler DOM
attribute.

The second way is as an event handler content attribute. Event handlers on HTML
elements and some of the event handlers on Window objects are exposed in this way.

Event handler DOM attributes, on setting, must set the corresponding event handler
attribute to their new value, and on getting, must return whatever the current value of the
corresponding event handler attribute is (possibly null).

If an event handler DOM attribute exposes an event handler attribute of an object that
doesn't exist, it must always return null on getting and must do nothing on setting.

This can happen in particular for event handler DOM attribute on body elements that
do not have corresponding Window objects.

Certain event handler DOM attributes have additional requirements, in particular the
onmessage attribute of MessagePort objects.

Event handler content attributes, when specified, must contain valid JavaScript code
matching the FunctionBody production. [ECMA262]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 574 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 574 from 931

When an event handler content attribute is set, if the element is owned by a Document that
is in a browsing context, and scripting is enabled for that browsing context, the user agent
must run the following steps to create a script after setting the content attribute to its new
value:

1. Set up a script execution environment for JavaScript.

2. Using this script execution environment, interpret the attribute's new value as the
body of an anonymous function, with the function's arguments set as follows:

If the attribute is the onerror attribute of the Window object
Let the function have three arguments, named event, source, and fileno.
Otherwise
Let the function have a single argument called event.

Link the new function's scope chain from the activation object of the handler, to the
element's object, to the element's form owner, if it has one, to the element's
Document object, to the Window object of that Document. Set the function's this
parameter to the Element object representing the element. Let this function be the
only entry in the script's list of code entry-points.

See ECMA262 Edition 3, sections 10.1.6 and 10.2.3, for more details on
activation objects. [ECMA262]

3. If the previous steps failed to compile the script, then set the corresponding event
handler attribute to null and abort these steps.

4. Set up the script's global object, the script's browsing context, the script's URL
character encoding, and the script's base URL from the script settings determined
from the node on which the attribute is being set.

5. Set the corresponding event handler attribute to the aforementioned function.

When an event handler content attribute is set on an element owned by a Document
that is not in a browsing context, the corresponding event handler attribute is not
changed.

Removing an event handler content attribute does not reset the corresponding
event handler attribute.

All event handler attributes on an element, whether set to null or to a Function object,
must be registered as event listeners on the element, as if the addEventListenerNS()
method on the Element object's EventTarget interface had been invoked when the event
handler attribute's element or object was created, with the event type (type argument)
equal to the type corresponding to the event handler attribute (the event handler event
type), the namespace (namespaceURI argument) set to null, the listener set to be a target
and bubbling phase listener (useCapture argument set to false), the event group set to the
default group (evtGroup argument set to null), and the event listener itself (listener
argument) set to do nothing while the event handler attribute's value is not a Function

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 575 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 575 from 931

object, and set to invoke the call() callback of the Function object associated with the
event handler attribute otherwise.

The listener argument is emphatically not the event handler attribute itself.

The interfaces implemented by the event object do not affect whether an event
handler attribute is used or not.

When an event handler attribute's Function object is invoked, its call() callback must be
invoked with one argument, set to the Event object of the event in question.

The handler's return value must then be processed as follows:

If the event type is mouseover
If the return value is a boolean with the value true, then the event must be
canceled.

If the event object is a BeforeUnloadEvent object
If the return value is a string, and the event object's returnValue attribute's value is
the empty string, then set the returnValue attribute's value to the return value.

Otherwise
If the return value is a boolean with the value false, then the event must be
canceled.

The Function interface represents a function in the scripting language being used. It is
represented in IDL as follows:

[Callback=FunctionOnly, NoInterfaceObject]
interface Function {
 any call(in any... arguments);
};

The call(...) method is the object's callback.

In JavaScript, any Function object implements this interface.

6.5.6.2 Event handler attributes on elements, Document objects, and Window objects

The following are the event handler attributes (and their corresponding event handler
event types) that must be supported by all HTML elements, as both content attributes and
DOM attributes, and on Document and Window objects, as DOM attributes.

event handler attribute Event handler event type
onabort abort
oncanplay canplay
oncanplaythrough canplaythrough
onchange change
onclick click

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 576 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 576 from 931

event handler attribute Event handler event type
oncontextmenu contextmenu
ondblclick dblclick
ondrag drag
ondragend dragend
ondragenter dragenter
ondragleave dragleave
ondragover dragover
ondragstart dragstart
ondrop drop
ondurationchange durationchange
onemptied emptied
onended ended
onformchange formchange
onforminput forminput
oninput input
oninvalid invalid
onkeydown keydown
onkeypress keypress
onkeyup keyup
onloadeddata loadeddata
onloadedmetadata loadedmetadata
onloadstart loadstart
onmousedown mousedown
onmousemove mousemove
onmouseout mouseout
onmouseover mouseover
onmouseup mouseup
onmousewheel mousewheel
onpause pause
onplay play
onplaying playing
onprogress progress
onratechange ratechange
onreadystatechange readystatechange
onscroll scroll
onseeked seeked
onseeking seeking
onselect select
onshow show
onstalled stalled
onsubmit submit
onsuspend suspend
ontimeupdate timeupdate

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 577 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 577 from 931

event handler attribute Event handler event type
onvolumechange volumechange
onwaiting waiting

The following are the event handler attributes (and their corresponding event handler
event types) that must be supported by all HTML elements other than body, as both
content attributes and DOM attributes, and on Document objects, as DOM attributes:

event handler attribute Event handler event type
onblur blur
onerror error
onfocus focus
onload load

The following are the event handler attributes (and their corresponding event handler
event types) that must be supported by Window objects, as DOM attributes on the Window
object, and with corresponding content attributes and DOM attributes exposed on the body
and frameset elements:

event handler attribute Event handler event type
onafterprint afterprint
onbeforeprint beforeprint
onbeforeunload beforeunload
onblur blur
onerror error
onfocus focus
onhashchange hashchange
onload load
onmessage message
onoffline offline
ononline online
onpopstate popstate
onredo redo
onresize resize
onstorage storage
onundo undo
onunload unload

The onerror handler is also used for reporting script errors.

6.5.6.3 Event firing

Certain operations and methods are defined as firing events on elements. For example,
the click() method on the HTMLElement interface is defined as firing a click event on the
element. [DOMEVENTS]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 578 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 578 from 931

Firing a click event means that a click event with no namespace, which bubbles and is
cancelable, and which uses the MouseEvent interface, must be dispatched at the given
target. The event object must have its screenX, screenY, clientX, clientY, and button
attributes set to 0, its ctrlKey, shiftKey, altKey, and metaKey attributes set according to
the current state of the key input device, if any (false for any keys that are not available),
its detail attribute set to 1, and its relatedTarget attribute set to null. The
getModifierState() method on the object must return values appropriately describing the
state of the key input device at the time the event is created.

Firing a simple event called e means that an event with the name e, with no
namespace, which does not bubble (unless otherwise stated) and is not cancelable
(unless otherwise stated), and which uses the Event interface, must be dispatched at the
given target.

Firing a progress event called e, optionally in the context of a particular instance of the
fetching algorithm, means that an event with the name e, with no namespace, which does
not bubble (unless otherwise stated) and is not cancelable (unless otherwise stated), and
which uses the ProgressEvent interface, must be dispatched at the given target. If there is
a fetching algorithm, then the lengthComputable attribute must be set to true if the fetching
algorithm's subject has a known size; the total attribute must be set to the subject's size if
it is known and zero otherwise; and the loaded attribute must be set to the number of
bytes downloaded, excluding HTTP headers or equivalent. Otherwise, the
lengthComputable attribute must be set to false, and the total and the loaded attributes
must be set to zero. [PROGRESS]

The default action of these event is to do nothing unless otherwise stated.

6.5.6.4 Events and the Window object

When an event is dispatched at a DOM node in a Document in a browsing context, if the
event is not a load event, the user agent must also dispatch the event to the Window, as
follows:

1. In the capture phase, the event must propagate to the Window object before
propagating to any of the nodes, as if the Window object was the parent of the
Document in the dispatch chain.

2. In the bubble phase, the event must propagate up to the Window object at the end of
the phase, unless bubbling has been prevented, again as if the Window object was
the parent of the Document in the dispatch chain.

6.5.6.5 Runtime script errors

This section only applies to user agents that support scripting in general and JavaScript in
particular.

Whenever an uncaught runtime script error occurs in one of the scripts associated with a
Document, the user agent must report the error using the onerror event handler attribute of
the script's global object. If the error is still not handled after this, then the error should be
reported to the user.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 579 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 579 from 931

When the user agent is required to report an error error using the event handler attribute
onerror, it must run these steps, after which the error is either handled or not handled:

If the value of onerror is a Function
The function must be invoked with three arguments. The three arguments passed
to the function are all DOMStrings; the first must give the message that the UA is
considering reporting, the second must give the absolute URL of the resource in
which the error occurred, and the third must give the line number in that resource
on which the error occurred.

If the function returns false, then the error is handled. Otherwise, the error is not
handled.

Any uncaught exceptions thrown or errors caused by this function must be reported
to the user immediately after the error that the function was called for, without using
the report an error algorithm again.

Otherwise
The error is not handled.

6.6 Timers

Status: Last call for comments

The setTimeout() and setInterval() methods allow authors to schedule timer-based
callbacks.

[Supplemental, NoInterfaceObject]
interface WindowTimers {
 long setTimeout(in any handler, optional in any timeout, in any... args);
 void clearTimeout(in long handle);
 long setInterval(in any handler, optional in any timeout, in any... args);
 void clearInterval(in long handle);
};
Window implements WindowTimers;

handle = window . setTimeout(handler [, timeout [, arguments]])
Schedules a timeout to run handler after timeout milliseconds. Any arguments are
passed straight through to the handler.

handle = window . setTimeout(code [, timeout])
Schedules a timeout to compile and run code after timeout milliseconds.

window . clearTimeout(handle)
Cancels the timeout set with setTimeout() identified by handle.

handle = window . setInterval(handler [, timeout [, arguments]])
Schedules a timeout to run handler every timeout milliseconds. Any arguments are
passed straight through to the handler.

handle = window . setInterval(code [, timeout])
Schedules a timeout to compile and run code every timeout milliseconds.

window . clearInterval(handle)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 580 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 580 from 931

Cancels the timeout set with setInterval() identified by handle.

This API does not guarantee that timers will fire exactly on schedule. Delays due to
CPU load, other tasks, etc, are to be expected.

The WindowTimers interfaceadds to the Window interface and the WorkerUtils interface
(part of Web Workers).

Each object that implements the WindowTimers interface has a list of active timeouts and
a list of active intervals. Each entry in these lists is identified by a number, which must
be unique within its list for the lifetime of the object that implements the WindowTimers
interface.

The setTimeout() method must run the following steps:

1. Get the timed task, and let task be the result.

2. Get the timeout, and let timeout be the result.

3. If the currently running task is a task that was created by either the setTimeout()
method, and timeout is less than 4, then increase timeout to 4.

4. Add an entry to the list of active timeouts, identified by a user-agent defined integer
that is greater than zero.

5. Return the number identifying the newly added entry in the list of active timeouts,
and then continue running this algorithm asynchronously.

6. If context is a Window object, wait until the Document associated with context has
been fully active for a further timeout milliseconds (not necessarily consecutively).

Otherwise, if context is a WorkerUtils object, wait until timeout milliseconds have
passed with the worker not suspended (not necessarily consecutively).

Otherwise, act as described in the specification that defines that the WindowTimers
interface is implemented by some other object.

7. Wait until any invocations of this algorithm started before this one whose timeout is
equal to or less than this one's have completed.

8. If the entry in the list of active timeouts that was added in the earlier step has been
cleared, then abort this algorithm.

9. Queue the task task.

The clearTimeout() method must clear the entry identified as handle from the list of
active timeouts of the WindowTimers object on which the method was invoked, where
handle is the argument passed to the method.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 581 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 581 from 931

The setInterval() method must run the following steps:

1. Get the timed task, and let task be the result.

2. Get the timeout, and let timeout be the result.

3. If timeout is less than 10, then increase timeout to 10.

4. Add an entry to the list of active intervals, identified by a user-agent defined integer
that is greater than zero.

5. Return the number identifying the newly added entry in the list of active intervals,
and then continue running this algorithm asynchronously.

6. Wait: If context is a Window object, wait until the Document associated with context
has been fully active for a further interval milliseconds (not necessarily
consecutively).

Otherwise, if context is a WorkerUtils object, wait until interval milliseconds have
passed with the worker not suspended (not necessarily consecutively).

Otherwise, act as described in the specification that defines that the WindowTimers
interface is implemented by some other object.

7. If the entry in the list of active intervals that was added in the earlier step has been
cleared, then abort this algorithm.

8. Queue the task task.

9. Return to the step labeled wait.

The clearInterval() method must clear the entry identified as handle from the list of
active intervals of the WindowTimers object on which the method was invoked, where
handle is the argument passed to the method.

When the above methods are to get the timed task, they must run the following steps:

1. If the first argument to the method is an object that has an internal [[Call]] method,
then return a task that calls that [[Call]] method with as its arguments the third and
subsequent arguments to the method (if any), and abort these steps.

Otherwise, continue with the remaining steps.

2. Apply the ToString() conversion operator to the first argument to the method, and
let script source be the result.

3. Let script language be JavaScript.

4. Let context be the object on which the method is implemented (a Window or
WorkerUtils object).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 582 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 582 from 931

5. If context is a Window object, let global object be context, let browsing context be the
browsing context with which global object is associated, let character encoding be
the character encoding of the Document associated with global object (this is a
reference, not a copy), and let base URL be the base URL of the Document
associated with global object (this is a reference, not a copy).

Otherwise, if context is a WorkerUtils object, let global object, browsing context,
character encoding, and base URL be the script's global object, script's browsing
context, script's URL character encoding, and script's base URL (respectively) of
the script that the run a worker algorithm created when it created context.

Otherwise, act as described in the specification that defines that the WindowTimers
interface is implemented by some other object.

6. Return a task that creates a script using script source as the script source, scripting
language as the scripting language, global object as the global object, browsing
context as the browsing context, character encoding as the character encoding,
and base URL as the base URL.

When the above methods are to get the timeout, they must run the following steps:

1. Let timeout be the second argument to the method, or zero if the argument was
omitted.

2. Apply the ToString() conversion operator to timeout, and let timeout be the result.

3. Apply the ToNumber() conversion operator to timeout, and let timeout be the result.

4. If timeout is an Infinity value, a Not-a-Number (NaN) value, or negative, let timeout
be zero.

5. Round timeout down to the nearest integer, and let timeout be the result.

6. Return timeout.

The task source for these tasks is the timer task source.

6.7 User prompts

6.7.1 Simple dialogs
window . alert(message)

Displays a modal alert with the given message, and waits for the user to dismiss it.

A call to the navigator.getStorageUpdates() method is implied when this method
is invoked.

result = window . confirm(message)
Displays a modal OK/Cancel prompt with the given message, waits for the user to
dismiss it, and returns true if the user clicks OK and false if the user clicks Cancel.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 583 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 583 from 931

A call to the navigator.getStorageUpdates() method is implied when this method
is invoked.

result = window . prompt(message [, default])
Displays a modal text field prompt with the given message, waits for the user to
dismiss it, and returns the value that the user entered. If the user cancels the
prompt, then returns null instead. If the second argument is present, then the given
value is used as a default.

A call to the navigator.getStorageUpdates() method is implied when this method
is invoked.

The alert(message) method, when invoked, must release the storage mutex and show
the given message to the user. The user agent may make the method wait for the user to
acknowledge the message before returning; if so, the user agent must pause while the
method is waiting.

The confirm(message) method, when invoked, must release the storage mutex and show
the given message to the user, and ask the user to respond with a positive or negative
response. The user agent must then pause as the method waits for the user's response. If
the user responds positively, the method must return true, and if the user responds
negatively, the method must return false.

The prompt(message, default) method, when invoked, must release the storage mutex,
show the given message to the user, and ask the user to either respond with a string
value or abort. The user agent must then pause as the method waits for the user's
response. The second argument is optional. If the second argument (default) is present,
then the response must be defaulted to the value given by default. If the user aborts, then
the method must return null; otherwise, the method must return the string that the user
responded with.

6.7.2 Printing

Status: First draft

window . print()
Prompts the user to print the page.

A call to the navigator.getStorageUpdates() method is implied when this method
is invoked.

The print() method, when invoked, must run the printing steps.

User agents should also run the printing steps whenever the user asks for the opportunity
to obtain a physical form (e.g. printed copy), or the representation of a physical form (e.g.
PDF copy), of a document.

The printing steps are as follows:

1. The user agent may display a message to the user and/or may abort these steps.

For instance, a kiosk browser could silently ignore any invocations of the
print() method.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 584 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 584 from 931

For instance, a browser on a mobile device could detect that there are no
printers in the vicinity and display a message saying so before continuing to
offer a "save to PDF" option.

2. The user agent must fire a simple event called beforeprint at the Window object of
the Document that is being printed, as well as any nested browsing contexts in it.

The beforeprint event can be used to annotate the printed copy, for instance
adding the time at which the document was printed.

3. The user agent must release the storage mutex.

4. The user agent should offer the user the opportunity to obtain a physical form (or
the representation of a physical form) of the document. The user agent may wait for
the user to either accept or decline before returning; if so, the user agent must
pause while the method is waiting. Even if the user agent doesn't wait at this point,
the user agent must use the state of the relevant documents as they are at this
point in the algorithm if and when it eventually creates the alternate form.

5. The user agent must fire a simple event called afterprint at the Window object of
the Document that is being printed, as well as any nested browsing contexts in it.

The afterprint event can be used to revert annotations added in the earlier
event, as well as showing post-printing UI. For instance, if a page is walking
the user through the steps of applying for a home loan, the script could
automatically advance to the next step after having printed a form or other.

6.7.3 Dialogs implemented using separate documents
result = window . showModalDialog(url [, argument])

Prompts the user with the given page, waits for that page to close, and returns the
return value.

A call to the navigator.getStorageUpdates() method is implied when this method
is invoked.

The showModalDialog(url, argument) method, when invoked, must cause the user agent
to run the following steps:

1. Resolve url relative to the first script's base URL.

If this fails, then throw a SYNTAX_ERR exception and abort these steps.

2. Release the storage mutex.

3. If the user agent is configured such that this invocation of showModalDialog() is
somehow disabled, then return the empty string and abort these steps.

User agents are expected to disable this method in certain cases to avoid
user annoyance (e.g. as part of their popup blocker feature). For instance, a
user agent could require that a site be white-listed before enabling this
method, or the user agent could be configured to only allow one modal dialog
at a time.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 585 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 585 from 931

4. Let the list of background browsing contexts be a list of all the browsing contexts
that:

o are part of the same unit of related browsing contexts as the browsing
context of the Window object on which the showModalDialog() method was
called, and that

o have an active document whose origin is the same as the origin of the script
that called the showModalDialog() method at the time the method was
called,

...as well as any browsing contexts that are nested inside any of the browsing
contexts matching those conditions.

5. Disable the user interface for all the browsing contexts in the list of background
browsing contexts. This should prevent the user from navigating those browsing
contexts, causing events to be sent to those browsing context, or editing any
content in those browsing contexts. However, it does not prevent those browsing
contexts from receiving events from sources other than the user, from running
scripts, from running animations, and so forth.

6. Create a new auxiliary browsing context, with the opener browsing context being
the browsing context of the Window object on which the showModalDialog() method
was called. The new auxiliary browsing context has no name.

This browsing context's Documents' Window objects all implement the
WindowModal interface.

7. Let the dialog arguments of the new browsing context be set to the value of
argument, or the 'undefined' value if the argument was omitted.

8. Let the dialog arguments' origin be the origin of the script that called the
showModalDialog() method.

9. Navigate the new browsing context to the absolute URL that resulted from resolving
url earlier, with replacement enabled, and with the browsing context of the script
that invoked the method as the source browsing context.

10. Wait for the browsing context to be closed. (The user agent must allow the user to
indicate that the browsing context is to be closed.)

11. Reenable the user interface for all the browsing contexts in the list of background
browsing contexts.

12. Return the auxiliary browsing context's return value.

The Window objects of Documents hosted by browsing contexts created by the above
algorithm must all have the WindowModal interface added to their Window interface:

[Supplemental, NoInterfaceObject] interface WindowModal {
 readonly attribute any dialogArguments;
 attribute DOMString returnValue;
};

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 586 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 586 from 931

Window implements WindowModal; /* sometimes */

window . dialogArguments
Returns the argument argument that was passed to the showModalDialog()
method.

window . returnValue [= value]
Returns the current return value for the window.

Can be set, to change the value that will be returned by the showModalDialog()
method.

Such browsing contexts have associated dialog arguments, which are stored along with
the dialog arguments' origin. These values are set by the showModalDialog() method in
the algorithm above, when the browsing context is created, based on the arguments
provided to the method.

The dialogArguments DOM attribute, on getting, must check whether its browsing
context's active document's origin is the same as the dialog arguments' origin. If it is, then
the browsing context's dialog arguments must be returned unchanged. Otherwise, if the
dialog arguments are an object, then the empty string must be returned, and if the dialog
arguments are not an object, then the stringification of the dialog arguments must be
returned.

These browsing contexts also have an associated return value. The return value of a
browsing context must be initialized to the empty string when the browsing context is
created.

The returnValue DOM attribute, on getting, must return the return value of its browsing
context, and on setting, must set the return value to the given new value.

The window.close() method can be used to close the browsing context.

6.8 System state and capabilities

The navigator attribute of the Window interface must return an instance of the Navigator
interface, which represents the identity and state of the user agent (the client), and allows
Web pages to register themselves as potential protocol and content handlers:

interface Navigator {
 // objects implementing this interface also implement the interfaces given
below
};
Navigator implements NavigatorID;
Navigator implements NavigatorOnLine;
Navigator implements NavigatorAbilities;

[Supplemental, NoInterfaceObject]
interface NavigatorID {
 readonly attribute DOMString appName;
 readonly attribute DOMString appVersion;
 readonly attribute DOMString platform;
 readonly attribute DOMString userAgent;
};

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 587 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 587 from 931

[Supplemental, NoInterfaceObject]
interface NavigatorOnLine {
 readonly attribute boolean onLine;
};

[Supplemental, NoInterfaceObject]
interface NavigatorAbilities {
 // content handler registration
 void registerProtocolHandler(in DOMString scheme, in DOMString url, in
DOMString title);
 void registerContentHandler(in DOMString mimeType, in DOMString url, in
DOMString title);
 void getStorageUpdates();
};

Objects implementing the Navigator interface must also implement the NavigatorID,
NavigatorOnLine, and NavigatorAbilities interfaces. (These interfaces are defined
separately so that other specifications can re-use parts of the Navigator interface.)

6.8.1 Client identification

In certain cases, despite the best efforts of the entire industry, Web browsers have bugs
and limitations that Web authors are forced to work around.

This section defines a collection of attributes that can be used to determine, from script,
the kind of user agent in use, in order to work around these issues.

Client detection should always be limited to detecting known current versions; future
versions and unknown versions should always be assumed to be fully compliant.

window . navigator . appName
Returns the name of the browser.

window . navigator . appVersion
Returns the version of the browser.

window . navigator . platform
Returns the name of the platform.

window . navigator . userAgent
Returns the complete User-Agent header.

appName
Must return either the string "Netscape" or the full name of the browser, e.g.
"Mellblom Browsernator".

appVersion
Must return either the string "4.0" or a string representing the version of the
browser in detail, e.g. "1.0 (VMS; en-US) Mellblomenator/9000".

platform
Must return either the empty string or a string representing the platform on which
the browser is executing, e.g. "MacIntel", "Win32", "FreeBSD i386", "WebTV OS".

userAgent

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 588 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 588 from 931

Must return the string used for the value of the "User-Agent" header in HTTP
requests, or the empty string if no such header is ever sent.

6.8.2 Custom scheme and content handlers

Status: Working draft

The registerProtocolHandler() method allows Web sites to register themselves as
possible handlers for particular schemes. For example, an online fax service could register
itself as a handler of the fax: scheme ([RFC2806]), so that if the user clicks on such a
link, he is given the opportunity to use that Web site. Analogously, the
registerContentHandler() method allows Web sites to register themselves as possible
handlers for content in a particular MIME type. For example, the same online fax service
could register itself as a handler for image/g3fax files ([RFC1494]), so that if the user has
no native application capable of handling G3 Facsimile byte streams, his Web browser
can instead suggest he use that site to view the image.

window . navigator . registerProtocolHandler(scheme, url, title)
window . navigator . registerContentHandler(mimeType, url, title)

Registers a handler for the given scheme or content type, at the given URL, with
the given title.

The string "%s" in the URL is used as a placeholder for where to put the URL of the
content to be handled.

Throws a SECURITY_ERR exception if the user agent blocks the registration (this
might happen if trying to register as a handler for "http", for instance).

Throws a SYNTAX_ERR if the "%s" string is missing in the URL.

User agents may, within the constraints described in this section, do whatever they like
when the methods are called. A UA could, for instance, prompt the user and offer the user
the opportunity to add the site to a shortlist of handlers, or make the handlers his default,
or cancel the request. UAs could provide such a UI through modal UI or through a non-
modal transient notification interface. UAs could also simply silently collect the information,
providing it only when relevant to the user.

User agents should keep track of which sites have registered handlers (even if the user
has declined such registrations) so that the user is not repeatedly prompted with the same
request.

The arguments to the methods have the following meanings and corresponding
implementation requirements:

protocol (registerProtocolHandler() only)
A scheme, such as ftp or fax. The scheme must be compared in an ASCII case-
insensitive manner by user agents for the purposes of comparing with the scheme
part of URLs that they consider against the list of registered handlers.

The scheme value, if it contains a colon (as in "ftp:"), will never match anything,
since schemes don't contain colons.

This feature is not intended to be used with non-standard protocols.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 589 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 589 from 931

mimeType (registerContentHandler() only)
A MIME type, such as model/vrml or text/richtext. The MIME type must be
compared in an ASCII case-insensitive manner by user agents for the purposes of
comparing with MIME types of documents that they consider against the list of
registered handlers.

User agents must compare the given values only to the MIME type/subtype parts of
content types, not to the complete type including parameters. Thus, if mimeType
values passed to this method include characters such as commas or whitespace,
or include MIME parameters, then the handler being registered will never be used.

The type is compared to the MIME type used by the user agent after the
sniffing algorithms have been applied.

url
The URL of the page that will handle the requests.

When the user agent uses this URL, it must replace the first occurrence of the
exact literal string "%s" with an escaped version of the absolute URL of the content
in question (as defined below), then resolve the resulting URL, relative to the base
URL of the first script at the time the registerContentHandler() or
registerProtocolHandler() methods were invoked, and then navigate an
appropriate browsing context to the resulting URL using the GET method (or
equivalent for non-HTTP URLs).

To get the escaped version of the absolute URL of the content in question, the user
agent must replace every character in that absolute URL that doesn't match the
<query> production defined in RFC 3986 by the percent-encoded form of that
character. [RFC3986]

If the user had visited a site at http://example.com/ that made the following
call:

navigator.registerContentHandler('application/x-soup',
'soup?url=%s', 'SoupWeb™')

...and then, much later, while visiting http://www.example.net/, clicked on a
link such as:

Download our Chicken Kïwi soup!

...then, assuming this chickenkïwi.soup file was served with the MIME type
application/x-soup, the UA might navigate to the following URL:

http://example.com/soup?url=http://www.example.net/chickenk%C3%AFw
i.soup

This site could then fetch the chickenkïwi.soup file and do whatever it is that it
does with soup (synthesize it and ship it to the user, or whatever).

title
A descriptive title of the handler, which the UA might use to remind the user what
the site in question is.

User agents should raise SECURITY_ERR exceptions if the methods are called with scheme
or mimeType values that the UA deems to be "privileged". For example, a site attempting

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 590 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 590 from 931

to register a handler for http URLs or text/html content in a Web browser would likely
cause an exception to be raised.

User agents must raise a SYNTAX_ERR exception if the url argument passed to one of these
methods does not contain the exact literal string "%s", or if resolving the url argument with
the first occurrence of the string "%s" removed, relative to the first script's base URL, is not
successful.

User agents must not raise any other exceptions (other than binding-specific exceptions,
such as for an incorrect number of arguments in an JavaScript implementation).

This section does not define how the pages registered by these methods are used,
beyond the requirements on how to process the url value (see above). To some extent,
the processing model for navigating across documents defines some cases where these
methods are relevant, but in general UAs may use this information wherever they would
otherwise consider handing content to native plugins or helper applications.

UAs must not use registered content handlers to handle content that was returned as part
of a non-GET transaction (or rather, as part of any non-idempotent transaction), as the
remote site would not be able to fetch the same data.

6.8.2.1 Security and privacy

These mechanisms can introduce a number of concerns, in particular privacy concerns.

Hijacking all Web usage. User agents should not allow schemes that are key to its
normal operation, such as http or https, to be rerouted through third-party sites. This
would allow a user's activities to be trivially tracked, and would allow user information,
even in secure connections, to be collected.

Hijacking defaults. It is strongly recommended that user agents do not automatically
change any defaults, as this could lead the user to send data to remote hosts that the user
is not expecting. New handlers registering themselves should never automatically cause
those sites to be used.

Registration spamming. User agents should consider the possibility that a site will
attempt to register a large number of handlers, possibly from multiple domains (e.g. by
redirecting through a series of pages each on a different domain, and each registering a
handler for video/mpeg — analogous practices abusing other Web browser features have
been used by pornography Web sites for many years). User agents should gracefully
handle such hostile attempts, protecting the user.

Misleading titles. User agents should not rely wholly on the title argument to the methods
when presenting the registered handlers to the user, since sites could easily lie. For
example, a site hostile.example.net could claim that it was registering the "Cuddly Bear
Happy Content Handler". User agents should therefore use the handler's domain in any UI
along with any title.

Hostile handler metadata. User agents should protect against typical attacks against
strings embedded in their interface, for example ensuring that markup or escape
characters in such strings are not executed, that null bytes are properly handled, that
over-long strings do not cause crashes or buffer overruns, and so forth.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 591 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 591 from 931

Leaking Intranet URLs. The mechanism described in this section can result in secret
Intranet URLs being leaked, in the following manner:

1. The user registers a third-party content handler as the default handler for a content
type.

2. The user then browses his corporate Intranet site and accesses a document that
uses that content type.

3. The user agent contacts the third party and hands the third party the URL to the
Intranet content.

No actual confidential file data is leaked in this manner, but the URLs themselves could
contain confidential information. For example, the URL could be
http://www.corp.example.com/upcoming-aquisitions/the-sample-company.egf, which
might tell the third party that Example Corporation is intending to merge with The Sample
Company. Implementors might wish to consider allowing administrators to disable this
feature for certain subdomains, content types, or schemes.

Leaking secure URLs. User agents should not send HTTPS URLs to third-party sites
registered as content handlers, in the same way that user agents do not send Referer
(sic) HTTP headers from secure sites to third-party sites.

Leaking credentials. User agents must never send username or password information in
the URLs that are escaped and included sent to the handler sites. User agents may even
avoid attempting to pass to Web-based handlers the URLs of resources that are known to
require authentication to access, as such sites would be unable to access the resources in
question without prompting the user for credentials themselves (a practice that would
require the user to know whether to trust the third-party handler, a decision many users
are unable to make or even understand).

6.8.2.2 Sample user interface

This section is non-normative.

A simple implementation of this feature for a desktop Web browser might work as follows.

The registerContentHandler() method could display a modal dialog box:

||[Content Handler Registration]||||||||||||||||||||||||||||
| |
| This Web page: |
| |
| Kittens at work |
| http://kittens.example.org/ |
| |
| ...would like permission to handle files of type: |
| |
| application/x-meowmeow |
| |
| using the following Web-based application: |
| |
| Kittens-at-work displayer |
| http://kittens.example.org/?show=%s |
| |
| Do you trust the administrators of the "kittens.example. |
| org" domain? |
| |

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 592 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 592 from 931

| (Trust kittens.example.org) ((Cancel)) |
|__|

...where "Kittens at work" is the title of the page that invoked the method,
"http://kittens.example.org/" is the URL of that page, "application/x-meowmeow" is the
string that was passed to the registerContentHandler() method as its first argument
(mimeType), "http://kittens.example.org/?show=%s" was the second argument (url), and
"Kittens-at-work displayer" was the third argument (title).

If the user clicks the Cancel button, then nothing further happens. If the user clicks the
"Trust" button, then the handler is remembered.

When the user then attempts to fetch a URL that uses the "application/x-meowmeow"
MIME type, then it might display a dialog as follows:

||[Unknown File Type]|||||||||||||||||||||||||||||||||||||||
| |
| You have attempted to access: |
| |
| data:application/x-meowmeow;base64,S2l0dGVucyBhcmUgd |
| GhlIGN1dGVzdCE%3D |
| |
| How would you like FerretBrowser to handle this resource? |
| |
| (o) Contact the FerretBrowser plugin registry to see if |
| there is an official way to handle this resource. |
| |
| () Pass this URL to a local application: |
| [/no application selected/] (Choose) |
| |
| () Pass this URL to the "Kittens-at-work displayer" |
| application at "kittens.example.org". |
| |
| [] Always do this for resources using the "application/ |
| x-meowmeow" type in future. |
| |
| (Ok) ((Cancel)) |
|__|

...where the third option is the one that was primed by the site registering itself earlier.

If the user does select that option, then the browser, in accordance with the requirements
described in the previous two sections, will redirect the user to
"http://kittens.example.org/?show=data%3Aapplication/x-
meowmeow;base64,S2l0dGVucyBhcmUgdGhlIGN1dGVzdCE%253D".

The registerProtocolHandler() method would work equivalently, but for schemes
instead of unknown content types.

6.8.3 Manually releasing the storage mutex
window . navigator . getStorageUpdates()

If a script uses the document.cookie API, or the localStorage API, the browser will
block other scripts from accessing cookies or storage until the first script finishes.

Calling the navigator.getStorageUpdates() method tells the user agent to unblock
any other scripts that may be blocked, even though the script hasn't returned.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 593 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 593 from 931

Values of cookies and items in the Storage objects of localStorage attributes can
change after calling this method, whence its name.

The getStorageUpdates() method, when invoked, must, if the storage mutex is owned by
the event loop of the task that resulted in the method being called, release the storage
mutex so that it is once again free. Otherwise, it must do nothing.

6.9 Offline Web applications

Status: Last call for comments

6.9.1 Introduction

This section is non-normative.

In order to enable users to continue interacting with Web applications and documents
even when their network connection is unavailable — for instance, because they are
traveling outside of their ISP's coverage area — authors can provide a manifest which lists
the files that are needed for the Web application to work offline and which causes the
user's browser to keep a copy of the files for use offline.

To illustrate this, consider a simple clock applet consisting of an HTML page "clock.html",
a CSS style sheet "clock.css", and a JavaScript script "clock.js".

Before adding the manifest, these three files might look like this:

<!-- clock.html -->
<!DOCTYPE HTML>
<html>
 <head>
 <title>Clock</title>
 <script src="clock.js"></script>
 <link rel="stylesheet" href="clock.css">
 </head>
 <body>
 <p>The time is: <output id="clock"></output></p>
 </body>
</html>
/* clock.css */
output { font: 2em sans-serif; }
/* clock.js */
setTimeout(function () {
 document.getElementById('clock').value = new Date();
}, 1000);

If the user tries to open the "clock.html" page while offline, though, the user agent (unless
it happens to have it still in the local cache) will fail with an error.

The author can instead provide a manifest of the three files:

CACHE MANIFEST
clock.html
clock.css
clock.js

With a small change to the HTML file, the manifest (served as text/cache-manifest) is
linked to the application:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 594 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 594 from 931

<!-- clock.html -->
<!DOCTYPE HTML>
<html manifest="clock.manifest">
 <head>
 <title>Clock</title>
 <script src="clock.js"></script>
 <link rel="stylesheet" href="clock.css">
 </head>
 <body>
 <p>The time is: <output id="clock"></output></p>
 </body>
</html>

Now, if the user goes to the page, the browser will cache the files and make them
available even when the user is offline.

6.9.1.1 Event summary

When the user visits a page that declares a manifest, the browser will try to update the
cache. It does this by fetching a copy of the manifest and, if the manifest has changed
since the user agent last saw it, redownloading all the resources it mentions and caching
them anew.

As this is going on, a number of events get fired to keep the script updated as to the state
of the cache update, so that the user can be notified appropriately. The events are as
follows:

Event
name

Occasion Next events

checking The user agent is checking for an update, or
attempting to download the manifest for the first
time.

noupdate, downloading,
obsolete, error

noupdate The manifest hadn't changed. (Last event in sequence.)
downloading The user agent has found an update and is

fetching it, or is downloading the resources listed
by the manifest for the first time.

progress, error, cached,
updateready

progress The user agent is downloading resources listed
by the manifest.

progress, error, cached,
updateready

cached The resources listed in the manifest have been
downloaded, and the application is now cached.

Last event in sequence.

updateready The resources listed in the manifest have been
newly redownloaded, and the script can use
swapCache() to switch to the new cache.

Last event in sequence.

obsolete The manifest was found to have become a 404
or 410 page, so the application cache is being
deleted.

Last event in sequence.

The manifest was a 404 or 410 page, so the
attempt to cache the application has been
aborted.

error

The manifest hadn't changed, but the page
referencing the manifest failed to download

Last event in sequence.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 595 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 595 from 931

Event
name

Occasion Next events

properly.
A fatal error occurred while fetching the
resources listed in the manifest.

The manifest changed while the update was
being run.

The user agent will try
fetching the files again
momentarily.

6.9.2 Application caches

An application cache is a set of cached resources consisting of:

• One or more resources (including their out-of-band metadata, such as HTTP
headers, if any), identified by URLs, each falling into one (or more) of the following
categories:

Master entries
Documents that were added to the cache because a browsing context was
navigated to that document and the document indicated that this was its cache,
using the manifest attribute.
The manifest
The resource corresponding to the URL that was given in a master entry's html
element's manifest attribute. The manifest is fetched and processed during the
application cache update process. All the master entries have the same origin as
the manifest.
Explicit entries
Resources that were listed in the cache's manifest. Explicit entries can also be
marked as foreign, which means that they have a manifest attribute but that it
doesn't point at this cache's manifest.
Fallback entries
Resources that were listed in the cache's manifest as fallback entries.

A URL in the list can be flagged with multiple different types, and thus an
entry can end up being categorized as multiple entries. For example, an entry
can be a manifest entry and an explicit entry at the same time, if the manifest
is listed within the manifest.

• Zero or more fallback namespaces: URLs, used as prefix match patterns, each of
which is mapped to a fallback entry. Each namespace URL has the same origin as
the manifest.

• Zero or more URLs that form the online whitelist namespaces.
• An online whitelist wildcard flag, which is either open or blocking.

Each application cache has a completeness flag, which is either complete or incomplete.

An application cache group is a group of application caches, identified by the absolute
URL of a resource manifest which is used to populate the caches in the group.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 596 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 596 from 931

An application cache is newer than another if it was created after the other (in other
words, application caches in an application cache group have a chronological order).

Only the newest application cache in an application cache group can have its
completeness flag set to incomplete, the others are always all complete.

Each application cache group has an update status, which is one of the following: idle,
checking, downloading.

A relevant application cache is an application cache that is the newest in its group to be
complete.

Each application cache group has a list of pending master entries. Each entry in this list
consists of a resource and a corresponding Document object. It is used during the update
process to ensure that new master entries are cached.

An application cache group can be marked as obsolete, meaning that it must be ignored
when looking at what application cache groups exist.

A cache host is a Document or a SharedWorkerGlobalScope object. A cache host can be
associated with an application cache.

A Document initially is not associated with an application cache, but can become
associated with one early during the page load process, when steps in the parser and in
the navigation sections cause cache selection to occur.

A SharedWorkerGlobalScope can be associated with an application cache when it is
created.

Each cache host has an associated ApplicationCache object.

Multiple application caches in different application cache groups can contain the same
resource, e.g. if the manifests all reference that resource. If the user agent is to select an
application cache from a list of relevant application caches that contain a resource, that
the user agent must use the application cache that the user most likely wants to see the
resource from, taking into account the following:

• which application cache was most recently updated,
• which application cache was being used to display the resource from which the

user decided to look at the new resource, and
• which application cache the user prefers.

6.9.3 The cache manifest syntax

6.9.3.1 A sample manifest

This section is non-normative.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 597 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 597 from 931

This example manifest requires two images and a style sheet to be cached and whitelists
a CGI script.

CACHE MANIFEST
the above line is required

this is a comment
there can be as many of these anywhere in the file
they are all ignored
 # comments can have spaces before them
 # but must be alone on the line

blank lines are ignored too

these are files that need to be cached they can either be listed
first, or a "CACHE:" header could be put before them, as is done
lower down.
images/sound-icon.png
images/background.png
note that each file has to be put on its own line

here is a file for the online whitelist -- it isn't cached, and
references to this file will bypass the cache, always hitting the
network (or trying to, if the user is offline).
NETWORK:
comm.cgi

here is another set of files to cache, this time just the CSS file.
CACHE:
style/default.css

6.9.3.2 Writing cache manifests

Manifests must be served using the text/cache-manifest MIME type. All resources
served using the text/cache-manifest MIME type must follow the syntax of application
cache manifests, as described in this section.

An application cache manifest is a text file, whose text is encoded using UTF-8. Data in
application cache manifests is line-based. Newlines must be represented by U+000A LINE
FEED (LF) characters, U+000D CARRIAGE RETURN (CR) characters, or U+000D
CARRIAGE RETURN (CR) U+000A LINE FEED (LF) pairs.

This is a willful double violation of RFC 2046, which requires all text/* types to
support an open-ended set of character encodings and only allows CRLF line
breaks. These requirements, however, are outdated; UTF-8 is now widely used,
such that supporting other encodings is no longer necessary, and use of CR, LF,
and CRLF line breaks is commonly supported and indeed sometimes CRLF is not
supported by text editors. [RFC2046]

The first line of an application cache manifest must consist of the string "CACHE", a single
U+0020 SPACE character, the string "MANIFEST", and either a U+0020 SPACE
character, a U+0009 CHARACTER TABULATION (tab) character, a U+000A LINE FEED
(LF) character, or a U+000D CARRIAGE RETURN (CR) character. The first line may
optionally be preceded by a U+FEFF BYTE ORDER MARK (BOM) character. If any other
text is found on the first line, it is ignored.

Subsequent lines, if any, must all be one of the following:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 598 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 598 from 931

A blank line
Blank lines must consist of zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters only.

A comment
Comment lines must consist of zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters, followed by a single U+0023
NUMBER SIGN (#) character, followed by zero or more characters other than
U+000A LINE FEED (LF) and U+000D CARRIAGE RETURN (CR) characters.

Comments must be on a line on their own. If they were to be included on a
line with a URL, the "#" would be mistaken for part of a fragment identifier.

A section header
Section headers change the current section. There are three possible section
headers:

CACHE:
Switches to the explicit section.
FALLBACK:
Switches to the fallback section.
NETWORK:
Switches to the online whitelist section.
Section header lines must consist of zero or more U+0020 SPACE and U+0009
CHARACTER TABULATION (tab) characters, followed by one of the names above
(including the U+003A COLON (:) character) followed by zero or more U+0020
SPACE and U+0009 CHARACTER TABULATION (tab) characters.

Ironically, by default, the current section is the explicit section.

Data for the current section
The format that data lines must take depends on the current section.

When the current section is the explicit section, data lines must consist of zero or
more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters, a
valid URL identifying a resource other than the manifest itself, and then zero or
more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters.

When the current section is the online whitelist section, data lines must consist of
zero or more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab)
characters, either a single U+002A ASTERISK character (*) or a valid URL
identifying a resource other than the manifest itself, and then zero or more U+0020
SPACE and U+0009 CHARACTER TABULATION (tab) characters.

When the current section is the fallback section, data lines must consist of zero or
more U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters, a
valid URL identifying a resource other than the manifest itself, one or more U+0020
SPACE and U+0009 CHARACTER TABULATION (tab) characters, another valid
URL identifying a resource other than the manifest itself, and then zero or more
U+0020 SPACE and U+0009 CHARACTER TABULATION (tab) characters.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 599 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 599 from 931

The URLs in data lines can't be empty strings, since those would be relative
URLs to the manifest itself. Such lines would be confused with blank or
invalid lines, anyway.

Manifests may contain sections more than once. Sections may be empty.

URLs that are to be fallback pages associated with fallback namespaces, and those
namespaces themselves, must be given in fallback sections, with the namespace being
the first URL of the data line, and the corresponding fallback page being the second URL.
All the other pages to be cached must be listed in explicit sections.

Fallback namespaces and fallback entries must have the same origin as the manifest
itself.

A fallback namespace must not be listed more than once.

URLs that the user agent is to put into the online whitelist must all be specified in online
whitelist sections. (This is needed for any URL that the page is intending to use to
communicate back to the server.) To specify that all URLs are automatically whitelisted in
this way, a U+002A ASTERISK character (*) character may be specified as one of the
URLs.

Relative URLs must be given relative to the manifest's own URL. All URLs in the manifest
must have the same <scheme> as the manifest itself (either explicitly or implicitly, through
the use of relative URLs).

URLs in manifests must not have fragment identifiers (i.e. the U+0023 NUMBER SIGN
character isn't allowed in URLs in manifests).

6.9.3.3 Parsing cache manifests

When a user agent is to parse a manifest, it means that the user agent must run the
following steps:

1. The user agent must decode the byte stream corresponding with the manifest to be
parsed, treating it as UTF-8. Bytes or sequences of bytes that are not valid UTF-8
sequences must be interpreted as a U+FFFD REPLACEMENT CHARACTER.

2. Let base URL be the absolute URL representing the manifest.

3. Let explicit URLs be an initially empty list of explicit entries.

4. Let fallback URLs be an initially empty mapping of fallback namespaces to fallback
entries.

5. Let online whitelist URLs be an initially empty list of URLs for a online whitelist.

6. Let online whitelist wildcard flag be blocking.

7. Let input be the decoded text of the manifest's byte stream.

8. Let position be a pointer into input, initially pointing at the first character.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 600 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 600 from 931

9. If position is pointing at a U+FEFF BYTE ORDER MARK (BOM) character, then
advance position to the next character.

10. If the characters starting from position are "CACHE", followed by a U+0020 SPACE
character, followed by "MANIFEST", then advance position to the next character
after those. Otherwise, this isn't a cache manifest; abort this algorithm with a failure
while checking for the magic signature.

11. If the character at position is neither a U+0020 SPACE character, a U+0009
CHARACTER TABULATION (tab) character, U+000A LINE FEED (LF) character,
nor a U+000D CARRIAGE RETURN (CR) character, then this isn't a cache
manifest; abort this algorithm with a failure while checking for the magic signature.

12. This is a cache manifest. The algorithm cannot fail beyond this point (though bogus
lines can get ignored).

13. Collect a sequence of characters that are not U+000A LINE FEED (LF) or U+000D
CARRIAGE RETURN (CR) characters, and ignore those characters. (Extra text on
the first line, after the signature, is ignored.)

14. Let mode be "explicit".

15. Start of line: If position is past the end of input, then jump to the last step.
Otherwise, collect a sequence of characters that are U+000A LINE FEED (LF),
U+000D CARRIAGE RETURN (CR), U+0020 SPACE, or U+0009 CHARACTER
TABULATION (tab) characters.

16. Now, collect a sequence of characters that are not U+000A LINE FEED (LF) or
U+000D CARRIAGE RETURN (CR) characters, and let the result be line.

17. Drop any trailing U+0020 SPACE and U+0009 CHARACTER TABULATION (tab)
characters at the end of line.

18. If line is the empty string, then jump back to the step labeled "start of line".

19. If the first character in line is a U+0023 NUMBER SIGN (#) character, then jump
back to the step labeled "start of line".

20. If line equals "CACHE:" (the word "CACHE" followed by a U+003A COLON (:)
character), then set mode to "explicit" and jump back to the step labeled "start of
line".

21. If line equals "FALLBACK:" (the word "FALLBACK" followed by a U+003A COLON
(:) character), then set mode to "fallback" and jump back to the step labeled "start
of line".

22. If line equals "NETWORK:" (the word "NETWORK" followed by a U+003A COLON
(:) character), then set mode to "online whitelist" and jump back to the step labeled
"start of line".

23. If line ends with a U+003A COLON (:) character, then set mode to "unknown" and
jump back to the step labeled "start of line".

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 601 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 601 from 931

24. This is either a data line or it is syntactically incorrect.

25. Let position be a pointer into line, initially pointing at the start of the string.

26. Let tokens be a list of strings, initially empty.

27. While position doesn't point past the end of line:

1. Let current token be an empty string.

2. While position doesn't point past the end of line and the character at position
is neither a U+0020 SPACE nor a U+0009 CHARACTER TABULATION
(tab) character, add the character at position to current token and advance
position to the next character in input.

3. Add current token to the tokens list.

4. While position doesn't point past the end of line and the character at position
is either a U+0020 SPACE or a U+0009 CHARACTER TABULATION (tab)
character, advance position to the next character in input.

28. Process tokens as follows:

If mode is "explicit"
Resolve the first item in tokens, relative to base URL; ignore the rest.

If this fails, then jump back to the step labeled "start of line".

If the resulting absolute URL has a different <scheme> component than the
manifest's URL (compared in an ASCII case-insensitive manner), then jump back to
the step labeled "start of line".

Drop the <fragment> component of the resulting absolute URL, if it has one.

Add the resulting absolute URL to the explicit URLs.

If mode is "fallback"
Let part one be the first token in tokens, and let part two be the second token in
tokens.

Resolve part one and part two, relative to base URL.

If either fails, then jump back to the step labeled "start of line".

If the absolute URL corresponding to either part one or part two does not have the
same origin as the manifest's URL, then jump back to the step labeled "start of
line".

Drop any the <fragment> components of the resulting absolute URLs.

If the absolute URL corresponding to part one is already in the fallback URLs
mapping as a fallback namespace, then jump back to the step labeled "start of
line".

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 602 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 602 from 931

Otherwise, add the absolute URL corresponding to part one to the fallback URLs
mapping as a fallback namespace, mapped to the absolute URL corresponding to
part two as the fallback entry.

If mode is "online whitelist"
If the first item in tokens is a U+002A ASTERISK character (*), then set online
whitelist wildcard flag to open and jump back to the step labeled "start of line".

Otherwise, resolve the first item in tokens, relative to base URL; ignore the rest.

If this fails, then jump back to the step labeled "start of line".

If the resulting absolute URL has a different <scheme> component than the
manifest's URL (compared in an ASCII case-insensitive manner), then jump back to
the step labeled "start of line".

Drop the <fragment> component of the resulting absolute URL, if it has one.

Add the resulting absolute URL to the online whitelist URLs.

If mode is "unknown"
Do nothing. The line is ignored.

29. Jump back to the step labeled "start of line". (That step jumps to the next, and last,
step when the end of the file is reached.)

30. Return the explicit URLs list, the fallback URLs mapping, the online whitelist URLs,
and the online whitelist wildcard flag.

If a resource is listed in the explicit section and matches an entry in the online
whitelist, or if a resource matches both an entry in the fallback section and the
online whitelist, the resource will taken from the cache, and the online whitelist
entry will be ignored.

6.9.4 Updating an application cache

When the user agent is required (by other parts of this specification) to start the
application cache update process for an absolute URL purported to identify a manifest,
or for an application cache group, potentially given a particular cache host, and potentially
given a new master resource, the user agent must run the following steps:

1. Optionally, wait until the permission to start the cache update process has been
obtained from the user. This could include doing nothing until the user explicitly
opts-in to caching the site, or could involve prompting the user for permission. (This
step is particularly intended to be used by user agents running on severely space-
constrained devices or in highly privacy-sensitive environments).

2. Atomically, so as to avoid race conditions, perform the following substeps:

1. Pick the appropriate substeps:

If these steps were invoked with an absolute URL purported to identify
a manifest

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 603 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 603 from 931

Let manifest URL be that absolute URL.

If there is no application cache group identified by manifest URL, then create a new
application cache group identified by manifest URL. Initially, it has no application
caches. One will be created later in this algorithm.

If these steps were invoked with an application cache group
Let manifest URL be the absolute URL of the manifest used to identify the
application cache group to be updated.

2. Let cache group be the application cache group identified by manifest URL.

3. If these steps were invoked with a new master resource, then add the
resource, along with the resource's Document, to cache group's list of
pending master entries.

4. If these steps were invoked with a cache host, and the status of cache group
is checking or downloading, then queue a task to fire a simple event called
checking at the ApplicationCache singleton of that cache host. The default
action of this event should be the display of some sort of user interface
indicating to the user that the user agent is checking to see if it can
download the application.

5. If these steps were invoked with a cache host, and the status of cache group
is downloading, then also queue a task to fire a simple event called
downloading that is cancelable at the ApplicationCache singleton of that
cache host. The default action of this event should be the display of some
sort of user interface indicating to the user the application is being
downloaded.

6. If the status of the cache group is either checking or downloading, then abort
this instance of the update process, as an update is already in progress for
them.

7. Set the status of cache group to checking.

8. For each cache host associated with an application cache in cache group,
queue a task to fire a simple event that is cancelable called checking at the
ApplicationCache singleton of the cache host. The default action of these
events should be the display of some sort of user interface indicating to the
user that the user agent is checking for the availability of updates.

The remainder of the steps run asynchronously.

If cache group already has an application cache in it, then this is an upgrade
attempt. Otherwise, this is a cache attempt.

3. If this is a cache attempt, then this algorithm was invoked with a cache host; queue
a task to fire a simple event called checking that is cancelable at the
ApplicationCache singleton of that cache host. The default action of this event
should be the display of some sort of user interface indicating to the user that the
user agent is checking for the availability of updates.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 604 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 604 from 931

4. Fetching the manifest: Fetch the resource from manifest URL, and let manifest be
that resource.

If the resource is labeled with the MIME type text/cache-manifest, parse manifest
according to the rules for parsing manifests, obtaining a list of explicit entries,
fallback entries and the fallback namespaces that map to them, entries for the
online whitelist, and a value for the online whitelist wildcard flag.

5. If fetching the manifest fails due to a 404 or 410 response or equivalent, then run
these substeps:

1. Mark cache group as obsolete. This cache group no longer exists for any
purpose other than the processing of Document objects already associated
with an application cache in the cache group.

2. For each cache host associated with an application cache in cache group,
queue a task to fire a simple event called obsolete that is cancelable at the
ApplicationCache singleton of the cache host. The default action of these
events should be the display of some sort of user interface indicating to the
user that the application is no longer available for offline use.

3. For each entry in cache group's list of pending master entries, queue a task
to fire a simple event that is cancelable called error (not obsolete!) at the
ApplicationCache singleton of the cache host the Document for this entry, if
there still is one. The default action of this event should be the display of
some sort of user interface indicating to the user that the user agent failed to
save the application for offline use.

4. If cache group has an application cache whose completeness flag is
incomplete, then discard that application cache.

5. If appropriate, remove any user interface indicating that an update for this
cache is in progress.

6. Let the status of cache group be idle.

7. Abort the update process.

6. Otherwise, if fetching the manifest fails in some other way (e.g. the server returns
another 4xx or 5xx response or equivalent, or there is a DNS error, or the
connection times out, or the user cancels the download, or the parser for manifests
fails when checking the magic signature), or if the server returned a redirect, or if
the resource is labeled with a MIME type other than text/cache-manifest, then run
the cache failure steps.

7. If this is an upgrade attempt and the newly downloaded manifest is byte-for-byte
identical to the manifest found in the newest application cache in cache group, or
the server reported it as "304 Not Modified" or equivalent, then run these substeps:

1. Let cache be the newest application cache in cache group.

2. For each entry in cache group's list of pending master entries, wait for the
resource for this entry to have either completely downloaded or failed.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 605 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 605 from 931

If the download failed (e.g. the connection times out, or the user cancels the
download), then queue a task to fire a simple event that is cancelable called
error at the ApplicationCache singleton of the cache host the Document for
this entry, if there still is one. The default action of this event should be the
display of some sort of user interface indicating to the user that the user
agent failed to save the application for offline use.

Otherwise, associate the Document for this entry with cache; store the
resource for this entry in cache, if it isn't already there, and categorize its
entry as a master entry. If the resource's URL has a <fragment> component,
it must be removed from the entry in cache (application caches never
include fragment identifiers).

HTTP caching rules, such as Cache-Control: no-store, are ignored for
the purposes of the application cache update process.

3. For each cache host associated with an application cache in cache group,
queue a task to fire a simple event that is cancelable called noupdate at the
ApplicationCache singleton of the cache host. The default action of these
events should be the display of some sort of user interface indicating to the
user that the application is up to date.

4. Empty cache group's list of pending master entries.

5. If appropriate, remove any user interface indicating that an update for this
cache is in progress.

6. Let the status of cache group be idle.

7. Abort the update process.

8. Let new cache be a newly created application cache in cache group. Set its
completeness flag to incomplete.

9. For each entry in cache group's list of pending master entries, associate the
Document for this entry with new cache.

10. Set the status of cache group to downloading.

11. For each cache host associated with an application cache in cache group, queue a
task to fire a simple event that is cancelable called downloading at the
ApplicationCache singleton of the cache host. The default action of these events
should be the display of some sort of user interface indicating to the user that a
new version is being downloaded.

12. Let file list be an empty list of URLs with flags.

13. Add all the URLs in the list of explicit entries obtained by parsing manifest to file list,
each flagged with "explicit entry".

14. Add all the URLs in the list of fallback entries obtained by parsing manifest to file
list, each flagged with "fallback entry".

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 606 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 606 from 931

15. If this is an upgrade attempt, then add all the URLs of master entries in the newest
application cache in cache group whose completeness flag is complete to file list,
each flagged with "master entry".

16. If any URL is in file list more than once, then merge the entries into one entry for
that URL, that entry having all the flags that the original entries had.

17. For each URL in file list, run the following steps. These steps may be run in parallel
for two or more of the URLs at a time.

1. If the resource URL being processed was flagged as neither an "explicit
entry" nor or a "fallback entry", then the user agent may skip this URL.

This is intended to allow user agents to expire resources not listed in
the manifest from the cache. Generally, implementors are urged to use
an approach that expires lesser-used resources first.

2. For each cache host associated with an application cache in cache group,
queue a task to fire an event with the name progress, with no namespace,
which does not bubble, which is cancelable, and which uses the
ProgressEvent interface, at the ApplicationCache singleton of the cache
host. The lengthComputable attribute must be set to true, the total attribute
must be set to the number of files in file list, and the loaded attribute must be
set to the number of number of files in file list that have been downloaded so
far. The default action of these events should be the display of some sort of
user interface indicating to the user that a file is being downloaded in
preparation for updating the application.

3. Fetch the resource. If this is an upgrade attempt, then use the newest
application cache in cache group as an HTTP cache, and honor HTTP
caching semantics (such as expiration, ETags, and so forth) with respect to
that cache. User agents may also have other caches in place that are also
honored.

If the resource in question is already being downloaded for other
reasons then the existing download process can be used for the
purposes of this step, as defined by the fetching algorithm.

An example of a resource that might already be being downloaded is a
large image on a Web page that is being seen for the first time. The
image would get downloaded to satisfy the img element on the page, as
well as being listed in the cache manifest. According to the rules for
fetching that image only need be downloaded once, and it can be used
both for the cache and for the rendered Web page.

4. If the previous step fails (e.g. the server returns a 4xx or 5xx response or
equivalent, or there is a DNS error, or the connection times out, or the user
cancels the download), or if the server returned a redirect, then run the first
appropriate step from the following list:

If the URL being processed was flagged as an "explicit entry" or a
"fallback entry"

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 607 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 607 from 931

Run the cache failure steps.

Redirects are fatal because they are either indicative of a network problem
(e.g. a captive portal); or would allow resources to be added to the cache
under URLs that differ from any URL that the networking model will allow
access to, leaving orphan entries; or would allow resources to be stored
under URLs different than their true URLs. All of these situations are bad.

If the error was a 404 or 410 HTTP response or equivalent
Skip this resource. It is dropped from the cache.

Otherwise
Copy the resource and its metadata from the newest application cache in cache
group whose completeness flag is complete, and act as if that was the fetched
resource, ignoring the resource obtained from the network.

User agents may warn the user of these errors as an aid to development.

These rules make errors for resources listed in the manifest fatal, while
making it possible for other resources to be removed from caches
when they are removed from the server, without errors, and making
non-manifest resources survive server-side errors.

5. Otherwise, the fetching succeeded. Store the resource in the new cache.

6. If the URL being processed was flagged as an "explicit entry" in file list, then
categorize the entry as an explicit entry.

7. If the URL being processed was flagged as a "fallback entry" in file list, then
categorize the entry as a fallback entry.

8. If the URL being processed was flagged as an "master entry" in file list, then
categorize the entry as a master entry.

9. As an optimization, if the resource is an HTML or XML file whose root
element is an html element with a manifest attribute whose value doesn't
match the manifest URL of the application cache being processed, then the
user agent should mark the entry as being foreign.

18. Store the list of fallback namespaces, and the URLs of the fallback entries that they
map to, in new cache.

19. Store the URLs that form the new online whitelist in new cache.

20. Store the value of the new online whitelist wildcard flag in new cache.

21. For each entry in cache group's list of pending master entries, wait for the resource
for this entry to have either completely downloaded or failed.

If the download failed (e.g. the connection times out, or the user cancels the
download), then run these substeps:

1. Unassociate the Document for this entry from new cache.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 608 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 608 from 931

2. Queue a task to fire a simple event that is cancelable called error at the
ApplicationCache singleton of the Document for this entry, if there still is one.
The default action of this event should be the display of some sort of user
interface indicating to the user that the user agent failed to save the
application for offline use.

3. If this is a cache attempt and this entry is the last entry in cache group's list
of pending master entries, then run these further substeps:

1. Discard cache group and its only application cache, new cache.

2. If appropriate, remove any user interface indicating that an update for
this cache is in progress.

3. Abort the update process.

4. Otherwise, remove this entry from cache group's list of pending master
entries.

Otherwise, store the resource for this entry in new cache, if it isn't already there,
and categorize its entry as a master entry.

22. Fetch the resource from manifest URL again, and let second manifest be that
resource.

23. If the previous step failed for any reason, or if the fetching attempt involved a
redirect, or if second manifest and manifest are not byte-for-byte identical, then
schedule a rerun of the entire algorithm with the same parameters after a short
delay, and run the cache failure steps.

24. Otherwise, store manifest in new cache, if it's not there already, and categorize its
entry as the manifest.

25. Set the completeness flag of new cache to complete.

26. If this is a cache attempt, then for each cache host associated with an application
cache in cache group, queue a task to fire a simple event that is cancelable called
cached at the ApplicationCache singleton of the cache host. The default action of
these events should be the display of some sort of user interface indicating to the
user that the application has been cached and that they can now use it offline.

Otherwise, it is an upgrade attempt. For each cache host associated with an
application cache in cache group, queue a task to fire a simple event that is
cancelable called updateready at the ApplicationCache singleton of the cache host.
The default action of these events should be the display of some sort of user
interface indicating to the user that a new version is available and that they can
activate it by reloading the page.

27. If appropriate, remove any user interface indicating that an update for this cache is
in progress.

28. Set the update status of cache group to idle.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 609 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 609 from 931

The cache failure steps are as follows:

1. For each entry in cache group's list of pending master entries, run the following
further substeps. These steps may be run in parallel for two or more entries at a
time.

1. Wait for the resource for this entry to have either completely downloaded or
failed.

2. Unassociate the Document for this entry from its application cache, if it has
one.

3. Queue a task to fire a simple event that is cancelable called error at the
ApplicationCache singleton of the Document for this entry, if there still is one.
The default action of these events should be the display of some sort of user
interface indicating to the user that the user agent failed to save the
application for offline use.

2. For each cache host still associated with an application cache in cache group,
queue a task to fire a simple event that is cancelable called error at the
ApplicationCache singleton of the cache host. The default action of these events
should be the display of some sort of user interface indicating to the user that the
user agent failed to save the application for offline use.

3. Empty cache group's list of pending master entries.

4. If cache group has an application cache whose completeness flag is incomplete,
then discard that application cache.

5. If appropriate, remove any user interface indicating that an update for this cache is
in progress.

6. Let the status of cache group be idle.

7. If this was a cache attempt, discard cache group altogether.

8. Abort the update process.

Attempts to fetch resources as part of the application cache update process may be done
with cache-defeating semantics, to avoid problems with stale or inconsistent intermediary
caches.

User agents may invoke the application cache update process, in the background, for any
application cache, at any time (with no cache host). This allows user agents to keep
caches primed and to update caches even before the user visits a site.

6.9.5 Matching a fallback namespace

A URL matches a fallback namespace if there exists a relevant application cache whose
manifest's URL has the same origin as the URL in question, and that has a fallback
namespace that is a prefix match for the URL being examined. If multiple fallback

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 610 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 610 from 931

namespaces match the same URL, the longest one is the one that matches. A URL
looking for a fallback namespace can match more than one application cache at a time,
but only matches one namespace in each cache.

If a manifest http://example.com/app1/manifest declares that
http://example.com/resources/images is a fallback namespace, and the user navigates
to HTTP://EXAMPLE.COM:80/resources/images/cat.png, then the user agent will decide
that the application cache identified by http://example.com/app1/manifest contains a
namespace with a match for that URL.

6.9.6 The application cache selection algorithm

When the application cache selection algorithm algorithm is invoked with a Document
document and optionally a manifest URL manifest URL, the user agent must run the first
applicable set of steps from the following list:

If there is a manifest URL, and document was loaded from an application cache, and
the URL of the manifest of that cache's application cache group is not the same as
manifest URL

Mark the entry for the resource from which document was taken in the application
cache from which it was loaded as foreign.

Restart the current navigation from the top of the navigation algorithm, undoing any
changes that were made as part of the initial load (changes can be avoided by
ensuring that the step to update the session history with the new page is only ever
completed after this application cache selection algorithm is run, though this is not
required).

The navigation will not result in the same resource being loaded, because
"foreign" entries are never picked during navigation.

User agents may notify the user of the inconsistency between the cache manifest
and the document's own metadata, to aid in application development.

If document was loaded from an application cache<!--[redundant], and either there
is� no manifest URL, or the URL of the manifest of the cache's application cache
group is the same as manifest URL-->

Associate document with the application cache from which it was loaded. Invoke
the application cache update process for that cache and with the browsing context
being navigated.

If document <!--[redundant] was not loaded� from an application cache, but it--
>was loaded using HTTP GET or equivalent, and, there is a manifest URL, and
manifest URL has the same origin as document

Invoke the application cache update process for manifest URL, with the browsing
context being navigated, and with document and the resource from which
document was loaded as the new master resource.

Otherwise
The Document is not associated with any application cache.

If there was a manifest URL, the user agent may report to the user that it was
ignored, to aid in application development.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 611 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 611 from 931

6.9.7 Changes to the networking model

When a cache host is associated with an application cache whose completeness flag is
complete, any and all loads for resources related to that cache host other than those for
child browsing contexts must go through the following steps instead of immediately
invoking the mechanisms appropriate to that resource's scheme:

1. If the resource is not to be fetched using the HTTP GET mechanism or equivalent,
or if its URL has a different <scheme> component than the application cache's
manifest, then fetch the resource normally and abort these steps.

2. If the resource's URL is a master entry, the manifest, an explicit entry, or a fallback
entry in the application cache, then get the resource from the cache (instead of
fetching it), and abort these steps.

3. If the resource's URL has the same origin as the manifest's URL, and there is a
fallback namespace in the application cache that is a prefix match for the
resource's URL, then:

Fetch the resource normally. If this results in a redirect to a resource with another
origin (indicative of a captive portal), or a 4xx or 5xx status code or equivalent, or if
there were network errors (but not if the user canceled the download), then instead
get, from the cache, the resource of the fallback entry corresponding to the
matched namespace. Abort these steps.

4. If the application cache's online whitelist wildcard flag is open, then fetch the
resource normally and abort these steps.

5. If there is an entry in the application cache's online whitelist that has the same
origin as the resource's URL and that is a prefix match for the resource's URL, then
fetch the resource normally and abort these steps.

6. Fail the resource load.

The above algorithm ensures that so long as the online whitelist wildcard flag is
blocking, resources that are not present in the manifest will always fail to load (at
least, after the application cache has been primed the first time), making the testing
of offline applications simpler.

6.9.8 Expiring application caches

As a general rule, user agents should not expire application caches, except on request
from the user, or after having been left unused for an extended period of time.

Implementors are encouraged to expose application caches in a manner related to HTTP
cookies, allowing caches to be expired together with cookies and other origin-specific
data. Application caches and cookies have similar implications with respect to privacy
(e.g. if the site can identify the user when providing the cache, it can store data in the
cache that can be used for cookie resurrection).

6.9.9 Application cache API

interface ApplicationCache {

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 612 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 612 from 931

 // update status
 const unsigned short UNCACHED = 0;
 const unsigned short IDLE = 1;
 const unsigned short CHECKING = 2;
 const unsigned short DOWNLOADING = 3;
 const unsigned short UPDATEREADY = 4;
 const unsigned short OBSOLETE = 5;
 readonly attribute unsigned short status;

 // updates
 void update();
 void swapCache();

 // events
 attribute Function onchecking;
 attribute Function onerror;
 attribute Function onnoupdate;
 attribute Function ondownloading;
 attribute Function onprogress;
 attribute Function onupdateready;
 attribute Function oncached;
 attribute Function onobsolete;
};

cache = window . applicationCache
(In a window.) Returns the ApplicationCache object that applies to the active
document of that Window.

cache = self . applicationCache
(In a shared worker.) Returns the ApplicationCache object that applies to the
current shared worker.

cache . status
Returns the current status of the application cache, as given by the constants
defined below.

cache . update()
Invokes the application cache update process.

Throws an INVALID_ACCESS_ERR exception if there is no application cache to update.

cache . swapCache()
Switches to the most recent application cache, if there is a newer one. If there isn't,
throws an INVALID_ACCESS_ERR exception.

Objects implementing the ApplicationCache interface must also implement the
EventTarget interface.

There is a one-to-one mapping from cache hosts to ApplicationCache objects. The
applicationCache attribute on Window objects must return the ApplicationCache object
associated with the Window object's active document. The applicationCache attribute on
SharedWorkerGlobalScope objects must return the ApplicationCache object associated
with the worker.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 613 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 613 from 931

The status attribute, on getting, must return the current state of the application cache that
the ApplicationCache object's cache host is associated with, if any. This must be the
appropriate value from the following list:

UNCACHED (numeric value 0)
The ApplicationCache object's cache host is not associated with an application
cache at this time.

IDLE (numeric value 1)
The ApplicationCache object's cache host is associated with an application cache
whose application cache group's update status is idle, and that application cache is
the newest cache in its application cache group, and the application cache group is
not marked as obsolete.

CHECKING (numeric value 2)
The ApplicationCache object's cache host is associated with an application cache
whose application cache group's update status is checking.

DOWNLOADING (numeric value 3)
The ApplicationCache object's cache host is associated with an application cache
whose application cache group's update status is downloading.

UPDATEREADY (numeric value 4)
The ApplicationCache object's cache host is associated with an application cache
whose application cache group's update status is idle, and whose application cache
group is not marked as obsolete, but that application cache is not the newest cache
in its group.

OBSOLETE (numeric value 5)
The ApplicationCache object's cache host is associated with an application cache
whose application cache group is marked as obsolete.

If the update() method is invoked, the user agent must invoke the application cache
update process, in the background, for the application cache with which the
ApplicationCache object's cache host is associated, but without giving that cache host to
the algorithm. If there is no such application cache, or if it is marked as obsolete, then the
method must raise an INVALID_STATE_ERR exception instead.

If the swapCache() method is invoked, the user agent must run the following steps:

1. Check that ApplicationCache object's cache host is associated with an application
cache. If it is not, then raise an INVALID_STATE_ERR exception and abort these
steps.

2. Let cache be the application cache with which the ApplicationCache object's cache
host is associated. (By definition, this is the same as the one that was found in the
previous step.)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 614 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 614 from 931

3. If cache's application cache group is marked as obsolete, then unassociate the
ApplicationCache object's cache host from cache and abort these steps.
(Resources will now load from the network instead of the cache.)

4. Check that there is an application cache in the same application cache group as
cache whose completeness flag is complete and that is newer than cache. If there
is not, then raise an INVALID_STATE_ERR exception and abort these steps.

5. Let new cache be the newest application cache in the same application cache
group as cache whose completeness flag is complete.

6. Unassociate the ApplicationCache object's cache host from cache and instead
associate it with new cache.

The following are the event handler attributes (and their corresponding event handler
event types) that must be supported, as DOM attributes, by all objects implementing the
ApplicationCache interface:

event handler attribute Event handler event type
onchecking checking
onerror error
onnoupdate noupdate
ondownloading downloading
onprogress progress
onupdateready updateready
oncached cached
onobsolete obsolete

6.9.10 Browser state
window . navigator . onLine

Returns false if the user agent is definitely offline (disconnected from the network).
Returns true if the user agent might be online.

The navigator.onLine attribute must return false if the user agent will not contact the
network when the user follows links or when a script requests a remote page (or knows
that such an attempt would fail), and must return true otherwise.

When the value that would be returned by the navigator.onLine attribute of the Window
changes from true to false, the user agent must fire a simple event called offline at the
Window object.

On the other hand, when the value that would be returned by the navigator.onLine
attribute of the Window changes from false to true, the user agent must fire a simple event
called online at the Window object.

This attribute is inherently unreliable. A computer can be connected to a network
without having Internet access.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 615 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 615 from 931

6.10 Session history and navigation

Status: Working draft

6.10.1 The session history of browsing contexts

The sequence of Documents in a browsing context is its session history.

History objects provide a representation of the pages in the session history of browsing
contexts. Each browsing context, including nested browsing context, has a distinct session
history.

Each Document object in a browsing context's session history is associated with a unique
instance of the History object, although they all must model the same underlying session
history.

The history attribute of the Window interface must return the object implementing the
History interface for that Window object's Document.

History objects represent their browsing context's session history as a flat list of session
history entries. Each session history entry consists of either a URL or a state object, or
both, and may in addition have a title, a Document object, form data, a scroll position, and
other information associated with it.

This does not imply that the user interface need be linear. See the notes below.

URLs without associated state objects are added to the session history as the user (or
script) navigates from page to page.

A state object is an object representing a user interface state.

Pages can add state objects between their entry in the session history and the next
("forward") entry. These are then returned to the script when the user (or script) goes back
in the history, thus enabling authors to use the "navigation" metaphor even in one-page
applications.

At any point, one of the entries in the session history is the current entry. This is the entry
representing the active document of the browsing context. The current entry is usually an
entry for the location of the Document. However, it can also be one of the entries for state
objects added to the history by that document.

Entries that consist of state objects share the same Document as the entry for the page that
was active when they were added.

Contiguous entries that differ just by fragment identifier also share the same Document.

All entries that share the same Document (and that are therefore merely different
states of one particular document) are contiguous by definition.

User agents may discard the Document objects of entries other than the current entry that
are not referenced from any script, reloading the pages afresh when the user or script
navigates back to such pages. This specification does not specify when user agents
should discard Document objects and when they should cache them.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 616 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 616 from 931

Entries that have had their Document objects discarded must, for the purposes of the
algorithms given below, act as if they had not. When the user or script navigates back or
forwards to a page which has no in-memory DOM objects, any other entries that shared
the same Document object with it must share the new object as well.

When state object entries are added, a URL can be provided. This URL is used to replace
the state object entry if the Document is evicted.

6.10.2 The History interface

interface History {
 readonly attribute long length;
 void go(optional in long delta);
 void back();
 void forward();
 void pushState(in any data, in DOMString title, optional in DOMString
url);
 void clearState();
};

window . history . length
Returns the number of entries in the joint session history.

window . history . go([delta])
Goes back or forward the specified number of steps in the joint session history.
A zero delta will reload the current page.
If the delta is out of range, does nothing.

window . history . back()
Goes back one step in the joint session history.
If there is no previous page, does nothing.

window . history . forward()
Goes forward one step in the joint session history.
If there is no next page, does nothing.

window . history . pushState(data, title [, url])
Pushes the given data onto the session history, with the given title, and, if provided,
the given URL.

window . history . clearState()
Removes all state objects for the current page from the session history.

The joint session history of a History object is the union of all the session histories of all
browsing contexts of all the fully active Document objects that share the History object's
top-level browsing context.

Entries in the joint session history are ordered chronologically by the time they were
added to their respective session histories. (Since all these browsing contexts by definition
share an event loop, there is always a well-defined sequential order in which their session
histories had their entries added.) Each entry has an index; the earliest entry has index 0,

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 617 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 617 from 931

and the subsequent entries are numbered with consecutively increasing integers (1, 2, 3,
etc).

The current entry of the joint session history is the entry that was the most recently
became a current entry in its session history.

The length attribute of the History interface must return the number of entries in the joint
session history.

The actual entries are not accessible from script.

The go(delta) method causes the UA to run the following steps:

1. If the argument to the method was omitted or has the value zero, then act as if the
location.reload() method was called instead, and abort these steps.

2. Let delta be the argument to the method.

3. If the index of the current entry of the joint session history plus delta is less than
zero or greater than or equal to the number of items in the joint session history,
then the user agent must do nothing.

4. Let specified entry be the entry in the joint session history whose index is the sum
of delta and the index of the current entry of the joint session history.

5. Let specified browsing context be the browsing context of the specified entry.

6. Traverse the history of the specified browsing context to the specified entry.

When the user navigates through a browsing context, e.g. using a browser's back and
forward buttons, the user agent must translate this action into the equivalent invocations of
the history.go(delta) method on the various affected window objects.

Some of the other members of the History interface are defined in terms of the go()
method, as follows:

Member Definition
back() Must do the same as go(-1)
forward() Must do the same as go(1)

The pushState(data, title, url) method adds a state object to the history.

When this method is invoked, the user agent must run the following steps:

1. Let clone data be a structured clone of the specified data. If this throws an
exception, then rethrow that exception and abort these steps.

2. If a third argument is specified, run these substeps:

1. Resolve the value of the third argument, relative to the first script's base
URL.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 618 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 618 from 931

2. If that fails, raise a SECURITY_ERR exception and abort the pushState() steps.
3. Compare the resulting absolute URL to the document's address. If any part

of these two URLs differ other than the <path>, <query>, and <fragment>
components, then raise a SECURITY_ERR exception and abort the pushState()
steps.

For the purposes of the comparison in the above substeps, the <path> and
<query> components can only be the same if the URLs use a hierarchical
<scheme>.

3. Remove from the session history any entries for the Document from the entry after
the current entry up to the last entry in the session history that references the same
Document object, if any. If the current entry is the last entry in the session history, or
if there are no entries after the current entry that reference the same Document
object, then no entries are removed.

4. Add a state object entry to the session history, after the current entry, with cloned
data as the state object, the given title as the title, and, if the third argument is
present, the absolute URL that was found earlier in this algorithm as the URL of the
entry.

5. If the third argument is present, set the document's current address to the absolute
URL that was found earlier in this algorithm.

Since this is not a navigation of the browsing context, it does not cause a
hashchange event to be fired.

6. Update the current entry to be the this newly added entry.

The title is purely advisory. User agents might use the title in the user interface.

User agents may limit the number of state objects added to the session history per page.
If a page hits the UA-defined limit, user agents must remove the entry immediately after
the first entry for that Document object in the session history after having added the new
entry. (Thus the state history acts as a FIFO buffer for eviction, but as a LIFO buffer for
navigation.)

The clearState() method removes all the state objects for the Document object from the
session history.

When this method is invoked, the user agent must remove from the session history all the
entries from the first state object entry for that Document object up to the last entry that
references that same Document object, if any.

Then, if the current entry was removed in the previous step, the current entry must be set
to the last entry for that Document object in the session history.

6.10.3 Activating state object entries

When an entry in the session history is activated (which happens during session history
traversal, as described above), the user agent must run the following steps:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 619 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 619 from 931

1. If the entry is a state object entry, let state be a structured clone of that state object.
Otherwise, let state be null.

2. Run the appropriate steps according to the conditions described:

If the current document readiness is set to the string "complete"
Queue a task to fire a popstate event in no namespace on the Window object of the
Document, using the PopStateEvent interface, with the state attribute set to the
value of state. This event must bubble but not be cancelable and has no default
action. The task source for this task is the DOM manipulation task source.

Otherwise
Let the Document's pending state object be state. (If there was already a pending
state object, the previous one is discarded.)

The event will then be fired just after the load event.

The pending state object must be initially null.

interface PopStateEvent : Event {
 readonly attribute any state;
 void initPopStateEvent(in DOMString typeArg, in boolean canBubbleArg, in
boolean cancelableArg, in any stateArg);
 void initPopStateEventNS(in DOMString namespaceURIArg, in DOMString
typeArg, in boolean canBubbleArg, in boolean cancelableArg, in any
stateArg);
};

event . state
Returns the information that was provided to pushState().

The initPopStateEvent() and initPopStateEventNS() methods must initialize the event
in a manner analogous to the similarly-named methods in the DOM Events interfaces.
[DOMEVENTS]

The state attribute represents the context information for the event, or null, if the state
represented is the initial state of the Document.

6.10.4 The Location interface

Each Document object in a browsing context's session history is associated with a unique
instance of a Location object.

document . location [= value]
window . location [= value]

Returns a Location object with the current page's location.
Can be set, to navigate to another page.

The location attribute of the HTMLDocument interface must return the Location object for
that Document object, if it is in a browsing context, and null otherwise.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 620 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 620 from 931

The location attribute of the Window interface must return the Location object for that
Window object's Document.

Location objects provide a representation of their document's current address, and allow
the current entry of the browsing context's session history to be changed, by adding or
replacing entries in the history object.

interface Location {
 stringifier readonly attribute DOMString href;
 void assign(in DOMString url);
 void replace(in DOMString url);
 void reload();

 // URL decomposition attributes
 attribute DOMString protocol;
 attribute DOMString host;
 attribute DOMString hostname;
 attribute DOMString port;
 attribute DOMString pathname;
 attribute DOMString search;
 attribute DOMString hash;

 // resolving relative URLs
 DOMString resolveURL(in DOMString url);
};

location . href [= value]
Returns the current page's location.
Can be set, to navigate to another page.

location . assign(url)
Navigates to the given page.

location . replace(url)
Removes the current page from the session history and navigates to the given
page.

location . reload()
Reloads the current page.

url = location . resolveURL(url)
Resolves the given relative URL to an absolute URL.

The href attribute must return the current address of the associated Document object, as
an absolute URL.

On setting, the user agent must act as if the assign() method had been called with the
new value as its argument.

When the assign(url) method is invoked, the UA must resolve the argument, relative to
the first script's base URL, and if that is successful, must navigate the browsing context to
the specified url. If the browsing context's session history contains only one Document, and
that was the about:blank Document created when the browsing context was created, then
the navigation must be done with replacement enabled.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 621 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 621 from 931

When the replace(url) method is invoked, the UA must resolve the argument, relative to
the first script's base URL, and if that is successful, navigate the browsing context to the
specified url with replacement enabled.

Navigation for the assign() and replace() methods must be done with the browsing
context of the script that invoked the method as the source browsing context.

If the resolving step of the assign() and replace() methods is not successful, then the
user agent must instead throw a SYNTAX_ERR exception.

When the reload() method is invoked, the user agent must run the appropriate steps from
the following list:

If the currently executing task is the dispatch of a resize event in response to the
user resizing the browsing context

Repaint the browsing context and abort these steps.

Otherwise
Navigate the browsing context to the the document's current address with
replacement enabled. The source browsing context must be the browsing context
being navigated.

When a user requests that the current page be reloaded through a user interface element,
the user agent should navigate the browsing context to the same resource as Document,
with replacement enabled. In the case of non-idempotent methods (e.g. HTTP POST), the
user agent should prompt the user to confirm the operation first, since otherwise
transactions (e.g. purchases or database modifications) could be repeated. User agents
may allow the user to explicitly override any caches when reloading.

The Location interface also has the complement of URL decomposition attributes,
protocol, host, port, hostname, pathname, search, and hash. These must follow the rules
given for URL decomposition attributes, with the input being the current address of the
associated Document object, as an absolute URL (same as the href attribute), and the
common setter action being the same as setting the href attribute to the new output value.

The resolveURL(url) method must resolve its url argument, relative to the first script's
base URL, and if that succeeds, return the resulting absolute URL. If it fails, it must throw
a SYNTAX_ERR exception instead.

6.10.4.1 Security

User agents must raise a SECURITY_ERR exception whenever any of the members of a
Location object are accessed by scripts whose effective script origin is not the same as
the Location object's associated Document's effective script origin, with the following
exceptions:

• The href setter, if the script is running in a browsing context that is allowed to
navigate the browsing context with which the Location object is associated

• The replace() method, if the script is running in a browsing context that is allowed
to navigate the browsing context with which the Location object is associated

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 622 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 622 from 931

6.10.5 Implementation notes for session history

This section is non-normative.

The History interface is not meant to place restrictions on how implementations represent
the session history to the user.

For example, session history could be implemented in a tree-like manner, with each page
having multiple "forward" pages. This specification doesn't define how the linear list of
pages in the history object are derived from the actual session history as seen from the
user's perspective.

Similarly, a page containing two iframes has a history object distinct from the iframes'
history objects, despite the fact that typical Web browsers present the user with just one
"Back" button, with a session history that interleaves the navigation of the two inner
frames and the outer page.

Security: It is suggested that to avoid letting a page "hijack" the history navigation
facilities of a UA by abusing pushState(), the UA provide the user with a way to jump
back to the previous page (rather than just going back to the previous state). For example,
the back button could have a drop down showing just the pages in the session history,
and not showing any of the states. Similarly, an aural browser could have two "back"
commands, one that goes back to the previous state, and one that jumps straight back to
the previous page.

In addition, a user agent could ignore calls to pushState() that are invoked on a timer, or
from event handlers that do not represent a clear user action, or that are invoked in rapid
succession.

6.11 Browsing the Web

Status: Last call for comments

6.11.1 Navigating across documents

ISSUE-63 (origin-req-scope) blocks progress to Last Call

Certain actions cause the browsing context to navigate to a new resource. Navigation
always involves source browsing context, which is the browsing context which was
responsible for starting the navigation.

For example, following a hyperlink, form submission, and the window.open() and
location.assign() methods can all cause a browsing context to navigate.

A user agent may provide various ways for the user to explicitly cause a browsing context
to navigate, in addition to those defined in this specification.

When a browsing context is navigated to a new resource, the user agent must run the
following steps:

1. If the source browsing context is not the same as the browsing context being
navigated, and the source browsing context is not one of the ancestor browsing
contexts of the browsing context being navigated, and the source browsing context

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 623 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 623 from 931

has its sandboxed navigation browsing context flag set, then abort these steps. The
user agent may offer to open the new resource in a new top-level browsing context
or in the top-level browsing context of the source browsing context, at the user's
option, in which case the user agent must navigate that designated top-level
browsing context to the new resource as if the user had requested it independently.

2. If the source browsing context is the same as the browsing context being
navigated, and this browsing context has its seamless browsing context flag set,
then find the nearest ancestor browsing context that does not have its seamless
browsing context flag set, and continue these steps as if that browsing context was
the one that was going to be navigated instead.

3. Cancel any preexisting attempt to navigate the browsing context.

4. Fragment identifiers: If the absolute URL of the new resource is the same as the
address of the active document of the browsing context being navigated, ignoring
any <fragment> components of those URLs, and the new resource is to be fetched
using HTTP GET or equivalent, and the absolute URL of the new resource has a
<fragment> component (even if it is empty), then navigate to that fragment identifier
and abort these steps.

5. If the new resource is to be handled by displaying some sort of inline content, e.g.
an error message because the specified scheme is not one of the supported
protocols, or an inline prompt to allow the user to select a registered handler for the
given scheme, then display the inline content and abort these steps.

In the case of a registered handler being used, the algorithm will be reinvoked
with a new URL to handle the request.

6. If the new resource is to be handled using a mechanism that does not affect the
browsing context, e.g. ignoring the navigation request altogether because the
specified scheme is not one of the supported protocols, then abort these steps and
proceed with that mechanism instead.

7. If the new resource is to be fetched using HTTP GET or equivalent, then check if
there are any relevant application caches that are identified by a URL with the
same origin as the URL in question, and that have this URL as one of their entries,
excluding entries marked as foreign. If so, then the user agent must then get the
resource from the most appropriate application cache of those that match.

For example, imagine an HTML page with an associated application cache
displaying an image and a form, where the image is also used by several other
application caches. If the user right-clicks on the image and chooses "View
Image", then the user agent could decide to show the image from any of those
caches, but it is likely that the most useful cache for the user would be the one
that was used for the aforementioned HTML page. On the other hand, if the
user submits the form, and the form does a POST submission, then the user
agent will not use an application cache at all; the submission will be made to
the network.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 624 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 624 from 931

Otherwise, fetch the new resource, if it has not already been obtained. If the
resource is being fetched using HTTP, and the method is not GET, then the user
agent must include an Origin header whose value is determined as follows:

If the navigation algorithm has so far contacted more than one origin
If there is no source browsing context
The value must be the string "null".
Otherwise
The value must be the ASCII serialization of the origin of the active document of the
source browsing context at the time the navigation was started.

8. If fetching the resource is synchronous (i.e. for javascript: URLs and
about:blank), then this must be synchronous, but if fetching the resource depends
on external resources, as it usually does for URLs that use HTTP or other
networking protocols, then at this point the user agents must yield to whatever
script invoked the navigation steps, if they were invoked by script.

9. If fetching the resource results in a redirect, return to the step labeled "fragment
identifiers" with the new resource.

10. Wait for one or more bytes to be available or for the user agent to establish that the
resource in question is empty. During this time, the user agent may allow the user
to cancel this navigation attempt or start other navigation attempts.

11. If the resource was not fetched from an application cache, and was to be fetched
using HTTP GET or equivalent, and its URL matches the fallback namespace of
one or more relevant application caches, and the user didn't cancel the navigation
attempt during the previous step, and the navigation attempt failed (e.g. the server
returned a 4xx or 5xx status code or equivalent, or there was a DNS error), then:

Let candidate be the fallback resource specified for the fallback namespace in
question. If multiple application caches match, the user agent must use the fallback
of the most appropriate application cache of those that match.

If candidate is not marked as foreign, then the user agent must discard the failed
load and instead continue along these steps using candidate as the resource. The
document's address, if appropriate, will still be the originally requested URL, not the
fallback URL, but the user agent may indicate to the user that the original page load
failed, that the page used was a fallback resource, and what the URL of the fallback
resource actually is.

12. If the document's out-of-band metadata (e.g. HTTP headers), not counting any type
information (such as the Content-Type HTTP header), requires some sort of
processing that will not affect the browsing context, then perform that processing
and abort these steps.

Such processing might be triggered by, amongst other things, the following:

o HTTP status codes (e.g. 204 No Content or 205 Reset Content)
o HTTP Content-Disposition headers
o Network errors

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 625 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 625 from 931

HTTP 401 responses that do not include a challenge recognized by the user agent
must be processed as if they had no challenge, e.g. rendering the entity body as if
the response had been 200 OK.

User agents may show the entity body of an HTTP 401 response even when the
response do include a recognized challenge, with the option to login being included
in a non-modal fashion, to enable the information provided by the server to be used
by the user before authenticating. Similarly, user agents should allow the user to
authenticate (in a non-modal fashion) against authentication challenges included in
other responses such as HTTP 200 OK responses, effectively allowing resources
to present HTTP login forms without requiring their use.

13. Let type be the sniffed type of the resource.

14. If the user agent has been configured to process resources of the given type using
some mechanism other than rendering the content in a browsing context, then skip
this step. Otherwise, if the type is one of the following types, jump to the
appropriate entry in the following list, and process the resource as described there:

"text/html"
Follow the steps given in the HTML document section, and abort these steps.
Any type ending in "+xml"
"application/xml"
"text/xml"
Follow the steps given in the XML document section. If that section determines that
the content is not to be displayed as a generic XML document, then proceed to the
next step in this overall set of steps. Otherwise, abort these steps.
"text/plain"
Follow the steps given in the plain text file section, and abort these steps.
A supported image type
Follow the steps given in the image section, and abort these steps.
A type that will use an external application to render the content in the
browsing context
Follow the steps given in the plugin section, and abort these steps.

Setting the document's address: If there is no override URL, then any Document
created by these steps must have its address set to the URL that was originally to
be fetched, ignoring any other data that was used to obtain the resource (e.g. the
entity body in the case of a POST submission is not part of the document's
address, nor is the URL of the fallback resource in the case of the original load
having failed and that URL having been found to match a fallback namespace).
However, if there is an override URL, then any Document created by these steps
must have its address set to that URL instead.

An override URL is set when dereferencing a javascript: URL.

Creating a new Document object: When a Document is created as part of the above
steps, a new set of views along with the associated Window object must be created
and associated with the Document, with one exception: if the browsing context's only
entry in its session history is the about:blank Document that was added when the
browsing context was created, and navigation is occurring with replacement
enabled, and that Document has the same origin as the new Document, then the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 626 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 626 from 931

Window object and associated views of that Document must be used instead, and the
document attribute of the AbstractView objects of those views must be changed to
point to the new Document instead.

15. Non-document content: If, given type, the new resource is to be handled by
displaying some sort of inline content, e.g. a native rendering of the content, an
error message because the specified type is not supported, or an inline prompt to
allow the user to select a registered handler for the given type, then display the
inline content and abort these steps.

In the case of a registered handler being used, the algorithm will be reinvoked
with a new URL to handle the request.

16. Otherwise, the document's type is such that the resource will not affect the
browsing context, e.g. because the resource is to be handed to an external
application. Process the resource appropriately.

Some of the sections below, to which the above algorithm defers in certain cases, require
the user agent to update the session history with the new page. When a user agent is
required to do this, it must queue a task to run the following steps:

1. Unload the Document object of the current entry, with the recycle parameter set to
false.

2. If the navigation was initiated for entry update of an entry
1. Replace the entry being updated with a new entry representing the new

resource and its Document object and related state. The user agent may
propagate state from the old entry to the new entry (e.g. scroll position).

2. Traverse the history to the new entry.

Otherwise
3. Remove all the entries after the current entry in the browsing context's

Document object's History object.

This doesn't necessarily have to affect the user agent's user interface.

4. Append a new entry at the end of the History object representing the new
resource and its Document object and related state.

5. Traverse the history to the new entry.

6. If the navigation was initiated with replacement enabled, remove the entry
immediately before the new current entry in the session history.

3. If the document's address has a fragment identifier, then run these substeps:

1. Wait for a user-agent defined amount of time, as desired by the user agent
implementor. (This is intended to allow the user agent to optimize the user
experience in the face of performance concerns.)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 627 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 627 from 931

2. If the Document object has no parser, or its parser has stopped parsing, or
the user agent has reason to believe the user is no longer interested in
scrolling to the fragment identifier, then abort these substeps.

3. Scroll to the fragment identifier given in the document's current address. If
this fails to find an indicated part of the document, then return to the first step
of these substeps.

The task source for this task is the networking task source.

6.11.2 Page load processing model for HTML files

When an HTML document is to be loaded in a browsing context, the user agent must
create a Document object, mark it as being an HTML document, create an HTML parser,
associate it with the document, and begin to use the bytes provided for the document as
the input stream for that parser.

The input stream converts bytes into characters for use in the tokenizer. This
process relies, in part, on character encoding information found in the real Content-
Type metadata of the resource; the "sniffed type" is not used for this purpose.

When no more bytes are available, an EOF character is implied, which eventually causes
a load event to be fired.

After creating the Document object, but potentially before the page has finished parsing, the
user agent must update the session history with the new page.

Application cache selection happens in the HTML parser.

6.11.3 Page load processing model for XML files

When faced with displaying an XML file inline, user agents must first create a Document
object, following the requirements of the XML and Namespaces in XML recommendations,
RFC 3023, DOM3 Core, and other relevant specifications. [XML] [XMLNS] [RFC3023]
[DOMCORE]

The actual HTTP headers and other metadata, not the headers as mutated or implied by
the algorithms given in this specification, are the ones that must be used when
determining the character encoding according to the rules given in the above
specifications. Once the character encoding is established, the document's character
encoding must be set to that character encoding.

If the root element, as parsed according to the XML specifications cited above, is found to
be an html element with an attribute manifest, then, as soon as the element is inserted
into the document, the user agent must resolve the value of that attribute relative to that
element, and if that is successful, must run the application cache selection algorithm with
the resulting absolute URL with any <fragment> component removed as the manifest
URL, and passing in the newly-created Document. Otherwise, if the attribute is absent or
resolving it fails, then as soon as the root element is inserted into the document, the user
agent must run the application cache selection algorithm with no manifest, and passing in
the Document.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 628 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 628 from 931

Because the processing of the manifest attribute happens only once the root
element is parsed, any URLs referenced by processing instructions before the root
element (such as <?xml-stylesheet?> and <?xbl?> PIs) will be fetched from the
network and cannot be cached.

User agents may examine the namespace of the root Element node of this Document object
to perform namespace-based dispatch to alternative processing tools, e.g. determining
that the content is actually a syndication feed and passing it to a feed handler. If such
processing is to take place, abort the steps in this section, and jump to the next step
(labeled "non-document content") in the navigate steps above.

Otherwise, then, with the newly created Document, the user agents must update the
session history with the new page. User agents may do this before the complete
document has been parsed (thus achieving incremental rendering).

Error messages from the parse process (e.g. XML namespace well-formedness errors)
may be reported inline by mutating the Document.

6.11.4 Page load processing model for text files

When a plain text document is to be loaded in a browsing context, the user agent should
create a Document object, mark it as being an HTML document, create an HTML parser,
associate it with the document, act as if the tokenizer had emitted a start tag token with
the tag name "pre", set the tokenization stage's content model flag to PLAINTEXT, and
begin to pass the stream of characters in the plain text document to that tokenizer.

The rules for how to convert the bytes of the plain text document into actual characters are
defined in RFC 2046, RFC 2646, and subsequent versions thereof. [RFC2046] [RFC2646]

The document's character encoding must be set to the character encoding used to decode
the document.

Upon creation of the Document object, the user agent must run the application cache
selection algorithm with no manifest, and passing in the newly-created Document.

When no more character are available, an EOF character is implied, which eventually
causes a load event to be fired.

After creating the Document object, but potentially before the page has finished parsing, the
user agent must update the session history with the new page.

User agents may add content to the head element of the Document, e.g. linking to
stylesheet or an XBL binding, providing script, giving the document a title, etc.

6.11.5 Page load processing model for images

When an image resource is to be loaded in a browsing context, the user agent should
create a Document object, mark it as being an HTML document, append an html element
to the Document, append a head element and a body element to the html element, append
an img to the body element, and set the src attribute of the img element to the address of
the image.

Then, the user agent must act as if it had stopped parsing.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 629 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 629 from 931

Upon creation of the Document object, the user agent must run the application cache
selection algorithm with no manifest, and passing in the newly-created Document.

After creating the Document object, but potentially before the page has finished fully
loading, the user agent must update the session history with the new page.

User agents may add content to the head element of the Document, or attributes to the img
element, e.g. to link to stylesheet or an XBL binding, to provide a script, to give the
document a title, etc.

6.11.6 Page load processing model for content that uses plugins

When a resource that requires an external resource to be rendered is to be loaded in a
browsing context, the user agent should create a Document object, mark it as being an
HTML document, append an html element to the Document, append a head element and a
body element to the html element, append an embed to the body element, and set the src
attribute of the embed element to the address of the resource.

Then, the user agent must act as if it had stopped parsing.

Upon creation of the Document object, the user agent must run the application cache
selection algorithm with no manifest, and passing in the newly-created Document.

After creating the Document object, but potentially before the page has finished fully
loading, the user agent must update the session history with the new page.

User agents may add content to the head element of the Document, or attributes to the
embed element, e.g. to link to stylesheet or an XBL binding, or to give the document a
title.

If the sandboxed plugins browsing context flag is set on the browsing context, the
synthesized embed element will fail to render the content.

6.11.7 Page load processing model for inline content that doesn't have a DOM

When the user agent is to display a user agent page inline in a browsing context, the user
agent should create a Document object, mark it as being an HTML document, and then
either associate that Document with a custom rendering that is not rendered using the
normal Document rendering rules, or mutate that Document until it represents the content
the user agent wants to render.

Once the page has been set up, the user agent must act as if it had stopped parsing.

Upon creation of the Document object, the user agent must run the application cache
selection algorithm with no manifest, passing in the newly-created Document.

After creating the Document object, but potentially before the page has been completely set
up, the user agent must update the session history with the new page.

6.11.8 Navigating to a fragment identifier

When a user agent is supposed to navigate to a fragment identifier, then the user agent
must queue a task to run the following steps:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 630 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 630 from 931

1. Remove all the entries after the current entry in the browsing context's Document
object's History object.

This doesn't necessarily have to affect the user agent's user interface.

2. Append a new entry at the end of the History object representing the new resource
and its Document object and related state, and set its URL to the address to which
the user agent was navigating. (This will be the same as the document's address,
but with a new fragment identifier.)

3. Traverse the history to the new entry. This will scroll to the fragment identifier given
in the document's current address.

When the user agent is required to scroll to the fragment identifier, it must change the
scrolling position of the document, or perform some other action, such that the indicated
part of the document is brought to the user's attention. If there is no indicated part, then
the user agent must not scroll anywhere.

The indicated part of the document is the one that the fragment identifier, if any,
identifies. The semantics of the fragment identifier in terms of mapping it to a specific
DOM Node is defined by the specification that defines the MIME type used by the
Document (for example, the processing of fragment identifiers for XML MIME types is the
responsibility of RFC3023).

For HTML documents (and the text/html MIME type), the following processing model
must be followed to determine what the indicated part of the document is.

1. Parse the URL, and let fragid be the <fragment> component of the URL.

2. If fragid is the empty string, then the indicated part of the document is the top of the
document.

3. Let decoded fragid be the result of expanding any sequences of percent-encoded
octets in fragid that are valid UTF-8 sequences into Unicode characters as defined
by UTF-8. If any percent-encoded octets in that string are not valid UTF-8
sequences, then skip this step and the next one.

4. If this step was not skipped and there is an element in the DOM that has an ID
exactly equal to decoded fragid, then the first such element in tree order is the
indicated part of the document; stop the algorithm here.

5. If there is an a element in the DOM that has a name attribute whose value is exactly
equal to fragid (not decoded fragid), then the first such element in tree order is the
indicated part of the document; stop the algorithm here.

6. Otherwise, there is no indicated part of the document.

For the purposes of the interaction of HTML with Selectors' :target pseudo-class, the
target element is the indicated part of the document, if that is an element; otherwise there
is no target element. [SELECTORS]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 631 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 631 from 931

6.11.9 History traversal

Status: First draft

When a user agent is required to traverse the history to a specified entry, the user agent
must act as follows:

1. If there is no longer a Document object for the entry in question, the user agent must
navigate the browsing context to the location for that entry to perform an entry
update of that entry, and abort these steps. The "navigate" algorithm reinvokes this
"traverse" algorithm to complete the traversal, at which point there is a Document
object and so this step gets skipped. The navigation must be done using the same
source browsing context as was used the first time this entry was created.

2. If appropriate, update the current entry in the browsing context's Document object's
History object to reflect any state that the user agent wishes to persist.

For example, some user agents might want to persist the scroll position, or the
values of form controls.

3. If the specified entry has a different Document object than the current entry then the
user agent must run the following substeps:

1. If the browsing context is a top-level browsing context (and not an auxiliary
browsing context), and the origin of the Document of the specified entry is not
the same as the origin of the Document of the current entry, then the following
sub-sub-steps must be run:

1. The current browsing context name must be stored with all the entries
in the history that are associated with Document objects with the same
origin as the active document and that are contiguous with the current
entry.

2. The browsing context's browsing context name must be unset.
2. The user agent must make the specified entry's Document object the active

document of the browsing context.
3. If the specified entry has a browsing context name stored with it, then the

following sub-sub-steps must be run:
1. The browsing context's browsing context name must be set to the

name stored with the specified entry.
2. Any browsing context name stored with the entries in the history that

are associated with Document objects with the same origin as the new
active document, and that are contiguous with the specified entry,
must be cleared.

4. Set the document's current address to the URL of the specified entry.

5. If the specified entry is a state object or the first entry for a Document, the user agent
must activate that entry.

6. If the specified entry has a URL that differs from the current entry's only by its
fragment identifier, and the two share the same Document object, then first, queue a
task to fire a simple event with the name hashchange at the browsing context's
Window object; and second, if the new URL has a fragment identifier, scroll to the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 632 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 632 from 931

fragment identifier. The task source for the task that fires the hashchange event is
the DOM manipulation task source.

7. User agents may also update other aspects of the document view when the
location changes in this way, for instance the scroll position, values of form fields,
etc.

8. The current entry is now the specified entry.

6.11.10 Unloading documents

When a user agent is to unload a document, it must run the following steps. These steps
are passed an argument, recycle, which is either true or false, indicating whether the
Document object is going to be re-used. (This is set by the document.open() method.)

1. Set salvageable to true.

2. Let event be a new BeforeUnloadEvent event object with the name beforeunload,
with no namespace, which does not bubble but is cancelable.

3. Dispatch event at the Document's Window object.

4. If any event listeners were triggered by the previous step, then set salvageable to
false.

5. If the returnValue attribute of the event object is not the empty string, or if the
event was canceled, then the user agent should ask the user to confirm that they
wish to unload the document.

The prompt shown by the user agent may include the string of the returnValue
attribute, or some leading subset thereof. (A user agent may want to truncate the
string to 1024 characters for display, for instance.)

The user agent must pause while waiting for the user's response.

If the user refused to allow the document to be unloaded then these steps must
be aborted.

6. Fire a simple event called unload at the Document's Window object.

7. If any event listeners were triggered by the previous step, then set salvageable to
false.

8. If there are any outstanding transactions that have callbacks that involve scripts
whose global object is the Document's Window object, roll them back (without
invoking any of the callbacks) and set salvageable to false.

9. Empty the Document's Window's list of active timeouts and its list of active intervals.

10. If salvageable and recycle are both false, discard the Document.

6.11.10.1 Event definition

interface BeforeUnloadEvent : Event {

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 633 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 633 from 931

 attribute DOMString returnValue;
};

event . returnValue [= value]
Returns the current return value of the event (the message to show the user).
Can be set, to update the message.

There are no BeforeUnloadEvent-specific initialization methods.

The returnValue attribute represents the message to show the user. When the event is
created, the attribute must be set to the empty string. On getting, it must return the last
value it was set to. On setting, the attribute must be set to the new value.

6.12 Links

6.12.1 Hyperlink elements

Status: Controversial Working Draft

The a, area, and link elements can, in certain situations described in the definitions of
those elements, represent hyperlinks.

The href attribute on a hyperlink element must have a value that is a valid URL. This URL
is the destination resource of the hyperlink.

The href attribute on a and area elements is not required; when those elements do
not have href attributes they do not represent hyperlinks.

The href attribute on the link element is required, but whether a link element
represents a hyperlink or not depends on the value of the rel attribute of that
element.

The target attribute, if present, must be a valid browsing context name or keyword. It
gives the name of the browsing context that will be used. User agents use this name when
following hyperlinks.

The ping attribute, if present, gives the URLs of the resources that are interested in being
notified if the user follows the hyperlink. The value must be a space separated list of one
or more valid URLs. The value is used by the user agent for hyperlink auditing.

For a and area elements that represent hyperlinks, the relationship between the document
containing the hyperlink and the destination resource indicated by the hyperlink is given by
the value of the element's rel attribute, which must be a set of space-separated tokens.
The allowed values and their meanings are defined below. The rel attribute has no
default value. If the attribute is omitted or if none of the values in the attribute are
recognized by the user agent, then the document has no particular relationship with the
destination resource other than there being a hyperlink between the two.

The media attribute describes for which media the target document was designed. It is
purely advisory. The value must be a valid media query. [MQ] The default, if the media
attribute is omitted, is all.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 634 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 634 from 931

The hreflang attribute on hyperlink elements, if present, gives the language of the linked
resource. It is purely advisory. The value must be a valid BCP 47 language code. [BCP47]
User agents must not consider this attribute authoritative — upon fetching the resource,
user agents must use only language information associated with the resource to
determine its language, not metadata included in the link to the resource.

The type attribute, if present, gives the MIME type of the linked resource. It is purely
advisory. The value must be a valid MIME type, optionally with parameters. User agents
must not consider the type attribute authoritative — upon fetching the resource, user
agents must not use metadata included in the link to the resource to determine its type.

6.12.2 Following hyperlinks

When a user follows a hyperlink, the user agent must resolve the URL given by the href
attribute of that hyperlink, relative to the hyperlink element, and if that is successful, must
navigate a browsing context to the resulting absolute URL. In the case of server-side
image maps, the URL of the hyperlink must further have its hyperlink suffix appended to it.

If resolving the URL fails, the user agent may report the error to the user in a user-agent-
specific manner, may navigate to an error page to report the error, or may ignore the error
and do nothing.

If the user indicated a specific browsing context when following the hyperlink, or if the user
agent is configured to follow hyperlinks by navigating a particular browsing context, then
that must be the browsing context that is navigated.

Otherwise, if the hyperlink element is an a or area element that has a target attribute,
then the browsing context that is navigated must be chosen by applying the rules for
choosing a browsing context given a browsing context name, using the value of the
target attribute as the browsing context name. If these rules result in the creation of a
new browsing context, it must be navigated with replacement enabled.

Otherwise, if the hyperlink element is a sidebar hyperlink and the user agent implements a
feature that can be considered a secondary browsing context, such a secondary browsing
context may be selected as the browsing context to be navigated.

Otherwise, if the hyperlink element is an a or area element with no target attribute, but
one of the child nodes of the head element is a base element with a target attribute, then
the browsing context that is navigated must be chosen by applying the rules for choosing
a browsing context given a browsing context name, using the value of the target attribute
of the first such base element as the browsing context name. If these rules result in the
creation of a new browsing context, it must be navigated with replacement enabled.

Otherwise, the browsing context that must be navigated is the same browsing context as
the one which the hyperlink element itself is in.

The navigation must be done with the browsing context that contains the Document object
with which the hyperlink's element in question is associated as the source browsing
context.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 635 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 635 from 931

6.12.2.1 Hyperlink auditing

Status: Controversial Working Draft. ISSUE-1 (PINGPOST), ISSUE-2 (PINGUI) and
ISSUE-63 (origin-req-scope) block progress to Last Call

If an a or area hyperlink element has a ping attribute, and the user follows the hyperlink,
and the hyperlink's URL can be resolved, relative to the hyperlink element, without failure,
then the user agent must take the ping attribute's value, split that string on spaces,
resolve each resulting token relative to the hyperlink element, and then should send a
request (as described below) to each of the resulting absolute URLs. (Tokens that fail to
resolve are ignored.) This may be done in parallel with the primary request, and is
independent of the result of that request.

User agents should allow the user to adjust this behavior, for example in conjunction with
a setting that disables the sending of HTTP Referer (sic) headers. Based on the user's
preferences, UAs may either ignore the ping attribute altogether, or selectively ignore
URLs in the list (e.g. ignoring any third-party URLs).

For URLs that are HTTP URLs, the requests must be performed by fetching the specified
URLs using the POST method, with an entity body with the MIME type text/ping
consisting of the four-character string "PING". All relevant cookie and HTTP authentication
headers must be included in the request. Which other headers are required depends on
the URLs involved.

If both the address of the Document object containing the hyperlink being audited
and the ping URL have the same origin

The request must include a Ping-From HTTP header with, as its value, the address
of the document containing the hyperlink, and a Ping-To HTTP header with, as its
value, the address of the absolute URL of the target of the hyperlink. The request
must not include a Referer (sic) HTTP header.

Otherwise, if the origins are different, but the document containing the hyperlink
being audited was not retrieved over an encrypted connection

The request must include a Referer (sic) HTTP header [sic] with, as its value, the
current address of the document containing the hyperlink, a Ping-From HTTP
header with the same value, and a Ping-To HTTP header with, as its value, the
address of the target of the hyperlink.

Otherwise, the origins are different and the document containing the hyperlink
being audited was retrieved over an encrypted connection

The request must include a Ping-To HTTP header with, as its value, the address of
the target of the hyperlink. The request must neither include a Referer (sic) HTTP
header nor include a Ping-From HTTP header.

In addition, an Origin header must always be included, whose value is the ASCII
serialization of the origin of the Document containing the hyperlink.

To save bandwidth, implementors might also wish to consider omitting optional
headers such as Accept from these requests.

User agents must, unless otherwise specified by the user, honor the HTTP headers
(including, in particular, redirects and HTTP cookie headers), but must ignore any entity
bodies returned in the responses. User agents may close the connection prematurely
once they start receiving an entity body. [RFC2109] [COOKIES]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 636 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 636 from 931

For URLs that are not HTTP URLs, the requests must be performed by fetching the
specified URL normally, and discarding the results.

When the ping attribute is present, user agents should clearly indicate to the user that
following the hyperlink will also cause secondary requests to be sent in the background,
possibly including listing the actual target URLs.

For example, a visual user agent could include the hostnames of the target ping
URLs along with the hyperlink's actual URL in a status bar or tooltip.

The ping attribute is redundant with pre-existing technologies like HTTP redirects
and JavaScript in allowing Web pages to track which off-site links are most popular
or allowing advertisers to track click-through rates.

However, the ping attribute provides these advantages to the user over those
alternatives:

• It allows the user to see the final target URL unobscured.
• It allows the UA to inform the user about the out-of-band notifications.
• It allows the paranoid user to disable the notifications without losing the

underlying link functionality.
• It allows the UA to optimize the use of available network bandwidth so that

the target page loads faster.

Thus, while it is possible to track users without this feature, authors are
encouraged to use the ping attribute so that the user agent can make the user
experience more transparent.

6.12.3 Link types

Status: Last call for comments

The following table summarizes the link types that are defined by this specification. This
table is non-normative; the actual definitions for the link types are given in the next few
sections.

In this section, the term referenced document refers to the resource identified by the
element representing the link, and the term current document refers to the resource within
which the element representing the link finds itself.

To determine which link types apply to a link, a, or area element, the element's rel
attribute must be split on spaces. The resulting tokens are the link types that apply to that
element.

Unless otherwise specified, a keyword must not be specified more than once per rel
attribute.

The link types are ASCII case-insensitive values, and must be compared as such.

Thus, rel="next" is the same as rel="NEXT".

Link type Effect on... Brief description

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 637 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 637 from 931

 link a and
area

alternate Hyperlink Hyperlink Gives alternate representations of the current
document.

archives Hyperlink Hyperlink Provides a link to a collection of records, documents,
or other materials of historical interest.

author Hyperlink Hyperlink Gives a link to the current document's author.
bookmark not allowed Hyperlink Gives the permalink for the nearest ancestor section.
external not allowed Hyperlink Indicates that the referenced document is not part of

the same site as the current document.
feed Hyperlink Hyperlink Gives the address of a syndication feed for the

current document.
first Hyperlink Hyperlink Indicates that the current document is a part of a

series, and that the first document in the series is the
referenced document.

help Hyperlink Hyperlink Provides a link to context-sensitive help.
icon External

Resource
not
allowed

Imports an icon to represent the current document.

index Hyperlink Hyperlink Gives a link to the document that provides a table of
contents or index listing the current document.

last Hyperlink Hyperlink Indicates that the current document is a part of a
series, and that the last document in the series is the
referenced document.

license Hyperlink Hyperlink Indicates that the main content of the current
document is covered by the copyright license
described by the referenced document.

next Hyperlink Hyperlink Indicates that the current document is a part of a
series, and that the next document in the series is the
referenced document.

nofollow not allowed Hyperlink Indicates that the current document's original author
or publisher does not endorse the referenced
document.

noreferrer not allowed Hyperlink Requires that the user agent not send an HTTP
Referer (sic) header if the user follows the hyperlink.

pingback External
Resource

not
allowed

Gives the address of the pingback server that
handles pingbacks to the current document.

prefetch External
Resource

not
allowed

Specifies that the target resource should be
preemptively cached.

prev Hyperlink Hyperlink Indicates that the current document is a part of a
series, and that the previous document in the series
is the referenced document.

search Hyperlink Hyperlink Gives a link to a resource that can be used to search
through the current document and its related pages.

stylesheet External not Imports a stylesheet.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 638 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 638 from 931

Effect on... Link type
link a and

area

Brief description

Resource allowed
sidebar Hyperlink Hyperlink Specifies that the referenced document, if retrieved,

is intended to be shown in the browser's sidebar (if it
has one).

tag Hyperlink Hyperlink Gives a tag (identified by the given address) that
applies to the current document.

up Hyperlink Hyperlink Provides a link to a document giving the context for
the current document.

Some of the types described below list synonyms for these values. These are to be
handled as specified by user agents, but must not be used in documents.

6.12.3.1 Link type "alternate"

Status: Last call for comments

The alternate keyword may be used with link, a, and area elements. For link elements,
if the rel attribute does not also contain the keyword stylesheet, it creates a hyperlink;
but if it does also contain the keyword stylesheet, the alternate keyword instead
modifies the meaning of the stylesheet keyword in the way described for that keyword,
and the rest of this subsection doesn't apply.

The alternate keyword indicates that the referenced document is an alternate
representation of the current document.

The nature of the referenced document is given by the media, hreflang, and type
attributes.

If the alternate keyword is used with the media attribute, it indicates that the referenced
document is intended for use with the media specified.

If the alternate keyword is used with the hreflang attribute, and that attribute's value
differs from the root element's language, it indicates that the referenced document is a
translation.

If the alternate keyword is used with the type attribute, it indicates that the referenced
document is a reformulation of the current document in the specified format.

The media, hreflang, and type attributes can be combined when specified with the
alternate keyword.

For example, the following link is a French translation that uses the PDF format:

<link rel=alternate type=application/pdf hreflang=fr href=manual-fr>

If the alternate keyword is used with the type attribute set to the value
application/rss+xml or the value application/atom+xml, then the user agent must treat
the link as it would if it had the feed keyword specified as well.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 639 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 639 from 931

The alternate link relationship is transitive — that is, if a document links to two other
documents with the link type "alternate", then, in addition to implying that those
documents are alternative representations of the first document, it is also implying that
those two documents are alternative representations of each other.

6.12.3.2 Link type "archives"

Status: Last call for comments

The archives keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The archives keyword indicates that the referenced document describes a collection of
records, documents, or other materials of historical interest.

A blog's index page could link to an index of the blog's past posts with
rel="archives".

Synonyms: For historical reasons, user agents must also treat the keyword "archive" like
the archives keyword.

6.12.3.3 Link type "author"

Status: Last call for comments

The author keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

For a and area elements, the author keyword indicates that the referenced document
provides further information about the author of the nearest article element ancestor of
the element defining the hyperlink, if there is one, or of the page as a whole, otherwise.

For link elements, the author keyword indicates that the referenced document provides
further information about the author for the page as a whole.

The "referenced document" can be, and often is, a mailto: URL giving the e-mail
address of the author. [MAILTO]

Synonyms: For historical reasons, user agents must also treat link, a, and area elements
that have a rev attribute with the value "made" as having the author keyword specified as a
link relationship.

6.12.3.4 Link type "bookmark"

Status: Last call for comments

The bookmark keyword may be used with a and area elements.

The bookmark keyword gives a permalink for the nearest ancestor article element of the
linking element in question, or of the section the linking element is most closely associated
with, if there are no ancestor article elements.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 640 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 640 from 931

The following snippet has three permalinks. A user agent could determine which
permalink applies to which part of the spec by looking at where the permalinks are given.

 ...
 <body>
 <h1>Example of permalinks</h1>
 <div id="a">
 <h2>First example</h2>
 <p>This permalink applies to
 only the content from the first H2 to the second H2. The DIV isn't
 exactly that section, but it roughly corresponds to it.</p>
 </div>
 <h2>Second example</h2>
 <article id="b">
 <p>This permalink applies to
 the outer ARTICLE element (which could be, e.g., a blog post).</p>
 <article id="c">
 <p>This permalink applies to
 the inner ARTICLE element (which could be, e.g., a blog
comment).</p>
 </article>
 </article>
 </body>
 ...

6.12.3.5 Link type "external"

Status: Last call for comments

The external keyword may be used with a and area elements.

The external keyword indicates that the link is leading to a document that is not part of
the site that the current document forms a part of.

6.12.3.6 Link type "feed"

Status: Last call for comments

The feed keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The feed keyword indicates that the referenced document is a syndication feed. If the
alternate link type is also specified, then the feed is specifically the feed for the current
document; otherwise, the feed is just a syndication feed, not necessarily associated with a
particular Web page.

The first link, a, or area element in the document (in tree order) that creates a hyperlink
with the link type feed must be treated as the default syndication feed for the purposes of
feed autodiscovery.

The feed keyword is implied by the alternate link type in certain cases (q.v.).

The following two link elements are equivalent: both give the syndication feed for the
current page:

<link rel="alternate" type="application/atom+xml" href="data.xml">
<link rel="feed alternate" href="data.xml">

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 641 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 641 from 931

The following extract offers various different syndication feeds:

 <p>You can access the planets database using Atom feeds:</p>

 Recently Visited
Planets
 Known Bad
Planets
 Unexplored
Planets

6.12.3.7 Link type "help"

Status: Last call for comments

The help keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

For a and area elements, the help keyword indicates that the referenced document
provides further help information for the parent of the element defining the hyperlink, and
its children.

In the following example, the form control has associated context-sensitive help. The user
agent could use this information, for example, displaying the referenced document if the
user presses the "Help" or "F1" key.

 <p><label> Topic: <input name=topic> <a href="help/topic.html"
rel="help">(Help)</label></p>

For link elements, the help keyword indicates that the referenced document provides
help for the page as a whole.

6.12.3.8 Link type "icon"

Status: Last call for comments

The icon keyword may be used with link elements, for which it creates an external
resource link.

The specified resource is an icon representing the page or site, and should be used by the
user agent when representing the page in the user interface.

Icons could be auditory icons, visual icons, or other kinds of icons. If multiple icons are
provided, the user agent must select the most appropriate icon according to the type,
media, and sizes attributes. If there are multiple equally appropriate icons, user agents
must use the last one declared in tree order. If the user agent tries to use an icon but that
icon is determined, upon closer examination, to in fact be inappropriate (e.g. because it
uses an unsupported format), then the user agent must try the next-most-appropriate icon
as determined by the attributes.

There is no default type for resources given by the icon keyword. However, for the
purposes of determining the type of the resource, user agents must expect the resource to
be an image.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 642 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 642 from 931

The sizes attribute gives the sizes of icons for visual media.

If specified, the attribute must have a value that is an unordered set of unique space-
separated tokens. The values must all be either any or a value that consists of two valid
non-negative integers that do not have a leading U+0030 DIGIT ZERO (0) character and
that are separated by a single U+0078 LATIN SMALL LETTER X character.

The keywords represent icon sizes.

To parse and process the attribute's value, the user agent must first split the attribute's
value on spaces, and must then parse each resulting keyword to determine what it
represents.

The any keyword represents that the resource contains a scalable icon, e.g. as provided
by an SVG image.

Other keywords must be further parsed as follows to determine what they represent:

• If the keyword doesn't contain exactly one U+0078 LATIN SMALL LETTER X
character, then this keyword doesn't represent anything. Abort these steps for that
keyword.

• Let width string be the string before the "x".

• Let height string be the string after the "x".

• If either width string or height string start with a U+0030 DIGIT ZERO (0) character
or contain any characters other than characters in the range U+0030 DIGIT ZERO
(0) to U+0039 DIGIT NINE (9), then this keyword doesn't represent anything. Abort
these steps for that keyword.

• Apply the rules for parsing non-negative integers to width string to obtain width.

• Apply the rules for parsing non-negative integers to height string to obtain height.

• The keyword represents that the resource contains a bitmap icon with a width of
width device pixels and a height of height device pixels.

The keywords specified on the sizes attribute must not represent icon sizes that are not
actually available in the linked resource.

If the attribute is not specified, then the user agent must assume that the given icon is
appropriate, but less appropriate than an icon of a known and appropriate size.

The following snippet shows the top part of an application with several icons.

<!DOCTYPE HTML>
<html>
 <head>
 <title>lsForums — Inbox</title>
 <link rel=icon href=favicon.png sizes="16x16">
 <link rel=icon href=windows.ico sizes="32x32 48x48">
 <link rel=icon href=mac.icns sizes="128x128 512x512 8192x8192
32768x32768">
 <link rel=icon href=iphone.png sizes="59x60">

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 643 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 643 from 931

 <link rel=icon href=gnome.svg sizes="any">
 <link rel=stylesheet href=lsforums.css>
 <script src=lsforums.js></script>
 <meta name=application-name content="lsForums">
 </head>
 <body>
 ...

6.12.3.9 Link type "license"

Status: Last call for comments

The license keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The license keyword indicates that the referenced document provides the copyright
license terms under which the main content of the current document is provided.

This specification does not specify how to distinguish between the main content of a
document and content that is not deemed to be part of that main content. The distinction
should be made clear to the user.

Consider a photo sharing site. A page on that site might describe and show a photograph,
and the page might be marked up as follows:

<!DOCTYPE HTML>
<html>
 <head>
 <title>Exampl Pictures: Kissat</title>
 <link rel="stylesheet href="/style/default">
 </head>
 <body>
 <h1>Kissat</h1>
 <nav>
 Return to photo index
 </nav>
 <figure>

 <legend>Kissat</legend>
 </figure>
 <p>One of them has six toes!</p>
 <p><small><a rel="license"
href="http://www.opensource.org/licenses/mit-license.php">MIT
Licensed</small></p>
 <footer>
 Home | Photo index
 <p><small>© copyright 2009 Exampl Pictures. All Rights
Reserved.</small></p>
 </footer>
 </body>
</html>

In this case the license applies to just the photo (the main content of the document), not
the whole document. In particular not the design of the page itself, which is covered by the
copyright given at the bottom of the document. This could be made clearer in the styling
(e.g. making the license link prominently positioned near the photograph, while having the
page copyright in light small text at the foot of the page.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 644 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 644 from 931

Synonyms: For historical reasons, user agents must also treat the keyword "copyright"
like the license keyword.

6.12.3.10 Link type "nofollow"

Status: Last call for comments

The nofollow keyword may be used with a and area elements.

The nofollow keyword indicates that the link is not endorsed by the original author or
publisher of the page, or that the link to the referenced document was included primarily
because of a commercial relationship between people affiliated with the two pages.

6.12.3.11 Link type "noreferrer"

Status: Last call for comments

The noreferrer keyword may be used with a and area elements.

It indicates that the no referrer information is to be leaked when following the link.

If a user agent follows a link defined by an a or area element that has the noreferrer
keyword, the user agent must not include a Referer (sic) HTTP header (or equivalent for
other protocols) in the request.

This keyword also causes the opener attribute to remain null if the hyperlink creates a new
browsing context.

6.12.3.12 Link type "pingback"

Status: Last call for comments

The pingback keyword may be used with link elements, for which it creates an external
resource link.

For the semantics of the pingback keyword, see the Pingback 1.0 specification.
[PINGBACK]

6.12.3.13 Link type "prefetch"

Status: Last call for comments

The prefetch keyword may be used with link elements, for which it creates an external
resource link.

The prefetch keyword indicates that preemptively fetching and caching the specified
resource is likely to be beneficial, as it is highly likely that the user will require this
resource.

There is no default type for resources given by the prefetch keyword.

6.12.3.14 Link type "search"

Status: Last call for comments

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 645 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 645 from 931

The search keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The search keyword indicates that the referenced document provides an interface
specifically for searching the document and its related resources.

OpenSearch description documents can be used with link elements and the search
link type to enable user agents to autodiscover search interfaces. [OPENSEARCH]

6.12.3.15 Link type "stylesheet"

Status: Implemented and widely deployed

The stylesheet keyword may be used with link elements, for which it creates an external
resource link that contributes to the styling processing model.

The specified resource is a resource that describes how to present the document. Exactly
how the resource is to be processed depends on the actual type of the resource.

If the alternate keyword is also specified on the link element, then the link is an
alternative stylesheet; in this case, the title attribute must be specified on the link
element, with a non-empty value.

The default type for resources given by the stylesheet keyword is text/css.

Quirk: If the document has been set to quirks mode and the Content-Type metadata of
the external resource is not a supported style sheet type, the user agent must instead
assume it to be text/css.

6.12.3.16 Link type "sidebar"

Status: Last call for comments

The sidebar keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The sidebar keyword indicates that the referenced document, if retrieved, is intended to
be shown in a secondary browsing context (if possible), instead of in the current browsing
context.

A hyperlink element with the sidebar keyword specified is a sidebar hyperlink.

6.12.3.17 Link type "tag"

Status: Last call for comments

The tag keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The tag keyword indicates that the tag that the referenced document represents applies to
the current document.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 646 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 646 from 931

Since it indicates that the tag applies to the current document, it would be
inappropriate to use this keyword in the markup of a tag cloud, which lists the
popular tag across a set of pages.

6.12.3.18 Hierarchical link types

Some documents form part of a hierarchical structure of documents.

A hierarchical structure of documents is one where each document can have various
subdocuments. The document of which a document is a subdocument is said to be the
document's parent. A document with no parent forms the top of the hierarchy.

A document may be part of multiple hierarchies.

6.12.3.18.1 Link type "index"

Status: Last call for comments

The index keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The index keyword indicates that the document is part of a hierarchical structure, and that
the link is leading to the document that is the top of the hierarchy. It conveys more
information when used with the up keyword (q.v.).

Synonyms: For historical reasons, user agents must also treat the keywords "top",
"contents", and "toc" like the index keyword.

6.12.3.18.2 Link type "up"

Status: Last call for comments

The up keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The up keyword indicates that the document is part of a hierarchical structure, and that the
link is leading to the document that is the parent of the current document.

The up keyword may be repeated within a rel attribute to indicate the hierarchical
distance from the current document to the referenced document. Each occurrence of the
keyword represents one further level. If the index keyword is also present, then the
number of up keywords is the depth of the current page relative to the top of the hierarchy.
Only one link is created for the set of one or more up keywords and, if present, the index
keyword.

If the page is part of multiple hierarchies, then they should be described in different
paragraphs. User agents must scope any interpretation of the up and index keywords
together indicating the depth of the hierarchy to the paragraph in which the link finds itself,
if any, or to the document otherwise.

When two links have both the up and index keywords specified together in the same
scope and contradict each other by having a different number of up keywords, the link with
the greater number of up keywords must be taken as giving the depth of the document.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 647 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 647 from 931

This can be used to mark up a navigation style sometimes known as bread crumbs. In the
following example, the current page can be reached via two paths.

<nav>
 <p>
 Main >
 Products >
 Dishwashers >
 <a>Second hand
 </p>
 <p>
 Main >
 Second hand >
 <a>Dishwashers
 </p>
</nav>

The relList DOM attribute (e.g. on the a element) does not currently represent
multiple up keywords (the interface hides duplicates).

6.12.3.19 Sequential link types

Some documents form part of a sequence of documents.

A sequence of documents is one where each document can have a previous sibling and a
next sibling. A document with no previous sibling is the start of its sequence, a document
with no next sibling is the end of its sequence.

A document may be part of multiple sequences.

6.12.3.19.1 Link type "first"

Status: Last call for comments

The first keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The first keyword indicates that the document is part of a sequence, and that the link is
leading to the document that is the first logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keywords "begin" and
"start" like the first keyword.

6.12.3.19.2 Link type "last"

Status: Last call for comments

The last keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The last keyword indicates that the document is part of a sequence, and that the link is
leading to the document that is the last logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keyword "end" like the
last keyword.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 648 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 648 from 931

6.12.3.19.3 Link type "next"

Status: Last call for comments

The next keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The next keyword indicates that the document is part of a sequence, and that the link is
leading to the document that is the next logical document in the sequence.

6.12.3.19.4 Link type "prev"

Status: Last call for comments

The prev keyword may be used with link, a, and area elements. For link elements, it
creates a hyperlink.

The prev keyword indicates that the document is part of a sequence, and that the link is
leading to the document that is the previous logical document in the sequence.

Synonyms: For historical reasons, user agents must also treat the keyword "previous"
like the prev keyword.

6.12.3.20 Other link types

Other than the types defined above, only types defined as extensions in the WHATWG
Wiki RelExtensions page may be used with the rel attribute on link, a, and area
elements. [WHATWGWIKI]

Anyone is free to edit the WHATWG Wiki RelExtensions page at any time to add a type.
Extension types must be specified with the following information:

Keyword
The actual value being defined. The value should not be confusingly similar to any
other defined value (e.g. differing only in case).

Effect on... link
One of the following:

not allowed
The keyword is not allowed to be specified on link elements.
Hyperlink
The keyword may be specified on a link element; it creates a hyperlink link.
External Resource
The keyword may be specified on a link element; it creates a external resource
link.

Effect on... a and area
One of the following:

not allowed
The keyword is not allowed to be specified on a and area elements.
Hyperlink
The keyword may be specified on a and area elements.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 649 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 649 from 931

Brief description
A short description of what the keyword's meaning is.

Link to more details
A link to a more detailed description of the keyword's semantics and requirements.
It could be another page on the Wiki, or a link to an external page.

Synonyms
A list of other keyword values that have exactly the same processing requirements.
Authors must not use the values defined to be synonyms, they are only intended to
allow user agents to support legacy content.

Status
One of the following:

Proposal
The keyword has not received wide peer review and approval. It is included for
completeness because pages use the keyword. Pages should not use the keyword.
Accepted
The keyword has received wide peer review and approval. It has a specification
that unambiguously defines how to handle pages that use the keyword, including
when they use them in incorrect ways. Pages may use the keyword.
Rejected
The keyword has received wide peer review and it has been found to have
significant problems. Pages must not use the keyword. When a keyword has this
status, the "Effect on... link" and "Effect on... a and area" information should be set
to "not allowed".
If a keyword is added with the "proposal" status and found to be redundant with
existing values, it should be removed and listed as a synonym for the existing
value. If a keyword is added with the "proposal" status and found to be harmful,
then it should be changed to "rejected" status, and its "Effect on..." information
should be changed accordingly.

Conformance checkers must use the information given on the WHATWG Wiki
RelExtensions page to establish if a value not explicitly defined in this specification is
allowed or not. Conformance checkers may cache this information (e.g. for performance
reasons or to avoid the use of unreliable network connectivity).

When an author uses a new type not defined by either this specification or the Wiki page,
conformance checkers should offer to add the value to the Wiki, with the details described
above, with the "proposal" status.

This specification does not define how new values will get approved. It is expected that
the Wiki will have a community that addresses this.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 650 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 650 from 931

7 User Interaction

This section describes various features that allow authors to enable users to edit
documents and parts of documents interactively.

7.1 The hidden attribute

Status: Last call for comments

All HTML elements may have the hidden content attribute set. The hidden attribute is a
boolean attribute. When specified on an element, it indicates that the element is not yet, or
is no longer, relevant. User agents should not render elements that have the hidden
attribute specified.

In the following skeletal example, the attribute is used to hide the Web game's main
screen until the user logs in:

 <h1>The Example Game</h1>
 <section id="login">
 <h2>Login</h2>
 <form>
 ...
 <!-- calls login() once the user's credentials have been checked -->
 </form>
 <script>
 function login() {
 // switch screens
 document.getElementById('login').hidden = true;
 document.getElementById('game').hidden = false;
 }
 </script>
 </section>
 <section id="game" hidden>
 ...
 </section>

The hidden attribute must not be used to hide content that could legitimately be shown in
another presentation. For example, it is incorrect to use hidden to hide panels in a tabbed
dialog, because the tabbed interface is merely a kind of overflow presentation — showing
all the form controls in one big page with a scrollbar would be equivalent, and no less
correct.

Elements in a section hidden by the hidden attribute are still active, e.g. scripts and form
controls in such sections still render execute and submit respectively. Only their
presentation to the user changes.

The hidden DOM attribute must reflect the content attribute of the same name.

7.2 Activation

Status: Last call for comments

element . click()
Acts as if the element was clicked.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 651 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 651 from 931

Each element has a click in progress flag, initially set to false.

The click() method must run these steps:

1. If the element's click in progress flag is set to true, then abort these steps.

2. Set the click in progress flag on the element to true.

3. If the element has a defined activation behavior, run synthetic click activation steps
on the element. Otherwise, fire a click event at the element.

4. Set the click in progress flag on the element to false.

7.3 Scrolling elements into view

Status: Last call for comments

element . scrollIntoView([top])
Scrolls the element into view. If the top argument is true, then the element will be
scrolled to the top of the viewport, otherwise it'll be scrolled to the bottom. The
default is the top.

The scrollIntoView([top]) method, when called, must cause the element on which the
method was called to have the attention of the user called to it.

In a speech browser, this could happen by having the current playback position
move to the start of the given element.

In visual user agents, if the argument is present and has the value false, the user agent
should scroll the element into view such that both the bottom and the top of the element
are in the viewport, with the bottom of the element aligned with the bottom of the viewport.
If it isn't possible to show the entire element in that way, or if the argument is omitted or is
true, then the user agent should instead align the top of the element with the top of the
viewport. If the entire scrollable part of the content is visible all at once (e.g. if a page is
shorter than the viewport), then the user agent should not scroll anything. Visual user
agents should further scroll horizontally as necessary to bring the element to the attention
of the user.

Non-visual user agents may ignore the argument, or may treat it in some media-specific
manner most useful to the user.

7.4 Focus

Status: Last call for comments

When an element is focused, key events received by the document must be targeted at
that element. There may be no element focused; when no element is focused, key events
received by the document must be targeted at the body element.

User agents may track focus for each browsing context or Document individually, or may
support only one focused element per top-level browsing context — user agents should
follow platform conventions in this regard.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 652 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 652 from 931

Which elements within a top-level browsing context currently have focus must be
independent of whether or not the top-level browsing context itself has the system focus.

When an element is focused, the element matches the CSS :focus pseudo-class.

7.4.1 Sequential focus navigation

The tabindex content attribute specifies whether the element is focusable, whether it can
be reached using sequential focus navigation, and the relative order of the element for the
purposes of sequential focus navigation. The name "tab index" comes from the common
use of the "tab" key to navigate through the focusable elements. The term "tabbing" refers
to moving forward through the focusable elements that can be reached using sequential
focus navigation.

The tabindex attribute, if specified, must have a value that is a valid integer.

If the attribute is specified, it must be parsed using the rules for parsing integers. The
attribute's values have the following meanings:

If the attribute is omitted or parsing the value returns an error
The user agent should follow platform conventions to determine if the element is to
be focusable and, if so, whether the element can be reached using sequential focus
navigation, and if so, what its relative order should be.

If the value is a negative integer
The user agent must allow the element to be focused, but should not allow the
element to be reached using sequential focus navigation.

If the value is a zero
The user agent must allow the element to be focused, should allow the element to
be reached using sequential focus navigation, and should follow platform
conventions to determine the element's relative order.

If the value is greater than zero
The user agent must allow the element to be focused, should allow the element to
be reached using sequential focus navigation, and should place the element in the
sequential focus navigation order so that it is:

• before any focusable element whose tabindex attribute has been omitted or
whose value, when parsed, returns an error,

• before any focusable element whose tabindex attribute has a value equal to
or less than zero,

• after any element whose tabindex attribute has a value greater than zero but
less than the value of the tabindex attribute on the element,

• after any element whose tabindex attribute has a value equal to the value of
the tabindex attribute on the element but that is earlier in the document in
tree order than the element,

• before any element whose tabindex attribute has a value equal to the value
of the tabindex attribute on the element but that is later in the document in
tree order than the element, and

• before any element whose tabindex attribute has a value greater than the
value of the tabindex attribute on the element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 653 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 653 from 931

An element is specially focusable if the tabindex attribute's definition above defines the
element to be focusable.

An element that is specially focusable but does not otherwise have an activation behavior
defined has an activation behavior that does nothing.

This means that an element that is only focusable because of its tabindex attribute
will fire a click event in response to a non-mouse activation (e.g. hitting the "enter"
key while the element is focused).

An element is focusable if the user agent's default behavior allows it to be focusable or if
the element is specially focusable, but only if the element is being rendered.

User agents should make the following elements focusable, unless platform conventions
dictate otherwise:

• a elements that have an href attribute

• area elements that have an href attribute

• link elements that have an href attribute
• button elements that are not disabled
• input elements whose type attribute are not in the Hidden state and that are not

disabled
• select elements that are not disabled
• textarea elements that are not disabled
• command elements that do not have a disabled attribute
• Elements with a draggable attribute set, if that would enable the user agent to allow

the user to begin a drag operations for those elements without the use of a pointing
device

The tabIndex DOM attribute must reflect the value of the tabindex content attribute. If the
attribute is not present, or parsing its value returns an error, then the DOM attribute must
return 0 for elements that are focusable and −1 for elements that are not focusable.

7.4.2 Focus management

The focusing steps are as follows:

1. If focusing the element will remove the focus from another element, then run the
unfocusing steps for that element.

2. Make the element the currently focused element in its top-level browsing context.

Some elements, most notably area, can correspond to more than one distinct
focusable area. If a particular area was indicated when the element was focused,
then that is the area that must get focus; otherwise, e.g. when using the focus()
method, the first such region in tree order is the one that must be focused.

3. Fire a simple event called focus at the element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 654 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 654 from 931

User agents must run the focusing steps for an element whenever the user moves the
focus to a focusable element.

The unfocusing steps are as follows:

1. If the element is an input element, and the change event applies to the element,
and the element does not have a defined activation behavior, and the user has
changed the element's value or its list of selected files while the control was
focused without committing that change, then fire a simple event that bubbles
called change at the element, then broadcast formchange events at the element's
form owner.

2. Unfocus the element.

3. Fire a simple event called blur at the element.

When an element that is focused stops being a focusable element, or stops being focused
without another element being explicitly focused in its stead, the user agent should run the
focusing steps for the body element, if there is one; if there is not, then the user agent
should run the unfocusing steps for the affected element only.

For example, this might happen because the element is removed from its Document,
or has a hidden attribute added. It would also happen to an input element when the
element gets disabled.

7.4.3 Document-level focus APIs
document . activeElement

Returns the currently focused element.
document . hasFocus()

Returns true if the document has focus; otherwise, returns false.
window . focus()

Focuses the window. Use of this method is discouraged. Allow the user to control
window focus instead.

window . blur()
Unfocuses the window. Use of this method is discouraged. Allow the user to control
window focus instead.

The activeElement attribute on DocumentHTML objects must return the element in the
document that is focused. If no element in the Document is focused, this must return the
body element.

The hasFocus() method on DocumentHTML objects must return true if the document's
browsing context is focused, and all its ancestor browsing contexts are also focused, and
the top-level browsing context has the system focus.

The focus() method on the Window object, when invoked, provides a hint to the user agent
that the script believes the user might be interested in the contents of the browsing context
of the Window object on which the method was invoked.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 655 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 655 from 931

User agents are encouraged to have this focus() method trigger some kind of notification.

The blur() method on the Window object, when invoked, provides a hint to the user agent
that the script believes the user probably is not currently interested in the contents of the
browsing context of the Window object on which the method was invoked, but that the
contents might become interesting again in the future.

User agents are encouraged to ignore calls to this blur() method entirely.

Historically the focus() and blur() methods actually affected the system focus, but
hostile sites widely abuse this behavior to the user's detriment.

7.4.4 Element-level focus APIs
element . focus()

Focuses the element.
element . blur()

Unfocuses the element. Use of this method is discouraged. Focus another element
instead.

The focus() method, when invoked, must run the following algorithm:

1. If the element is marked as locked for focus, then abort these steps.

2. If the element is not focusable, then abort these steps.

3. Mark the element as locked for focus.

4. If the element is not already focused, run the focusing steps for the element.

5. Unmark the element as locked for focus.

The blur() method, when invoked, should run the focusing steps for the body element, if
there is one; if there is not, then it should run the unfocusing steps for the element on
which the method was called instead. User agents may selectively or uniformly ignore
calls to this method for usability reasons.

7.5 The accesskey attribute

Status: First draft

All HTML elements may have the accesskey content attribute set. The accesskey
attribute's value is used by the user agent as a guide for creating a keyboard shortcut that
activates or focuses the element.

If specified, the value must be an ordered set of unique space-separated tokens, each of
which must be exactly one Unicode code point in length.

An element's assigned access key is a key combination derived from the element's
accesskey content attribute as follows:

1. If the element has no accesskey attribute, then skip to the fallback step below.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 656 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 656 from 931

2. Otherwise, the user agent must must split the attribute's value on spaces, and let
keys be the resulting tokens.

3. For each value in keys in turn, in the order the tokens appeared in the attribute's
value, run the following substeps:

1. If the value is not a string exactly one Unicode code point in length, then skip
the remainder of these steps for this value.

2. If the value does not correspond to a key on the system's keyboard, then
skip the remainder of these steps for this value.

3. If the user agent can find a combination of modifier keys that, with the key
that corresponds to the value given in the attribute, can be used as a
shortcut key, then the user agent may assign that combination of keys as the
element's assigned access key and abort these steps.

4. Fallback: Optionally, the user agent may assign a key combination of its chosing as
the element's assigned access key and then abort these steps.

5. If this step is reached, the element has no assigned access key.

Once a user agent has selected and assigned an access key for an element, the user
agent should not change the element's assigned access key unless the accesskey content
attribute is changed or the element is moved to another Document.

When the user presses the key combination corresponding to the assigned access key for
an element, if the element defines a command, and the command's Hidden State facet is
false (visible), and the command's Disabled State facet is also false (enabled), then the
user agent must trigger the Action of the command.

User agents may expose elements that have an accesskey attribute in other ways as well,
e.g. in a menu displayed in response to a specific key combination.

The accessKey DOM attribute must reflect the accesskey content attribute.

The accessKeyLabel DOM attribute must return a string that represents the element's
assigned access key, if any. If the element does not have one, then the DOM attribute
must return the empty string.

In the following example, a variety of links are given with access keys so that keyboard
users familiar with the site can more quickly navigate to the relevant pages:

<nav>
 <p>
 <a title="Consortium Activities" accesskey="A"
href="/Consortium/activities">Activities |
 <a title="Technical Reports and Recommendations" accesskey="T"
href="/TR/">Technical Reports |
 <a title="Alphabetical Site Index" accesskey="S"
href="/Consortium/siteindex">Site Index |
 About
Consortium |
 <a title="Contact Consortium" accesskey="C"
href="/Consortium/contact">Contact

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 657 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 657 from 931

 </p>
</nav>

In the following example, the search field is given two possible access keys, "s" and "0" (in
that order). A user agent on a device with a full keyboard might pick Ctrl+Alt+S as the
shortcut key, while a user agent on a small device with just a numeric keypad might pick
just the plain unadorned key 0:

<form action="/search">
 <label>Search: <input type="search" name="q" accesskey="s 0"></label>
 <input type="submit">
</form>

In the following example, a button has possible access keys described. A script then tries
to update the button's label to advertise the key combination the user agent selected.

<input type=submit accesskey="N @ 1" value="Compose">
...
<script>
 function labelButton(button) {
 if (button.accessKeyLabel)
 button.value += ' (' + button.accessKeyLabel + ')';
 }
 var inputs = document.getElementsByTagName('input');
 for (var i = 0; i < inputs.length; i += 1) {
 if (inputs[i].type == "submit")
 labelButton(inputs[i]);
 }
</script>

On one user agent, the button's label might become "Compose (⌘N)". On another, it
might become "Compose (Alt+⇧+1)". If the user agent doesn't assign a key, it will be
just "Compose". The exact string depends on what the assigned access key is, and on
how the user agent represents that key combination.

7.6 The text selection APIs

Every browsing context has a selection. The selection can be empty, and the selection
can have more than one range (a disjointed selection). The user agent should allow the
user to change the selection. User agents are not required to let the user select more than
one range, and may collapse multiple ranges in the selection to a single range when the
user interacts with the selection. (But, of course, the user agent may let the user create
selections with multiple ranges.)

This one selection must be shared by all the content of the browsing context (though not
by nested browsing contexts), including any editing hosts in the document. (Editing hosts
that are not inside a document cannot have a selection.)

If the selection is empty (collapsed, so that it has only one segment and that segment's
start and end points are the same) then the selection's position should equal the caret
position. When the selection is not empty, this specification does not define the caret
position; user agents should follow platform conventions in deciding whether the caret is at
the start of the selection, the end of the selection, or somewhere else.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 658 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 658 from 931

On some platforms (such as those using Wordstar editing conventions), the caret position
is totally independent of the start and end of the selection, even when the selection is
empty. On such platforms, user agents may ignore the requirement that the cursor
position be linked to the position of the selection altogether.

Mostly for historical reasons, in addition to the browsing context's selection, each textarea
and input element has an independent selection. These are the text field selections.

User agents may selectively ignore attempts to use the API to adjust the selection made
after the user has modified the selection. For example, if the user has just selected part of
a word, the user agent could ignore attempts to use the API call to immediately unselect
the selection altogether, but could allow attempts to change the selection to select the
entire word.

User agents may also allow the user to create selections that are not exposed to the API.

The select element also has a selection, indicating which items have been picked by the
user. This is not discussed in this section.

This specification does not specify how selections are presented to the user. The
Selectors specification, in conjunction with CSS, can be used to style text
selections using the ::selection pseudo-element. [SELECTORS] [CSS]

7.6.1 APIs for the browsing context selection

Status: Last call for comments

window . getSelection()
document . getSelection()

Returns the Selection object for the window, which stringifies to the text of the
current selection.

The getSelection() method on the Window interface must return the Selection object
representing the selection of that Window object's browsing context.

For historical reasons, the getSelection() method on the HTMLDocument interface must
return the same Selection object.

interface Selection {
 readonly attribute Node anchorNode;
 readonly attribute long anchorOffset;
 readonly attribute Node focusNode;
 readonly attribute long focusOffset;
 readonly attribute boolean isCollapsed;
 void collapse(in Node parentNode, in long offset);
 void collapseToStart();
 void collapseToEnd();
 void selectAllChildren(in Node parentNode);
 void deleteFromDocument();
 readonly attribute long rangeCount;
 Range getRangeAt(in long index);
 void addRange(in Range range);
 void removeRange(in Range range);
 void removeAllRanges();
 stringifier DOMString ();

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 659 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 659 from 931

};

The Selection interface is represents a list of Range objects. The first item in the list has
index 0, and the last item has index count-1, where count is the number of ranges in the
list. [DOMRANGE]

All of the members of the Selection interface are defined in terms of operations on the
Range objects represented by this object. These operations can raise exceptions, as
defined for the Range interface; this can therefore result in the members of the Selection
interface raising exceptions as well, in addition to any explicitly called out below.

selection . anchorNode
Returns the element that contains the start of the selection.
Returns null if there's no selection.

selection . anchorOffset
Returns the offset of the start of the selection relative to the element that contains
the start of the selection.
Returns 0 if there's no selection.

selection . focusNode
Returns the element that contains the end of the selection.
Returns null if there's no selection.

selection . focusOffset
Returns the offset of the end of the selection relative to the element that contains
the end of the selection.
Returns 0 if there's no selection.

collapsed = selection . isCollapsed()
Returns true if there's no selection or if the selection is empty. Otherwise, returns
false.

selection . collapsed(parentNode, offset)
Replaces the selection with an empty one at the given position.

Throws a WRONG_DOCUMENT_ERR exception if the given node is in a different
document.

selection . collapseToStart()
Replaces the selection with an empty one at the position of the start of the current
selection.

Throws an INVALID_STATE_ERR exception if there is no selection.

selection . collapseToEnd()
Replaces the selection with an empty one at the position of the end of the current
selection.

Throws an INVALID_STATE_ERR exception if there is no selection.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 660 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 660 from 931

selection . selectAllChildren(parentNode)
Replaces the selection with one that contains all the contents of the given element.

Throws a WRONG_DOCUMENT_ERR exception if the given node is in a different
document.

selection . deleteFromDocument()
Deletes the selection.

selection . rangeCount
Returns the number of ranges in the selection.

selection . getRangeAt(index)
Returns the given range.

Throws an INVALID_STATE_ERR exception if the value is out of range.

selection . addRange(range)
Adds the given range to the selection.

selection .
removeRange(range)

Removes the given range from the selection, if the range was one of the ones in
the selection.

selection .
removeAllRanges()

Removes all the ranges in the selection.

The anchorNode attribute must return the value returned by the startContainer attribute of
the last Range object in the list, or null if the list is empty.

The anchorOffset attribute must return the value returned by the startOffset attribute of
the last Range object in the list, or 0 if the list is empty.

The focusNode attribute must return the value returned by the endContainer attribute of
the last Range object in the list, or null if the list is empty.

The focusOffset attribute must return the value returned by the endOffset attribute of the
last Range object in the list, or 0 if the list is empty.

The isCollapsed attribute must return true if there are zero ranges, or if there is exactly
one range and its collapsed attribute is itself true. Otherwise it must return false.

The collapse(parentNode, offset) method must raise a WRONG_DOCUMENT_ERR DOM
exception if parentNode's Document is not the HTMLDocument object with which the
Selection object is associated. Otherwise it is, and the method must remove all the
ranges in the Selection list, then create a new Range object, add it to the list, and invoke
its setStart() and setEnd() methods with the parentNode and offset values as their
arguments.

The collapseToStart() method must raise an INVALID_STATE_ERR DOM exception if there
are no ranges in the list. Otherwise, it must invoke the collapse() method with the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 661 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 661 from 931

startContainer and startOffset values of the first Range object in the list as the
arguments.

The collapseToEnd() method must raise an INVALID_STATE_ERR DOM exception if there
are no ranges in the list. Otherwise, it must invoke the collapse() method with the
endContainer and endOffset values of the last Range object in the list as the arguments.

The selectAllChildren(parentNode) method must invoke the collapse() method with the
parentNode value as the first argument and 0 as the second argument, and must then
invoke the selectNodeContents() method on the first (and only) range in the list with the
parentNode value as the argument.

The deleteFromDocument() method must invoke the deleteContents() method on each
range in the list, if any, from first to last.

The rangeCount attribute must return the number of ranges in the list.

The getRangeAt(index) method must return the indexth range in the list. If index is less
than zero or greater or equal to the value returned by the rangeCount attribute, then the
method must raise an INDEX_SIZE_ERR DOM exception.

The addRange(range) method must add the given range Range object to the list of
selections, at the end (so the newly added range is the new last range). Duplicates are not
prevented; a range may be added more than once in which case it appears in the list more
than once, which (for example) will cause stringification to return the range's text twice.

The removeRange(range) method must remove the first occurrence of range in the list of
ranges, if it appears at all.

The removeAllRanges() method must remove all the ranges from the list of ranges, such
that the rangeCount attribute returns 0 after the removeAllRanges() method is invoked
(and until a new range is added to the list, either through this interface or via user
interaction).

Objects implementing this interface must stringify to a concatenation of the results of
invoking the toString() method of the Range object on each of the ranges of the selection,
in the order they appear in the list (first to last).

In the following document fragment, the emphasized parts indicate the selection.

<p>The cute girl likes the <cite>Oxford English Dictionary</cite>.</p>

If a script invoked window.getSelection().toString(), the return value would be "the
Oxford English".

7.6.2 APIs for the text field selections

Status: Last call for comments

The input and textarea elements define the following members in their DOM interfaces
for handling their text selection:

 void select();

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 662 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 662 from 931

 attribute unsigned long selectionStart;
 attribute unsigned long selectionEnd;
 void setSelectionRange(in unsigned long start, in unsigned long end);

These methods and attributes expose and control the selection of input and textarea text
fields.

element . select()
Selects everything in the text field.

element . selectionStart [= value]
Returns the offset to the start of the selection.
Can be set, to change the start of the selection.

element . selectionEnd [= value]
Returns the offset to the end of the selection.
Can be set, to change the end of the selection.

element . setSelectionRange(start, end)
Changes the selection to cover the given substring.

When these methods and attributes are used with input elements while they don't apply,
they must raise an INVALID_STATE_ERR exception. Otherwise, they must act as described
below.

The select() method must cause the contents of the text field to be fully selected.

The selectionStart attribute must, on getting, return the offset (in logical order) to the
character that immediately follows the start of the selection. If there is no selection, then it
must return the offset (in logical order) to the character that immediately follows the text
entry cursor.

On setting, it must act as if the setSelectionRange() method had been called, with the
new value as the first argument, and the current value of the selectionEnd attribute as the
second argument, unless the current value of the selectionEnd is less than the new value,
in which case the second argument must also be the new value.

The selectionEnd attribute must, on getting, return the offset (in logical order) to the
character that immediately follows the end of the selection. If there is no selection, then it
must return the offset (in logical order) to the character that immediately follows the text
entry cursor.

On setting, it must act as if the setSelectionRange() method had been called, with the
current value of the selectionStart attribute as the first argument, and new value as the
second argument.

The setSelectionRange(start, end) method must set the selection of the text field to the
sequence of characters starting with the character at the startth position (in logical order)
and ending with the character at the (end-1)th position. Arguments greater than the length
of the value in the text field must be treated as pointing at the end of the text field. If end is
less than or equal to start then the start of the selection and the end of the selection must
both be placed immediately before the character with offset end. In UAs where there is no

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 663 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 663 from 931

concept of an empty selection, this must set the cursor to be just before the character with
offset end.

To obtain the currently selected text, the following JavaScript suffices:

var selectionText = control.value.substring(control.selectionStart,
control.selectionEnd);

...where control is the input or textarea element.

Characters with no visible rendering, such as U+200D ZERO WIDTH JOINER, still count
as characters. Thus, for instance, the selection can include just an invisible character, and
the text insertion cursor can be placed to one side or another of such a character.

7.7 The contenteditable attribute

Status: Implemented and widely deployed

The contenteditable attribute is an enumerated attribute whose keywords are the empty
string, true, and false. The empty string and the true keyword map to the true state. The
false keyword maps to the false state. In addition, there is a third state, the inherit state,
which is the missing value default (and the invalid value default).

The true state indicates that the element is editable. The inherit state indicates that the
element is editable if its parent is. The false state indicates that the element is not
editable.

Specifically, if an HTML element has a contenteditable attribute set to the true state, or it
has its contenteditable attribute set to the inherit state and if its nearest ancestor HTML
element with the contenteditable attribute set to a state other than the inherit state has
its attribute set to the true state, or if it and its ancestors all have their contenteditable
attribute set to the inherit state but the Document has designMode enabled, then the UA
must treat the element as editable (as described below).

Otherwise, either the HTML element has a contenteditable attribute set to the false state,
or its contenteditable attribute is set to the inherit state and its nearest ancestor HTML
element with the contenteditable attribute set to a state other than the inherit state has
its attribute set to the false state, or all its ancestors have their contenteditable attribute
set to the inherit state and the Document itself has designMode disabled; either way, the
element is not editable.

element . contentEditable [= value]
Returns "true", "false", or "inherit", based on the state of the contenteditable
attribute.
Can be set, to change that state.

Throws a SYNTAX_ERR exception if the new value isn't one of those strings.

element . isContentEditable
Returns true if the element is editable; otherwise, returns false.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 664 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 664 from 931

The contentEditable DOM attribute, on getting, must return the string "true" if the content
attribute is set to the true state, false" if the content attribute is set to the false state, and
"inherit" otherwise. On setting, if the new value is an ASCII case-insensitive match for
the string "inherit" then the content attribute must be removed, if the new value is an
ASCII case-insensitive match for the string "true" then the content attribute must be set to
the string "true", if the new value is an ASCII case-insensitive match for the string "false"
then the content attribute must be set to the string "false", and otherwise the attribute
setter must raise a SYNTAX_ERR exception.

The isContentEditable DOM attribute, on getting, must return true if the element is
editable, and false otherwise.

If an element is editable and its parent element is not, or if an element is editable and it
has no parent element, then the element is an editing host. Editable elements can be
nested. User agents must make editing hosts focusable (which typically means they enter
the tab order). An editing host can contain non-editable sections, these are handled as
described below. An editing host can contain non-editable sections that contain further
editing hosts.

When an editing host has focus, it must have a caret position that specifies where the
current editing position is. It may also have a selection.

How the caret and selection are represented depends entirely on the UA.

7.7.1 User editing actions

There are several actions that the user agent should allow the user to perform while the
user is interacting with an editing host. How exactly each action is triggered is not defined
for every action, but when it is not defined, suggested key bindings are provided to guide
implementors.

Move the caret
User agents must allow users to move the caret to any position within an editing
host, even into nested editable elements. This could be triggered as the default
action of keydown events with various key identifiers and as the default action of
mousedown events.

Change the selection
User agents must allow users to change the selection within an editing host, even
into nested editable elements. User agents may prevent selections from being
made in ways that cross from editable elements into non-editable elements (e.g. by
making each non-editable descendant atomically selectable, but not allowing text
selection within them). This could be triggered as the default action of keydown
events with various key identifiers and as the default action of mousedown events.

Insert text
This action must be triggered as the default action of a textInput event, and may
be triggered by other commands as well. It must cause the user agent to insert the
specified text (given by the event object's data attribute in the case of the
textInput event) at the caret.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 665 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 665 from 931

If the caret is positioned somewhere where phrasing content is not allowed (e.g.
inside an empty ol element), then the user agent must not insert the text directly at
the caret position. In such cases the behavior is UA-dependent, but user agents
must not, in response to a request to insert text, generate a DOM that is less
conformant than the DOM prior to the request.

User agents should allow users to insert new paragraphs into elements that
contains only content other than paragraphs.

For example, given the markup:

<section>
 <dl>
 <dt> Ben </dt>
 <dd> Goat </dd>
 </dl>
</section>

...the user agent should allow the user to insert p elements before and after the
dl element, as children of the section element.

Break block
UAs should offer a way for the user to request that the current paragraph be broken
at the caret, e.g. as the default action of a keydown event whose identifier is the
"Enter" key and that has no modifiers set.

The exact behavior is UA-dependent, but user agents must not, in response to a
request to break a paragraph, generate a DOM that is less conformant than the
DOM prior to the request.

Insert a line separator
UAs should offer a way for the user to request an explicit line break at the caret
position without breaking the paragraph, e.g. as the default action of a keydown
event whose identifier is the "Enter" key and that has a shift modifier set. Line
separators are typically found within a poem verse or an address. To insert a line
break, the user agent must insert a br element.

If the caret is positioned somewhere where phrasing content is not allowed (e.g. in
an empty ol element), then the user agent must not insert the br element directly at
the caret position. In such cases the behavior is UA-dependent, but user agents
must not, in response to a request to insert a line separator, generate a DOM that
is less conformant than the DOM prior to the request.

Delete
UAs should offer a way for the user to delete text and elements, including non-
editable descendants, e.g. as the default action of keydown events whose identifiers
are "U+0008" or "U+007F".

Five edge cases in particular need to be considered carefully when implementing
this feature: backspacing at the start of an element, backspacing when the caret is
immediately after an element, forward-deleting at the end of an element, forward-
deleting when the caret is immediately before an element, and deleting a selection
whose start and end points do not share a common parent node.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 666 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 666 from 931

In any case, the exact behavior is UA-dependent, but user agents must not, in
response to a request to delete text or an element, generate a DOM that is less
conformant than the DOM prior to the request.

Insert, and wrap text in, semantic elements
UAs should offer the user the ability to mark text and paragraphs with semantics
that HTML can express.

UAs should similarly offer a way for the user to insert empty semantic elements to
subsequently fill by entering text manually.

UAs should also offer a way to remove those semantics from marked up text, and
to remove empty semantic element that have been inserted.

In response to a request from a user to mark text up in italics, user agents should
use the i element to represent the semantic. The em element should be used only if
the user agent is sure that the user means to indicate stress emphasis.

In response to a request from a user to mark text up in bold, user agents should
use the b element to represent the semantic. The strong element should be used
only if the user agent is sure that the user means to indicate importance.

The exact behavior is UA-dependent, but user agents must not, in response to a
request to wrap semantics around some text or to insert or remove a semantic
element, generate a DOM that is less conformant than the DOM prior to the
request.

Select and move non-editable elements nested inside editing hosts
UAs should offer a way for the user to move images and other non-editable parts
around the content within an editing host. This may be done using the drag and
drop mechanism. User agents must not, in response to a request to move non-
editable elements nested inside editing hosts, generate a DOM that is less
conformant than the DOM prior to the request.

Edit form controls nested inside editing hosts
When an editable form control is edited, the changes must be reflected in both its
current value and its default value. For input elements this means updating the
defaultValue DOM attribute as well as the value DOM attribute; for select
elements it means updating the option elements' defaultSelected DOM attribute
as well as the selected DOM attribute; for textarea elements this means updating
the defaultValue DOM attribute as well as the value DOM attribute. (Updating the
default* DOM attributes causes content attributes to be updated as well.)

User agents may perform several commands per user request; for example if the user
selects a block of text and hits Enter, the UA might interpret that as a request to delete the
content of the selection followed by a request to break the paragraph at that position.

All of the actions defined above, whether triggered by the user or programmatically (e.g.
by execCommand() commands), must fire mutation events as appropriate.

7.7.2 Making entire documents editable

Documents have a designMode, which can be either enabled or disabled.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 667 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 667 from 931

document . designMode [= value]
Returns "on" if the document is editable, and "off" if it isn't.
Can be set, to change the document's current state.

The designMode DOM attribute on the Document object takes two values, "on" and "off".
When it is set, the new value must be compared in an ASCII case-insensitive manner to
these two values. If it matches the "on" value, then designMode must be enabled, and if it
matches the "off" value, then designMode must be disabled. Other values must be
ignored.

When designMode is enabled, the DOM attribute must return the value "on", and when it is
disabled, it must return the value "off".

The last state set must persist until the document is destroyed or the state is changed.
Initially, documents must have their designMode disabled.

7.8 Spelling and grammar checking

Status: Working draft

User agents can support the checking of spelling and grammar of editable text, either in
form controls (such as the value of textarea elements), or in elements in an editing host
(using contenteditable).

For each element, user agents must establish a default behavior, either through defaults
or through preferences expressed by the user. There are three possible default behaviors
for each element:

true-by-default
The element will be checked for spelling and grammar if its contents are editable.

false-by-default
The element will never be checked for spelling and grammar.

inherit-by-default
The element's default behavior is the same as its parent element's. Elements that
have no parent element cannot have this as their default behavior.

The spellcheck attribute is an enumerated attribute whose keywords are the empty string,
true and false. The empty string and the true keyword map to the true state. The false
keyword maps to the false state. In addition, there is a third state, the default state, which
is the missing value default (and the invalid value default).

The true state indicates that the element is to have its spelling and grammar checked. The
default state indicates that the element is to act according to a default behavior, possibly
based on the parent element's own spellcheck state. The false state indicates that the
element is not to be checked.

element . spellcheck [= value]

Returns "true", "false", or "default", based on the state of the spellcheck
attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 668 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 668 from 931

Can be set, to change that state.

Throws a SYNTAX_ERR exception if the new value isn't one of those strings.

The spellcheck DOM attribute, on getting, must return the string "true" if the content
attribute is set to the true state, false" if the content attribute is set to the false state, and
"default" otherwise. On setting, if the new value is an ASCII case-insensitive match for
the string "default" then the content attribute must be removed, if the new value is an
ASCII case-insensitive match for the string "true" then the content attribute must be set to
the string "true", if the new value is an ASCII case-insensitive match for the string "false"
then the content attribute must be set to the string "false", and otherwise the attribute
setter must raise a SYNTAX_ERR exception.

The spellcheck DOM attribute is not affected by user preferences that override the
spellcheck content attribute, and therefore might not reflect the actual
spellchecking state.

On setting, if the new value is true, then the element's spellcheck content attribute must
be set to the literal string "true", otherwise it must be set to the literal string "false".

User agents must only consider the following pieces of text as checkable for the purposes
of this feature:

• The value of input elements to which the readonly attribute applies, whose type
attributes are not in the Password state, and that are not immutable (i.e. that do not
have the readonly attribute specified and that are not disabled).

• The value of textarea elements that do not have a readonly attribute and that are
not disabled.

• Text in text nodes that are children of editable elements.
• Text in attributes of editable elements.

For text that is part of a text node, the element with which the text is associated is the
element that is the immediate parent of the first character of the word, sentence, or other
piece of text. For text in attributes, it is the attribute's element. For the values of input and
textarea elements, it is the element itself.

To determine if a word, sentence, or other piece of text in an applicable element (as
defined above) is to have spelling- and/or grammar-checking enabled, the UA must use
the following algorithm:

1. If the user has disabled the checking for this text, then the checking is disabled.
2. Otherwise, if the user has forced the checking for this text to always be enabled,

then the checking is enabled.
3. Otherwise, if the element with which the text is associated has a spellcheck

content attribute, then: if that attribute is in the true state, then checking is enabled;
otherwise, if that attribute is in the false state, then checking is disabled.

4. Otherwise, if there is an ancestor element with a spellcheck content attribute that
is not in the default state, then: if the nearest such ancestor's spellcheck content
attribute is in the true state, then checking is enabled; otherwise, checking is
disabled.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 669 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 669 from 931

5. Otherwise, if the element's default behavior is true-by-default, then checking is
enabled.

6. Otherwise, if the element's default behavior is false-by-default, then checking is
disabled.

7. Otherwise, if the element's parent element has its checking enabled, then checking
is enabled.

8. Otherwise, checking is disabled.

If the checking is enabled for a word/sentence/text, the user agent should indicate spelling
and/or grammar errors in that text. User agents should take into account the other
semantics given in the document when suggesting spelling and grammar corrections.
User agents may use the language of the element to determine what spelling and
grammar rules to use, or may use the user's preferred language settings. UAs should use
input element attributes such as pattern to ensure that the resulting value is valid, where
possible.

If checking is disabled, the user agent should not indicate spelling or grammar errors for
that text.

The element with ID "a" in the following example would be the one used to determine if the
word "Hello" is checked for spelling errors. In this example, it would not be.

<div contenteditable="true">
 Hello!
</div>

The element with ID "b" in the following example would have checking enabled (the
leading space character in the attribute's value on the input element causes the attribute
to be ignored, so the ancestor's value is used instead, regardless of the default).

<p spellcheck="true">
 <label>Name: <input spellcheck=" false" id="b"></label>
</p>

7.9 Drag and drop

Status: Last call for comments

This section defines an event-based drag-and-drop mechanism.

This specification does not define exactly what a drag-and-drop operation actually is.

On a visual medium with a pointing device, a drag operation could be the default action of
a mousedown event that is followed by a series of mousemove events, and the drop could be
triggered by the mouse being released.

On media without a pointing device, the user would probably have to explicitly indicate his
intention to perform a drag-and-drop operation, stating what he wishes to drag and what
he wishes to drop, respectively.

However it is implemented, drag-and-drop operations must have a starting point (e.g.
where the mouse was clicked, or the start of the selection or element that was selected for
the drag), may have any number of intermediate steps (elements that the mouse moves
over during a drag, or elements that the user picks as possible drop points as he cycles

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 670 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 670 from 931

through possibilities), and must either have an end point (the element above which the
mouse button was released, or the element that was finally selected), or be canceled. The
end point must be the last element selected as a possible drop point before the drop
occurs (so if the operation is not canceled, there must be at least one element in the
middle step).

7.9.1 Introduction

This section is non-normative.

It's also currently non-existent.

7.9.2 The DragEvent and DataTransfer interfaces

The drag-and-drop processing model involves several events. They all use the DragEvent
interface.

interface DragEvent : MouseEvent {
 readonly attribute DataTransfer dataTransfer;

 void initDragEvent(in DOMString typeArg, in boolean canBubbleArg, in
boolean cancelableArg, in AbstractView viewArg, in long detailArg, in long
screenXArg, in long screenYArg, in long clientXArg, in long clientYArg, in
boolean ctrlKeyArg, in boolean altKeyArg, in boolean shiftKeyArg, in boolean
metaKeyArg, in unsigned short buttonArg, in EventTarget relatedTargetArg, in
DataTransfer dataTransferArg);
 void initDragEventNS(in DOMString namespaceURIArg, in DOMString typeArg,
in boolean canBubbleArg, in boolean cancelableArg, in AbstractView viewArg,
in long detailArg, in long screenXArg, in long screenYArg, in long
clientXArg, in long clientYArg, in unsigned short buttonArg, in EventTarget
relatedTargetArg, in DOMString modifiersListArg, in DataTransfer
dataTransferArg);
};

event . dataTransfer
Returns the DataTransfer object for the event.

The initDragEvent() and initDragEventNS() methods must initialize the event in a
manner analogous to the similarly-named methods in the DOM Events interfaces.
[DOMEVENTS]

The initDragEvent() and initDragEventNS() methods handle modifier keys
differently, much like the equivalent methods on the MouseEvent interface.

The dataTransfer attribute of the DragEvent interface represents the context information
for the event.

interface DataTransfer {
 attribute DOMString dropEffect;
 attribute DOMString effectAllowed;

 readonly attribute DOMStringList types;
 void clearData(optional in DOMString format);
 void setData(in DOMString format, in DOMString data);
 DOMString getData(in DOMString format);

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 671 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 671 from 931

 readonly attribute FileList files;

 void setDragImage(in Element image, in long x, in long y);
 void addElement(in Element element);
};

DataTransfer objects can hold pieces of data, each associated with a unique format.
Formats are generally given by MIME types, with some values special-cased for legacy
reasons. For the purposes of this API, however, the format strings are opaque, case-
sensitive, strings, and the empty string is a valid format string.

dataTransfer . dropEffect [= value]
Returns the kind of operation that is currently selected. If the kind of operation isn't
one of those that is allowed by the effectAllowed attribute, then the operation will
fail.
Can be set, to change the selected operation.

The possible values are none, copy, link, and move.

dataTransfer . effectAllowed [= value]
Returns the kinds of operations that are to be allowed.
Can be set, to change the allowed operations.

The possible values are none, copy, copyLink, copyMove, link, linkMove, move, all,
and uninitialized,

dataTransfer . types
Returns a DOMStringList listing the formats that were set in the dragstart event. In
addition, if any files are being dragged, then one of the types will be the string
"Files".

dataTransfer . clearData([format])
Removes the data of the specified formats. Removes all data if the argument is
omitted.

dataTransfer . setData(format, data)
Adds the specified data.

data = dataTransfer . getData(format)
Returns the specified data. If there is no such data, returns the empty string.

dataTransfer . files
Returns a FileList of the files being dragged, if any.

dataTransfer . setDragImage(element, x, y)
Uses the given element to update the drag feedback, replacing any previously
specified feedback.

dataTransfer . addElement(element)
Adds the given element to the list of elements used to render the drag feedback.

When a DataTransfer object is created, it must be initialized as follows:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 672 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 672 from 931

• The DataTransfer object must initially contain no data, no elements, and have no
associated image.

• The DataTransfer object's effectAllowed attribute must be set to "uninitialized".
• The dropEffect attribute must be set to "none".

The dropEffect attribute controls the drag-and-drop feedback that the user is given during
a drag-and-drop operation.

The attribute must ignore any attempts to set it to a value other than none, copy, link, and
move. On getting, the attribute must return the last of those four values that it was set to.

The effectAllowed attribute is used in the drag-and-drop processing model to initialize the
dropEffect attribute during the dragenter and dragover events.

The attribute must ignore any attempts to set it to a value other than none, copy, copyLink,
copyMove, link, linkMove, move, all, and uninitialized. On getting, the attribute must
return the last of those values that it was set to.

The types attribute must return a live DOMStringList that contains the list of formats that
were added to the DataTransfer object in the corresponding dragstart event. If any files
were included in the drag, then the DOMStringList object must in addition include the
string "Files".

If the setData() method is invoked with the string "Files", and some files were
included in the drag, then the string "Files" will appear twice in the types attribute's
list.

The clearData() method, when called with no arguments, must clear the DataTransfer
object of all data (for all formats).

The clearData() method does not affect whether any files were included in the drag,
so the types attribute's list might still not be empty after calling clearData() (it
would still contain the "Files" string if any files were included in the drag).

When called with an argument, the clearData(format) method must clear the
DataTransfer object of any data associated with the given format. If format is the value
"Text", then it must be treated as "text/plain". If the format is "URL", then it must be
treated as "text/uri-list".

The setData(format, data) method must add data to the data stored in the DataTransfer
object, labeled as being of the type format. This must replace any previous data that had
been set for that format. If format is the value "Text", then it must be treated as
"text/plain". If the format is "URL", then it must be treated as "text/uri-list".

The getData(format) method must return the data that is associated with the type format,
if any, and must return the empty string otherwise. If format is the value "Text", then it
must be treated as "text/plain". If the format is "URL", then the data associated with the
"text/uri-list" format must be parsed as appropriate for text/uri-list data, and the
first URL from the list must be returned. If there is no data with that format, or if there is but
it has no URLs, then the method must return the empty string. [RFC2483]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 673 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 673 from 931

The files attribute must return the FileList object that contains the files that are stored
in the DataTransfer object. There is one such object per DataTransfer object.

The setDragImage(element, x, y) method sets which element to use to generate the
drag feedback. The element argument can be any Element; if it is an img element, then the
user agent should use the element's image (at its intrinsic size) to generate the feedback,
otherwise the user agent should base the feedback on the given element (but the exact
mechanism for doing so is not specified).

The addElement(element) method is an alternative way of specifying how the user agent
is to render the drag feedback. It adds an element to the DataTransfer object.

The difference between setDragImage() and addElement() is that the latter
automatically generates the image based on the current rendering of the elements
added, whereas the former uses the exact specified image.

7.9.3 Events fired during a drag-and-drop action

The following events are involved in the drag-and-drop model.

Whenever the processing model described below causes one of these events to be fired,
the event fired must use the DragEvent interface defined above, must have the bubbling
and cancelable behaviors given in the table below, and must have the context information
set up as described after the table, with the view attribute set to the view with which the
user interacted to trigger the drag-and-drop event, the detail attribute set to zero, the
mouse and key attributes set according to the state of the input devices as they would be
for user interaction events, and the relatedTarget attribute set to null.

If there is no relevant pointing device, the object must have its screenX, screenY, clientX,
clientY, and button attributes set to 0.

Event
Name

Target Bubbles? Cancelable? dataTransfer effectAllowed dropEffect Defau
Action

dragstart Source
node

✓
Bubbles

✓
Cancelable

Contains
source node
unless a
selection is
being
dragged, in
which case it
is empty;
files returns
any files
included in
the drag
operation

uninitialized none Initiate t
drag-an
drop
operatio

drag Source
node

✓
Bubbles

✓
Cancelable

Empty Same as last
event

none Continu
the drag
and-dro
operatio

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 674 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 674 from 931

Event
Name

Target Bubbles? Cancelable? dataTransfer effectAllowed dropEffect Defau
Action

dragenter Immediate
user
selection
or the
body
element

✓
Bubbles

✓
Cancelable

Empty Same as last
event

Based on
effectAllowed

value

Reject
immedia
user
selectio
as
potentia
target
element

dragleave Previous
target
element

✓
Bubbles

— Empty Same as last
event

none None

dragover Current
target
element

✓
Bubbles

✓
Cancelable

Empty Same as last
event

Based on
effectAllowed

value

Reset th
current
drag
operatio
to "none

drop Current
target
element

✓
Bubbles

✓
Cancelable

getData()
returns data
set in
dragstart
event; files
returns any
files included
in the drag
operation

Same as last
event

Current drag
operation

Varies

dragend Source
node

✓
Bubbles

— Empty Same as last
event

Current drag
operation

Varies

The dataTransfer object's contents are empty except for dragstart events and drop
events, for which the contents are set as described in the processing model, below.

The effectAllowed attribute must be set to "uninitialized" for dragstart events, and to
whatever value the field had after the last drag-and-drop event was fired for all other
events (only counting events fired by the user agent for the purposes of the drag-and-drop
model described below).

The dropEffect attribute must be set to "none" for dragstart, drag, and dragleave events
(except when stated otherwise in the algorithms given in the sections below), to the value
corresponding to the current drag operation for drop and dragend events, and to a value
based on the effectAllowed attribute's value and to the drag-and-drop source, as given
by the following table, for the remaining events (dragenter and dragover):

effectAllowed dropEffect

none none
copy, copyLink, copyMove, all copy

link, linkMove link

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 675 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 675 from 931

effectAllowed dropEffect

move move
uninitialized when what is being dragged is a selection from a text field move

uninitialized when what is being dragged is a selection copy

uninitialized when what is being dragged is an a element with an href
attribute

link

Any other case copy

7.9.4 Drag-and-drop processing model

When the user attempts to begin a drag operation, the user agent must first determine
what is being dragged. If the drag operation was invoked on a selection, then it is the
selection that is being dragged. Otherwise, it is the first element, going up the ancestor
chain, starting at the node that the user tried to drag, that has the DOM attribute
draggable set to true. If there is no such element, then nothing is being dragged, the drag-
and-drop operation is never started, and the user agent must not continue with this
algorithm.

img elements and a elements with an href attribute have their draggable attribute set
to true by default.

If the user agent determines that something can be dragged, a dragstart event must then
be fired at the source node.

The source node depends on the kind of drag and how it was initiated. If it is a selection
that is being dragged, then the source node is the node that the user started the drag on
(typically the text node that the user originally clicked). If the user did not specify a
particular node, for example if the user just told the user agent to begin a drag of "the
selection", then the source node is the deepest node that is a common ancestor of all
parts of the selection. If it is not a selection that is being dragged, then the source node is
the element that is being dragged.

Multiple events are fired on the source node during the course of the drag-and-drop
operation.

The list of dragged nodes also depends on the kind of drag. If it is a selection that is
being dragged, then the list of dragged nodes contains, in tree order, every node that is
partially or completely included in the selection (including all their ancestors). Otherwise,
the list of dragged nodes contains only the source node.

If it is a selection that is being dragged, the dataTransfer member of the event must be
created with no nodes. Otherwise, it must be created containing just the source node.
Script can use the addElement() method to add further elements to the list of what is being
dragged. (This list is only used for rendering the drag feedback.)

The dataTransfer member of the event also has data added to it, as follows:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 676 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 676 from 931

• If it is a selection that is being dragged, then the user agent must add the text of the
selection to the dataTransfer member, associated with the text/plain format.

• If files are being dragged, then the user agent must add the files to the
dataTransfer member's files attribute's FileList object. (Dragging files can only
happen from outside a browsing context, for example from a file system manager
application, and thus the dragstart event is actually implied in this case.)

• The user agent must take the list of dragged nodes and extract the microdata from
those nodes into a JSON form, and then must add the resulting string to the
dataTransfer member, associated with the application/microdata+json format.

• The user agent must take the list of dragged nodes and extract the vCard data from
those nodes, and then must add the resulting string to the dataTransfer member,
associated with the text/directory;profile=vcard format.

• The user agent must take the list of dragged nodes and extract the vEvent data
from those nodes, and then must add the resulting string to the dataTransfer
member, associated with the text/calendar;component=vevent format.

• text/html fragment

• The user agent must run the following steps:

1. Let urls be an empty list of absolute URLs.

2. For each node in nodes:

If the node is an a element with an href
Add to urls the result of resolving the element's href content attribute relative to the
element.

If the node is an img element with an src
Add to urls the result of resolving the element's src content attribute relative to the
element.

3. If urls is still empty, abort these steps.

4. Let url string be the result of concatenating the strings in urls, in the order
they were added, separated by a U+000D CARRIAGE RETURN U+000A
LINE FEED character pair (CRLF).

5. Add url string to the dataTransfer member, associated with the text/uri-
list format.

If the event is canceled, then the drag-and-drop operation must not occur; the user agent
must not continue with this algorithm.

If it is not canceled, then the drag-and-drop operation must be initiated.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 677 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 677 from 931

Since events with no event handlers registered are, almost by definition, never
canceled, drag-and-drop is always available to the user if the author does not
specifically prevent it.

The drag-and-drop feedback must be generated from the first of the following sources that
is available:

1. The element specified in the last call to the setDragImage() method of the
dataTransfer object of the dragstart event, if the method was called. In visual
media, if this is used, the x and y arguments that were passed to that method
should be used as hints for where to put the cursor relative to the resulting image.
The values are expressed as distances in CSS pixels from the left side and from
the top side of the image respectively. [CSS]

2. The elements that were added to the dataTransfer object, both before the event
was fired, and during the handling of the event using the addElement() method, if
any such elements were indeed added.

3. The selection that the user is dragging.

The user agent must take a note of the data that was placed in the dataTransfer object.
This data will be made available again when the drop event is fired.

From this point until the end of the drag-and-drop operation, device input events (e.g.
mouse and keyboard events) must be suppressed. In addition, the user agent must track
all DOM changes made during the drag-and-drop operation, and add them to its undo
history as one atomic operation once the drag-and-drop operation has ended.

During the drag operation, the element directly indicated by the user as the drop target is
called the immediate user selection. (Only elements can be selected by the user; other
nodes must not be made available as drop targets.) However, the immediate user
selection is not necessarily the current target element, which is the element currently
selected for the drop part of the drag-and-drop operation. The immediate user selection
changes as the user selects different elements (either by pointing at them with a pointing
device, or by selecting them in some other way). The current target element changes
when the immediate user selection changes, based on the results of event handlers in the
document, as described below.

Both the current target element and the immediate user selection can be null, which
means no target element is selected. They can also both be elements in other (DOM-
based) documents, or other (non-Web) programs altogether. (For example, a user could
drag text to a word-processor.) The current target element is initially null.

In addition, there is also a current drag operation, which can take on the values "none",
"copy", "link", and "move". Initially, it has the value "none". It is updated by the user agent
as described in the steps below.

User agents must, every 350ms (±200ms), perform the following steps in sequence. (If the
user agent is still performing the previous iteration of the sequence when the next iteration
becomes due, the user agent must not execute the overdue iteration, effectively "skipping
missed frames" of the drag-and-drop operation.)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 678 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 678 from 931

1. First, the user agent must fire a drag event at the source node. If this event is
canceled, the user agent must set the current drag operation to none (no drag
operation).

2. Next, if the drag event was not canceled and the user has not ended the drag-and-
drop operation, the user agent must check the state of the drag-and-drop operation,
as follows:

1. First, if the user is indicating a different immediate user selection than during
the last iteration (or if this is the first iteration), and if this immediate user
selection is not the same as the current target element, then the current
target element must be updated, as follows:

1. If the new immediate user selection is null, or is in a non-DOM
document or application, then set the current target element to the
same value.

2. Otherwise, the user agent must fire a dragenter event at the
immediate user selection.

3. If the event is canceled, then the current target element must be set
to the immediate user selection.

4. Otherwise, if the current target element is not the body element, the
user agent must fire a dragenter event at the body element, and the
current target element must be set to the body element, regardless of
whether that event was canceled or not. (If the body element is null,
then the current target element would be set to null too in this case, it
wouldn't be set to the Document object.)

2. If the previous step caused the current target element to change, and if the
previous target element was not null or a part of a non-DOM document, the
user agent must fire a dragleave event at the previous target element.

3. If the current target element is a DOM element, the user agent must fire a
dragover event at this current target element.

If the dragover event is not canceled, the current drag operation must be
reset to "none".

Otherwise, the current drag operation must be set based on the values the
effectAllowed and dropEffect attributes of the dataTransfer object had
after the event was handled, as per the following table:

effectAllowed dropEffect Drag
operation

uninitialized, copy, copyLink, copyMove, or
all

copy "copy"

uninitialized, link, copyLink, linkMove, or
all

link "link"

uninitialized, move, copyMove, linkMove, or move "move"

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 679 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 679 from 931

effectAllowed dropEffect Drag
operation

all
Any other case "none"

Then, regardless of whether the dragover event was canceled or not, the
drag feedback (e.g. the mouse cursor) must be updated to match the current
drag operation, as follows:

Drag
operation

Feedback

"copy" Data will be copied if dropped here.
"link" Data will be linked if dropped here.
"move" Data will be moved if dropped here.
"none" No operation allowed, dropping here will cancel the drag-

and-drop operation.

4. Otherwise, if the current target element is not a DOM element, the user
agent must use platform-specific mechanisms to determine what drag
operation is being performed (none, copy, link, or move). This sets the
current drag operation.

3. Otherwise, if the user ended the drag-and-drop operation (e.g. by releasing the
mouse button in a mouse-driven drag-and-drop interface), or if the drag event was
canceled, then this will be the last iteration. The user agent must execute the
following steps, then stop looping.

1. If the current drag operation is none (no drag operation), or, if the user
ended the drag-and-drop operation by canceling it (e.g. by hitting the Escape
key), or if the current target element is null, then the drag operation failed. If
the current target element is a DOM element, the user agent must fire a
dragleave event at it; otherwise, if it is not null, it must use platform-specific
conventions for drag cancellation.

2. Otherwise, the drag operation was as success. If the current target element
is a DOM element, the user agent must fire a drop event at it; otherwise, it
must use platform-specific conventions for indicating a drop.

When the target is a DOM element, the dropEffect attribute of the event's
dataTransfer object must be given the value representing the current drag
operation (copy, link, or move), and the object must be set up so that the
getData() method will return the data that was added during the dragstart
event, and the files attribute will return a FileList object with any files that
were dragged.

If the event is canceled, the current drag operation must be set to the value
of the dropEffect attribute of the event's dataTransfer object as it stood
after the event was handled.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 680 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 680 from 931

Otherwise, the event is not canceled, and the user agent must perform the
event's default action, which depends on the exact target as follows:

If the current target element is a text field (e.g. textarea, or an input
element whose type attribute is in the Text state)

The user agent must insert the data associated with the text/plain format, if any,
into the text field in a manner consistent with platform-specific conventions (e.g.
inserting it at the current mouse cursor position, or inserting it at the end of the
field).

Otherwise
Reset the current drag operation to "none".

3. Finally, the user agent must fire a dragend event at the source node, with the
dropEffect attribute of the event's dataTransfer object being set to the
value corresponding to the current drag operation.

The current drag operation can change during the processing of the
drop event, if one was fired.

The event is not cancelable. After the event has been handled, the user
agent must act as follows:

If the current target element is a text field (e.g. textarea, or an input
element whose type attribute is in the Text state), and a drop event was
fired in the previous step, and the current drag operation is "move",
and the source of the drag-and-drop operation is a selection in the
DOM

The user agent should delete the range representing the dragged selection from
the DOM.

If the current target element is a text field (e.g. textarea, or an input
element whose type attribute is in the Text state), and a drop event was
fired in the previous step, and the current drag operation is "move",
and the source of the drag-and-drop operation is a selection in a text
field

The user agent should delete the dragged selection from the relevant text field.
Otherwise

The event has no default action.

7.9.4.1 When the drag-and-drop operation starts or ends in another document

The model described above is independent of which Document object the nodes involved
are from; the events must be fired as described above and the rest of the processing
model must be followed as described above, irrespective of how many documents are
involved in the operation.

7.9.4.2 When the drag-and-drop operation starts or ends in another application

If the drag is initiated in another application, the source node is not a DOM node, and the
user agent must use platform-specific conventions instead when the requirements above
involve the source node. User agents in this situation must act as if the dragged data had
been added to the DataTransfer object when the drag started, even though no dragstart

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 681 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 681 from 931

event was actually fired; user agents must similarly use platform-specific conventions
when deciding on what drag feedback to use.

If a drag is started in a document but ends in another application, then the user agent
must instead replace the parts of the processing model relating to handling the target
according to platform-specific conventions.

In any case, scripts running in the context of the document must not be able to distinguish
the case of a drag-and-drop operation being started or ended in another application from
the case of a drag-and-drop operation being started or ended in another document from
another domain.

7.9.5 The draggable attribute

All HTML elements may have the draggable content attribute set. The draggable attribute
is an enumerated attribute. It has three states. The first state is true and it has the
keyword true. The second state is false and it has the keyword false. The third state is
auto; it has no keywords but it is the missing value default.

The true state means the element is draggable; the false state means that it is not. The
auto state uses the default behavior of the user agent.

element . draggable [= value]
Returns true if the element is draggable; otherwise, returns false.

Can be set, to override the default and set the draggable content attribute.

The draggable DOM attribute, whose value depends on the content attribute's in the way
described below, controls whether or not the element is draggable. Generally, only text
selections are draggable, but elements whose draggable DOM attribute is true become
draggable as well.

If an element's draggable content attribute has the state true, the draggable DOM attribute
must return true.

Otherwise, if the element's draggable content attribute has the state false, the draggable
DOM attribute must return false.

Otherwise, the element's draggable content attribute has the state auto. If the element is
an img element, or, if the element is an a element with an href content attribute, the
draggable DOM attribute must return true.

Otherwise, the draggable DOM must return false.

If the draggable DOM attribute is set to the value false, the draggable content attribute
must be set to the literal value false. If the draggable DOM attribute is set to the value
true, the draggable content attribute must be set to the literal value true.

7.9.6 Copy and paste

Copy-and-paste is a form of drag-and-drop: the "copy" part is equivalent to dragging
content to another application (the "clipboard"), and the "paste" part is equivalent to
dragging content from another application.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 682 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 682 from 931

Select-and-paste (a model used by mouse operations in the X Window System) is
equivalent to a drag-and-drop operation where the source is the selection.

7.9.6.1 Copy to clipboard

When the user invokes a copy operation, the user agent must act as if the user had
invoked a drag on the current selection. If the drag-and-drop operation initiates, then the
user agent must act as if the user had indicated (as the immediate user selection) a
hypothetical application representing the clipboard. Then, the user agent must act as if the
user had ended the drag-and-drop operation without canceling it. If the drag-and-drop
operation didn't get canceled, the user agent should then follow the relevant platform-
specific conventions for copy operations (e.g. updating the clipboard).

7.9.6.2 Cut to clipboard

When the user invokes a cut operation, the user agent must act as if the user had invoked
a copy operation (see the previous section), followed, if the copy was completed
successfully, by a selection delete operation.

7.9.6.3 Paste from clipboard

When the user invokes a clipboard paste operation, the user agent must act as if the user
had invoked a drag on a hypothetical application representing the clipboard, setting the
data associated with the drag as the content on the clipboard (in whatever formats are
available).

Then, the user agent must act as if the user had indicated (as the immediate user
selection) the element with the keyboard focus, and then ended the drag-and-drop
operation without canceling it.

7.9.6.4 Paste from selection

When the user invokes a selection paste operation, the user agent must act as if the user
had invoked a drag on the current selection, then indicated (as the immediate user
selection) the element with the keyboard focus, and then ended the drag-and-drop
operation without canceling it.

7.9.7 Security risks in the drag-and-drop model

User agents must not make the data added to the DataTransfer object during the
dragstart event available to scripts until the drop event, because otherwise, if a user were
to drag sensitive information from one document to a second document, crossing a hostile
third document in the process, the hostile document could intercept the data.

For the same reason, user agents must consider a drop to be successful only if the user
specifically ended the drag operation — if any scripts end the drag operation, it must be
considered unsuccessful (canceled) and the drop event must not be fired.

User agents should take care to not start drag-and-drop operations in response to script
actions. For example, in a mouse-and-window environment, if a script moves a window
while the user has his mouse button depressed, the UA would not consider that to start a
drag. This is important because otherwise UAs could cause data to be dragged from
sensitive sources and dropped into hostile documents without the user's consent.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 683 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 683 from 931

7.10 Undo history

Status: First draft

There has got to be a better way of doing this, surely.

7.10.1 Introduction

...

7.10.2 Definitions

The user agent must associate an undo transaction history with each HTMLDocument
object.

The undo transaction history is a list of entries. The entries are of two type: DOM changes
and undo objects.

Each DOM changes entry in the undo transaction history consists of batches of one or
more of the following:

• Changes to the content attributes of an Element node.
• Changes to the DOM attributes of a Node.
• Changes to the DOM hierarchy of nodes that are descendants of the HTMLDocument

object (parentNode, childNodes).

Undo object entries consist of objects representing state that scripts running in the
document are managing. For example, a Web mail application could use an undo object
to keep track of the fact that a user has moved an e-mail to a particular folder, so that the
user can undo the action and have the e-mail return to its former location.

Broadly speaking, DOM changes entries are handled by the UA in response to user edits
of form controls and editing hosts on the page, and undo object entries are handled by
script in response to higher-level user actions (such as interactions with server-side state,
or in the implementation of a drawing tool).

7.10.3 The UndoManager interface
This API sucks. Seriously. It's a terrible API. Really bad. I hate it. Here are the
requirements:

• Has to cope with cases where the server has undo state already when the page is
loaded, that can be stuffed into the undo buffer onload.

• Has to support undo/redo.
• Has to cope with the "undo" action being "contact the server and tell it to undo",

rather than it being the opposite of the "redo" action.
• Has to cope with some undo states expiring from the undo history (e.g. server can

only remember one undelete action) but other states not expiring (e.g. client can
undo arbitrary amounts of local edits).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 684 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 684 from 931

To manage undo object entries in the undo transaction history, the UndoManager interface
can be used:

interface UndoManager {
 readonly attribute unsigned long length;
 getter any item(in unsigned long index);
 readonly attribute unsigned long position;
 unsigned long add(in any data, in DOMString title);
 void remove(in unsigned long index);
 void clearUndo();
 void clearRedo();
};

window . undoManager
Returns the UndoManager object.

undoManager . length
Returns the number of entries in the undo history.

data = undoManager . item(index)
undoManager[index]

Returns the entry with index index in the undo history.
Returns null if index is out of range.

undoManager . position
Returns the number of the current entry in the undo history. (Entries at and past
this point are redo entries.)

undoManager . add(data, title)
Adds the specified entry to the undo history.

undoManager . remove(index)
Removes the specified entry to the undo history.

Throws an INDEX_SIZE_ERR exception if the given index is out of range.

undoManager . clearUndo()
Removes all entries before the current position in the undo history.

undoManager . clearRedo()
Removes all entries at and after the current position in the undo history.

The undoManager attribute of the Window interface must return the object implementing the
UndoManager interface for that Window object's associated HTMLDocument object.

UndoManager objects represent their document's undo transaction history. Only undo object
entries are visible with this API, but this does not mean that DOM changes entries are
absent from the undo transaction history.

The length attribute must return the number of undo object entries in the undo transaction
history. This is the length.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 685 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 685 from 931

The object's indices of the supported indexed properties are the numbers in the range
zero to length-1, unless the length is zero, in which case there are no supported indexed
properties.

The item(n) method must return the nth undo object entry in the undo transaction history.

The undo transaction history has a current position. This is the position between two
entries in the undo transaction history's list where the previous entry represents what
needs to happen if the user invokes the "undo" command (the "undo" side, lower
numbers), and the next entry represents what needs to happen if the user invokes the
"redo" command (the "redo" side, higher numbers).

The position attribute must return the index of the undo object entry nearest to the undo
position, on the "redo" side. If there are no undo object entries on the "redo" side, then the
attribute must return the same as the length attribute. If there are no undo object entries
on the "undo" side of the undo position, the position attribute returns zero.

Since the undo transaction history contains both undo object entries and DOM
changes entries, but the position attribute only returns indices relative to undo
object entries, it is possible for several "undo" or "redo" actions to be performed
without the value of the position attribute changing.

The add(data, title) method's behavior depends on the current state. Normally, it must
insert the data object passed as an argument into the undo transaction history
immediately before the undo position, optionally remembering the given title to use in the
UI. If the method is called during an undo operation, however, the object must instead be
added immediately after the undo position.

If the method is called and there is neither an undo operation in progress nor a redo
operation in progress then any entries in the undo transaction history after the undo
position must be removed (as if clearRedo() had been called).

We could fire events when someone adds something to the undo history -- one event per
undo object entry before the position (or after, during redo addition), allowing the script to
decide if that entry should remain or not. Or something. Would make it potentially easier to
expire server-held state when the server limitations come into play.

The remove(index) method must remove the undo object entry with the specified index. If
the index is less than zero or greater than or equal to length then the method must raise
an INDEX_SIZE_ERR exception. DOM changes entries are unaffected by this method.

The clearUndo() method must remove all entries in the undo transaction history before
the undo position, be they DOM changes entries or undo object entries.

The clearRedo() method must remove all entries in the undo transaction history after the
undo position, be they DOM changes entries or undo object entries.

Another idea is to have a way for scripts to say "startBatchingDOMChangesForUndo()"
and after that the changes to the DOM go in as if the user had done them.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 686 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 686 from 931

7.10.4 Undo: moving back in the undo transaction history

When the user invokes an undo operation, or when the execCommand() method is called
with the undo command, the user agent must perform an undo operation.

If the undo position is at the start of the undo transaction history, then the user agent must
do nothing.

If the entry immediately before the undo position is a DOM changes entry, then the user
agent must remove that DOM changes entry, reverse the DOM changes that were listed in
that entry, and, if the changes were reversed with no problems, add a new DOM changes
entry (consisting of the opposite of those DOM changes) to the undo transaction history
on the other side of the undo position.

If the DOM changes cannot be undone (e.g. because the DOM state is no longer
consistent with the changes represented in the entry), then the user agent must simply
remove the DOM changes entry, without doing anything else.

If the entry immediately before the undo position is an undo object entry, then the user
agent must first remove that undo object entry from the undo transaction history, and then
must fire an undo event at the Window object, using the undo object entry's associated
undo object as the event's data.

Any calls to add() while the event is being handled will be used to populate the redo
history, and will then be used if the user invokes the "redo" command to undo his undo.

7.10.5 Redo: moving forward in the undo transaction history

When the user invokes a redo operation, or when the execCommand() method is called with
the redo command, the user agent must perform a redo operation.

This is mostly the opposite of an undo operation, but the full definition is included here for
completeness.

If the undo position is at the end of the undo transaction history, then the user agent must
do nothing.

If the entry immediately after the undo position is a DOM changes entry, then the user
agent must remove that DOM changes entry, reverse the DOM changes that were listed in
that entry, and, if the changes were reversed with no problems, add a new DOM changes
entry (consisting of the opposite of those DOM changes) to the undo transaction history
on the other side of the undo position.

If the DOM changes cannot be redone (e.g. because the DOM state is no longer
consistent with the changes represented in the entry), then the user agent must simply
remove the DOM changes entry, without doing anything else.

If the entry immediately after the undo position is an undo object entry, then the user
agent must first remove that undo object entry from the undo transaction history, and then
must fire a redo event at the Window object, using the undo object entry's associated undo
object as the event's data.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 687 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 687 from 931

7.10.6 The UndoManagerEvent interface and the undo and redo events

interface UndoManagerEvent : Event {
 readonly attribute any data;
 void initUndoManagerEvent(in DOMString typeArg, in boolean canBubbleArg,
in boolean cancelableArg, in any dataArg);
 void initUndoManagerEventNS(in DOMString namespaceURIArg, in DOMString
typeArg, in boolean canBubbleArg, in boolean cancelableArg, in any dataArg);
};

event . data
Returns the data that was passed to the add() method.

The initUndoManagerEvent() and initUndoManagerEventNS() methods must initialize the
event in a manner analogous to the similarly-named methods in the DOM Events
interfaces. [DOMEVENTS]

The data attribute represents the undo object for the event.

The undo and redo events do not bubble, cannot be canceled, and have no default action.
When the user agent fires one of these events it must use the UndoManagerEvent interface,
with the data field containing the relevant undo object.

7.10.7 Implementation notes

How user agents present the above conceptual model to the user is not defined. The undo
interface could be a filtered view of the undo transaction history, it could manipulate the
undo transaction history in ways not described above, and so forth. For example, it is
possible to design a UA that appears to have separate undo transaction histories for each
form control; similarly, it is possible to design systems where the user has access to more
undo information than is present in the official (as described above) undo transaction
history (such as providing a tree-based approach to document state). Such UI models
should be based upon the single undo transaction history described in this section,
however, such that to a script there is no detectable difference.

7.11 Editing APIs
document . execCommand(commandId [, showUI [, value]])

Runs the action specified by the first argument, as described in the list below. The
second and third arguments sometimes affect the action. (If they don't they are
ignored.)

document . queryCommandEnabled(commandId)
Returns whether the given command is enabled, as described in the list below.

document . queryCommandIndeterm(commandId)
Returns whether the given command is indeterminate, as described in the list
below.

document . queryCommandState(commandId)
Returns the state of the command, as described in the list below.

document . queryCommandSupported(commandId)
Returns true if the command is supported; otherwise, returns false.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 688 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 688 from 931

document . queryCommandValue(commandId)
Returns the value of the command, as described in the list below.

The execCommand(commandId, showUI, value) method on the HTMLDocument interface
allows scripts to perform actions on the current selection or at the current caret position.
Generally, these commands would be used to implement editor UI, for example having a
"delete" button on a toolbar.

There are three variants to this method, with one, two, and three arguments respectively.
The showUI and value parameters, even if specified, are ignored unless otherwise stated.

When execCommand() is invoked, the user agent must follow the following steps:

1. If the given commandId maps to an entry in the list below whose "Enabled When"
entry has a condition that is currently false, do nothing; abort these steps.

2. Otherwise, execute the "Action" listed below for the given commandId.

A document is ready for editing host commands if it has a selection that is entirely
within an editing host, or if it has no selection but its caret is inside an editing host.

The queryCommandEnabled(commandId) method, when invoked, must return true if the
condition listed below under "Enabled When" for the given commandId is true, and false
otherwise.

The queryCommandIndeterm(commandId) method, when invoked, must return true if the
condition listed below under "Indeterminate When" for the given commandId is true, and
false otherwise.

The queryCommandState(commandId) method, when invoked, must return the value
expressed below under "State" for the given commandId.

The queryCommandSupported(commandId) method, when invoked, must return true if the
given commandId is in the list below, and false otherwise.

The queryCommandValue(commandId) method, when invoked, must return the value
expressed below under "Value" for the given commandId.

The possible values for commandId, and their corresponding meanings, are as follows.
These values must be compared to the argument in an ASCII case-insensitive manner.

bold
Summary: Toggles whether the selection is bold.
Action: The user agent must act as if the user had requested that the selection be
wrapped in the semantics of the b element (or, again, unwrapped, or have that
semantic inserted or removed, as defined by the UA).
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: True if the selection, or the caret, if there is no selection, is, or is contained
within, a b element. False otherwise.
Value: The string "true" if the expression given for the "State" above is true, the
string "false" otherwise.

createLink

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 689 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 689 from 931

Summary: Toggles whether the selection is a link or not. If the second argument is
true, and a link is to be added, the user agent will ask the user for the address.
Otherwise, the third argument will be used as the address.
Action: The user agent must act as if the user had requested that the selection be
wrapped in the semantics of the a element (or, again, unwrapped, or have that
semantic inserted or removed, as defined by the UA). If the user agent creates an a
element or modifies an existing a element, then if the showUI argument is present
and has the value false, then the value of the value argument must be used as the
URL of the link. Otherwise, the user agent should prompt the user for the URL of
the link.
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

delete
Summary: Deletes the selection or the character before the cursor.
Action: The user agent must act as if the user had performed a backspace
operation.
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

formatBlock
Summary: Wraps the selection in the element given by the second argument. If the
second argument doesn't specify an element that is a formatBlock candidate,
does nothing.
Action: The user agent must run the following steps:

1. If the value argument wasn't specified, abort these steps without doing
anything.

2. If the value argument has a leading U+003C LESS-THAN SIGN character
('<') and a trailing U+003E GREATER-THAN SIGN character ('>'), then
remove the first and last characters from value.

3. If value is (now) an ASCII case-insensitive match for the tag name of an
element defined by this specification that is defined to be a formatBlock
candidate, then, for every position in the selection, take the furthest
formatBlock candidate ancestor element of that position that contains only
phrasing content, and, if that element is editable and has a parent element
whose content model allows that parent to contain any flow content, replace
it with an element in the HTML namespace whose name is value, and move
all the children that were in it to the new element.

If there is no selection, then, where in the description above refers to the
selection, the user agent must act as if the selection was an empty range
(with just one position) at the caret position.

Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 690 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 690 from 931

forwardDelete
Summary: Deletes the selection or the character after the cursor.
Action: The user agent must act as if the user had performed a forward delete
operation.
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertImage
Summary: Toggles whether the selection is an image or not. If the second
argument is true, and an image is to be added, the user agent will ask the user for
the address. Otherwise, the third argument will be used as the address.
Action: The user agent must act as if the user had requested that the selection be
wrapped in the semantics of the img element (or, again, unwrapped, or have that
semantic inserted or removed, as defined by the UA). If the user agent creates an
img element or modifies an existing img element, then if the showUI argument is
present and has the value false, then the value of the value argument must be used
as the URL of the image. Otherwise, the user agent should prompt the user for the
URL of the image.
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertHTML
Summary: Replaces the selection with the value of the third argument parsed as
HTML.
Action: The user agent must run the following steps:

1. If the document is an XML document, then throw an INVALID_ACCESS_ERR
exception and abort these steps.

2. If the value argument wasn't specified, abort these steps without doing
anything.

3. If there is a selection, act as if the user had requested that the selection be
deleted.

4. Invoke the HTML fragment parsing algorithm with an arbitrary orphan body
element owned by the same Document as the context element and with the
value argument as input.

5. Insert the nodes returned by the previous step into the document at the
location of the caret, firing any mutation events as appropriate.

Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertLineBreak
Summary: Inserts a line break.
Action: The user agent must act as if the user had requested a line separator.
Enabled When: The document is ready for editing host commands.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 691 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 691 from 931

Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertOrderedList
Summary: Toggles whether the selection is an ordered list.
Action: The user agent must act as if the user had requested that the selection be
wrapped in the semantics of the ol element (or unwrapped, or, if there is no
selection, have that semantic inserted or removed — the exact behavior is UA-
defined).
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertUnorderedList
Summary: Toggles whether the selection is an unordered list.
Action: The user agent must act as if the user had requested that the selection be
wrapped in the semantics of the ul element (or unwrapped, or, if there is no
selection, have that semantic inserted or removed — the exact behavior is UA-
defined).
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertParagraph
Summary: Inserts a paragraph break.
Action: The user agent must act as if the user had performed a break block editing
action.
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

insertText
Summary: Inserts the text given in the third parameter.
Action: The user agent must act as if the user had inserted text corresponding to
the value parameter.
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

italic
Summary: Toggles whether the selection is italic.
Action: The user agent must act as if the user had requested that the selection be
wrapped in the semantics of the i element (or, again, unwrapped, or have that
semantic inserted or removed, as defined by the UA).
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: True if the selection, or the caret, if there is no selection, is, or is contained
within, a i element. False otherwise.
Value: The string "true" if the expression given for the "State" above is true, the
string "false" otherwise.

redo
Summary: Acts as if the user had requested a redo.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 692 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 692 from 931

Action: The user agent must move forward one step in its undo transaction history,
restoring the associated state. If the undo position is at the end of the undo
transaction history, the user agent must do nothing. See the undo history.
Enabled When: The undo position is not at the end of the undo transaction history.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

selectAll
Summary: Selects all the editable content.
Action: The user agent must change the selection so that all the content in the
currently focused editing host is selected. If no editing host is focused, then the
content of the entire document must be selected.
Enabled When: Always.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

subscript
Summary: Toggles whether the selection is subscripted.
Action: The user agent must act as if the user had requested that the selection be
wrapped in the semantics of the sub element (or, again, unwrapped, or have that
semantic inserted or removed, as defined by the UA).
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: True if the selection, or the caret, if there is no selection, is, or is contained
within, a sub element. False otherwise.
Value: The string "true" if the expression given for the "State" above is true, the
string "false" otherwise.

superscript
Summary: Toggles whether the selection is superscripted.
Action: The user agent must act as if the user had requested that the selection be
wrapped in the semantics of the sup element (or unwrapped, or, if there is no
selection, have that semantic inserted or removed — the exact behavior is UA-
defined).
Enabled When: The document is ready for editing host commands.
Indeterminate When: Never.
State: True if the selection, or the caret, if there is no selection, is, or is contained
within, a sup element. False otherwise.
Value: The string "true" if the expression given for the "State" above is true, the
string "false" otherwise.

undo
Summary: Acts as if the user had requested an undo.
Action: The user agent must move back one step in its undo transaction history,
restoring the associated state. If the undo position is at the start of the undo
transaction history, the user agent must do nothing. See the undo history.
Enabled When: The undo position is not at the start of the undo transaction
history.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

unlink
Summary: Removes all links from the selection.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 693 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 693 from 931

Action: The user agent must remove all a elements that have href attributes and
that are partially or completely included in the current selection.
Enabled When: The document has a selection that is entirely within an editing host
and that contains (either partially or completely) at least one a element that has an
href attribute.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

unselect
Summary: Unselects everything.
Action: The user agent must change the selection so that nothing is selected.
Enabled When: Always.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

vendorID-customCommandID
Action: User agents may implement vendor-specific extensions to this API.
Vendor-specific extensions to the list of commands should use the syntax
vendorID-customCommandID so as to prevent clashes between extensions from
different vendors and future additions to this specification.
Enabled When: UA-defined.
Indeterminate When: UA-defined.
State: UA-defined.
Value: UA-defined.

Anything else
Action: User agents must do nothing.
Enabled When: Never.
Indeterminate When: Never.
State: Always false.
Value: Always the string "false".

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 694 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 694 from 931

8 Communication

8.1 Event definitions

Messages in server-sent events, Web sockets, cross-document messaging, and channel
messaging use the message event.

The following interface is defined for this event:

interface MessageEvent : Event {
 readonly attribute any data;
 readonly attribute DOMString origin;
 readonly attribute DOMString lastEventId;
 readonly attribute WindowProxy source;
 readonly attribute MessagePortArray ports;
 void initMessageEvent(in DOMString typeArg, in boolean canBubbleArg, in
boolean cancelableArg, in any dataArg, in DOMString originArg, in DOMString
lastEventIdArg, in WindowProxy sourceArg, in MessagePortArray portsArg);
 void initMessageEventNS(in DOMString namespaceURI, in DOMString typeArg,
in boolean canBubbleArg, in boolean cancelableArg, in any dataArg, in
DOMString originArg, in DOMString lastEventIdArg, in WindowProxy sourceArg,
in MessagePortArray portsArg);
};

event . data
Returns the data of the message.

event . origin
Returns the origin of the message, for server-sent events and cross-document
messaging.

event . lastEventId
Returns the last event ID, for server-sent events.

event . source
Returns the WindowProxy of the source window, for cross-document messaging.

event . ports
Returns the MessagePortArray sent with the message, for cross-document
messaging and channel messaging.

The initMessageEvent() and initMessageEventNS() methods must initialize the event in a
manner analogous to the similarly-named methods in the DOM Events interfaces.
[DOMEVENTS]

The data attribute represents the message being sent.

The origin attribute represents, in server-sent events and cross-document messaging,
the origin of the document that sent the message (typically the scheme, hostname, and
port of the document, but not its path or fragment identifier).

The lastEventId attribute represents, in server-sent events, the last event ID string of the
event source.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 695 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 695 from 931

The source attribute represents, in cross-document messaging, the WindowProxy of the
browsing context of the Window object from which the message came.

The ports attribute represents, in cross-document messaging and channel messaging the
MessagePortArray being sent, if any.

Unless otherwise specified, when the user agent creates and dispatches a message event
in the algorithms described in the following sections, the lastEventId attribute must be the
empty string, the origin attribute must be the empty string, the source attribute must be
null, and the ports attribute must be null.

8.2 Cross-document messaging

Status: Awaiting implementation feedback

Web browsers, for security and privacy reasons, prevent documents in different domains
from affecting each other; that is, cross-site scripting is disallowed.

While this is an important security feature, it prevents pages from different domains from
communicating even when those pages are not hostile. This section introduces a
messaging system that allows documents to communicate with each other regardless of
their source domain, in a way designed to not enable cross-site scripting attacks.

The task source for the tasks in cross-document messaging is the posted message task
source.

8.2.1 Introduction

This section is non-normative.

For example, if document A contains an iframe element that contains document B, and
script in document A calls postMessage() on the Window object of document B, then a
message event will be fired on that object, marked as originating from the Window of
document A. The script in document A might look like:

var o = document.getElementsByTagName('iframe')[0];
o.contentWindow.postMessage('Hello world', 'http://b.example.org/');

To register an event handler for incoming events, the script would use
addEventListener() (or similar mechanisms). For example, the script in document B might
look like:

window.addEventListener('message', receiver, false);
function receiver(e) {
 if (e.origin == 'http://example.com') {
 if (e.data == 'Hello world') {
 e.source.postMessage('Hello', e.origin);
 } else {
 alert(e.data);
 }
 }
}

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 696 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 696 from 931

This script first checks the domain is the expected domain, and then looks at the
message, which it either displays to the user, or responds to by sending a message back
to the document which sent the message in the first place.

8.2.2 Security

8.2.2.1 Authors

Use of this API requires extra care to protect users from hostile entities abusing a
site for their own purposes.

Authors should check the origin attribute to ensure that messages are only accepted
from domains that they expect to receive messages from. Otherwise, bugs in the author's
message handling code could be exploited by hostile sites.

Furthermore, even after checking the origin attribute, authors should also check that the
data in question is of the expected format. Otherwise, if the source of the event has been
attacked using a cross-site scripting flaw, further unchecked processing of information
sent using the postMessage() method could result in the attack being propagated into the
receiver.

Authors should not use the wildcard keyword ("*") in the targetOrigin argument in
messages that contain any confidential information, as otherwise there is no way to
guarantee that the message is only delivered to the recipient to which it was intended.

8.2.2.2 User agents

The integrity of this API is based on the inability for scripts of one origin to post arbitrary
events (using dispatchEvent() or otherwise) to objects in other origins (those that are not
the same).

Implementors are urged to take extra care in the implementation of this feature. It
allows authors to transmit information from one domain to another domain, which
is normally disallowed for security reasons. It also requires that UAs be careful to
allow access to certain properties but not others.

8.2.3 Posting messages
window . postMessage(message, [ports,] targetOrigin)

Posts a message, optionally with an array of ports, to the given window.
If the origin of the target window doesn't match the given origin, the message is
discarded, to avoid information leakage. To send the message to the target
regardless of origin, set the target origin to "*".

Throws an INVALID_STATE_ERR if the ports array is not null and it contains either null
entries or duplicate ports.

When a script invokes the postMessage(message, targetOrigin) method (with only two
arguments) on a Window object, the user agent must follow these steps:

1. If the value of the targetOrigin argument is not a single U+002A ASTERISK
character ("*"), and resolving it relative to the first script's base URL either fails or
results in a URL with a <host-specific> component that is neither empty nor a

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 697 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 697 from 931

single U+002F SOLIDUS character (/), then throw a SYNTAX_ERR exception and
abort the overall set of steps.

2. Let message clone be the result of obtaining a structured clone of the message
argument. If this throws an exception, then throw that exception and abort these
steps.

3. Return from the postMessage() method, but asynchronously continue running these
steps.

4. If the targetOrigin argument has a value other than a single literal U+002A
ASTERISK character ("*"), and the Document of the Window object on which the
method was invoked does not have the same origin as targetOrigin, then abort
these steps silently.

5. Create an event that uses the MessageEvent interface, with the event name
message, which does not bubble, is not cancelable, and has no default action. The
data attribute must be set to the value of message clone, the origin attribute must
be set to the Unicode serialization of the origin of the script that invoked the
method, and the source attribute must be set to the script's global object.

6. Queue a task to dispatch the event created in the previous step at the Window
object on which the method was invoked. The task source for this task is the posted
message task source.

8.2.4 Posting messages with message ports

When a script invokes the postMessage(message, ports, targetOrigin) method (with
three arguments) on a Window object, the user agent must follow these steps:

1. If the value of the targetOrigin argument is not a single U+002A ASTERISK
character ("*"), and resolving it relative to the first script's base URL either fails or
results in a URL with a <host-specific> component that is neither empty nor a
single U+002F SOLIDUS character (/), then throw a SYNTAX_ERR exception and
abort the overall set of steps.

2. Let message clone be the result of obtaining a structured clone of the message
argument. If this throws an exception, then throw that exception and abort these
steps.

3. If the ports argument is null, then act as if the method had just been called with two
arguments, message and targetOrigin.

4. If any of the entries in ports are null, or if any MessagePort object is listed in ports
more than once, then throw an INVALID_STATE_ERR exception.

5. Let new ports be an empty array.

For each port in ports in turn, obtain a new port by cloning the port with the Window
object on which the method was invoked as the owner of the clone, and append the
clone to the new ports array.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 698 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 698 from 931

If the original ports array was empty, then the new ports array will also be
empty.

6. Return from the postMessage() method, but asynchronously continue running these
steps.

7. If the targetOrigin argument has a value other than a single literal U+002A
ASTERISK character ("*"), and the Document of the Window object on which the
method was invoked does not have the same origin as targetOrigin, then abort
these steps silently.

8. Create an event that uses the MessageEvent interface, with the event name
message, which does not bubble, is not cancelable, and has no default action. The
data attribute must be set to the value of message clone, the origin attribute must
be set to the Unicode serialization of the origin of the script that invoked the
method, and the source attribute must be set to the script's global object.

9. Let the ports attribute of the event be the new ports array.

10. Queue a task to dispatch the event created in the previous step at the Window
object on which the method was invoked. The task source for this task is the posted
message task source.

These steps, with the exception of the second and third steps and the penultimate
step, are identical to those in the previous section.

8.3 Channel messaging

Status: Last call for comments

8.3.1 Introduction

This section is non-normative.

An introduction to the channel and port APIs.

8.3.2 Message channels

[Constructor]
interface MessageChannel {
 readonly attribute MessagePort port1;
 readonly attribute MessagePort port2;
};

channel = new MessageChannel()
Returns a new MessageChannel object with two new MessagePort objects.

channel . port1
Returns the first MessagePort object.

channel . port2
Returns the second MessagePort object.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 699 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 699 from 931

When the MessageChannel() constructor is called, it must run the following algorithm:

1. Create a new MessagePort object owned by the script's global object, and let port1
be that object.

2. Create a new MessagePort object owned by the script's global object, and let port2
be that object.

3. Entangle the port1 and port2 objects.

4. Instantiate a new MessageChannel object, and let channel be that object.

5. Let the port1 attribute of the channel object be port1.

6. Let the port2 attribute of the channel object be port2.

7. Return channel.

This constructor must be visible when the script's global scope is either a Window object or
an object implementing the WorkerUtils interface.

The port1 and port2 attributes must return the values they were assigned when the
MessageChannel object was created.

8.3.3 Message ports

Each channel has two message ports. Data sent through one port is received by the other
port, and vice versa.

typedef sequence<MessagePort> MessagePortArray;

interface MessagePort {
 void postMessage(in any message, optional in MessagePortArray ports);
 void start();
 void close();

 // event handler attributes
 attribute Function onmessage;
};

port . postMessage(message [, ports])
Posts a message through the channel, optionally with the given ports.

Throws an INVALID_STATE_ERR if the ports array is not null and it contains either null
entries, duplicate ports, or the source or target port.

port . start()
Begins dispatching messages received on the port.

port . close()
Disconnects the port, so that it is no longer active.

Objects implementing the MessagePort interface must also implement the EventTarget
interface.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 700 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 700 from 931

Each MessagePort object can be entangled with another (a symmetric relationship). Each
MessagePort object also has a task source called the port message queue, initial empty.
A port message queue can be enabled or disabled, and is initially disabled. Once enabled,
a port can never be disabled again (though messages in the queue can get moved to
another queue or removed altogether, which has much the same effect).

When the user agent is to create a new MessagePort object owned by a script's global
object object owner, it must instantiate a new MessagePort object, and let its owner be
owner.

When the user agent is to entangle two MessagePort objects, it must run the following
steps:

1. If one of the ports is already entangled, then disentangle it and the port that it was
entangled with.

If those two previously entangled ports were the two ports of a
MessageChannel object, then that MessageChannel object no longer represents
an actual channel: the two ports in that object are no longer entangled.

2. Associate the two ports to be entangled, so that they form the two parts of a new
channel. (There is no MessageChannel object that represents this channel.)

When the user agent is to clone a port original port, with the clone being owned by
owner, it must run the following steps, which return a new MessagePort object. These
steps must be run atomically.

1. Create a new MessagePort object owned by owner, and let new port be that object.

2. Move all the events in the port message queue of original port to the port message
queue of new port, if any, leaving the new port's port message queue in its initial
disabled state.

3. If the original port is entangled with another port, then run these substeps:

1. Let the remote port be the port with which the original port is entangled.

2. Entangle the remote port and new port objects. The original port object will
be disentangled by this process.

4. Return new port. It is the clone.

The postMessage() method, when called on a port source port, must cause the user agent
to run the following steps:

1. Let target port be the port with which source port is entangled, if any.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 701 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 701 from 931

2. If the method was called with a second argument ports and that argument isn't null,
then, if any of the entries in ports are null, or if any MessagePort object is listed in
ports more than once, or if any of the entries in ports are either the source port or
the target port (if any), then throw an INVALID_STATE_ERR exception.

3. If there is no target port (i.e. if source port is not entangled), then abort these steps.

4. Create an event that uses the MessageEvent interface, with the name message,
which does not bubble, is not cancelable, and has no default action.

5. Let message be the method's first argument.

6. Let message clone be the result of obtaining a structured clone of message. If this
throws an exception, then throw that exception and abort these steps.

7. Let the data attribute of the event have the value of message clone.

8. If the method was called with a second argument ports and that argument isn't null,
then run the following substeps:

1. Let new ports be an empty array.

For each port in ports in turn, obtain a new port by cloning the port with the
owner of the target port as the owner of the clone, and append the clone to
the new ports array.

If the original ports array was empty, then the new ports array will also
be empty.

2. Let the ports attribute of the event be the new ports array.

9. Add the event to the port message queue of target port.

The start() method must enable its port's port message queue, if it is not already
enabled.

When a port's port message queue is enabled, the event loop must use it as one of its
task sources.

If the Document of the port's event handlers' global object is not fully active, then the
messages are lost.

The close() method, when called on a port local port that is entangled with another port,
must cause the user agents to disentangle the two ports. If the method is called on a port
that is not entangled, then the method must do nothing.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 702 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 702 from 931

The following are the event handler attributes (and their corresponding event handler
event types) that must be supported, as DOM attributes, by all objects implementing the
MessagePort interface:

event handler attribute Event handler event type
onmessage message

The first time a MessagePort object's onmessage DOM attribute is set, the port's port
message queue must be enabled, as if the start() method had been called.

8.3.3.1 Ports and garbage collection

When a MessagePort object o is entangled, user agents must either act as if o's entangled
MessagePort object has a strong reference to o, or as if o's owner has a strong reference
to o.

Thus, a message port can be received, given an event listener, and then forgotten,
and so long as that event listener could receive a message, the channel will be
maintained.

Of course, if this was to occur on both sides of the channel, then both ports could
be garbage collected, since they would not be reachable from live code, despite
having a strong reference to each other.

Furthermore, a MessagePort object must not be garbage collected while there exists a
message in a task queue that is to be dispatched on that MessagePort object, or while the
MessagePort object's port message queue is open and there exists a message event in that
queue.

Authors are strongly encouraged to explicitly close MessagePort objects to
disentangle them, so that their resources can be recollected. Creating many
MessagePort objects and discarding them without closing them can lead to high
memory usage.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 703 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 703 from 931

9 The HTML syntax

This section only describes the rules for text/html resources. Rules for XML
resources are discussed in the section below entitled "The XHTML syntax".

9.1 Writing HTML documents

Status: Working draft

This section only applies to documents, authoring tools, and markup generators. In
particular, it does not apply to conformance checkers; conformance checkers must use
the requirements given in the next section ("parsing HTML documents").

Documents must consist of the following parts, in the given order:

1. Optionally, a single U+FEFF BYTE ORDER MARK (BOM) character.
2. Any number of comments and space characters.
3. A DOCTYPE.
4. Any number of comments and space characters.
5. The root element, in the form of an html element.
6. Any number of comments and space characters.

The various types of content mentioned above are described in the next few sections.

In addition, there are some restrictions on how character encoding declarations are to be
serialized, as discussed in the section on that topic.

Space characters before the root html element, and space characters at the start of
the html element and before the head element, will be dropped when the document is
parsed; space characters after the root html element will be parsed as if they were
at the end of the body element. Thus, space characters around the root element do
not round-trip.

It is suggested that newlines be inserted after the DOCTYPE, after any comments
that are before the root element, after the html element's start tag (if it is not
omitted), and after any comments that are inside the html element but before the
head element.

Many strings in the HTML syntax (e.g. the names of elements and their attributes) are
case-insensitive, but only for characters in the ranges U+0041 .. U+005A (LATIN
CAPITAL LETTER A to LATIN CAPITAL LETTER Z) and U+0061 .. U+007A (LATIN
SMALL LETTER A to LATIN SMALL LETTER Z). For convenience, in this section this is
just referred to as "case-insensitive".

9.1.1 The DOCTYPE

ISSUE-4 (html-versioning) and ISSUE-54 (doctype-legacy-compat) block progress to Last
Call

A DOCTYPE is a mostly useless, but required, header.

DOCTYPEs are required for legacy reasons. When omitted, browsers tend to use a
different rendering mode that is incompatible with some specifications. Including

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 704 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 704 from 931

the DOCTYPE in a document ensures that the browser makes a best-effort attempt
at following the relevant specifications.

A DOCTYPE must consist of the following characters, in this order:

1. A U+003C LESS-THAN SIGN (<) character.
2. A U+0021 EXCLAMATION MARK (!) character.
3. A string that is an ASCII case-insensitive match for the string "DOCTYPE".
4. One or more space characters.
5. A string that is an ASCII case-insensitive match for the string "HTML".
6. Optionally, a DOCTYPE legacy string (defined below).
7. Zero or more space characters.
8. A U+003E GREATER-THAN SIGN (>) character.

In other words, <!DOCTYPE HTML>, case-insensitively.

For the purposes of HTML generators that cannot output HTML markup with the short
DOCTYPE "<!DOCTYPE HTML>", a DOCTYPE legacy string may be inserted into the
DOCTYPE (in the position defined above). This string must consist of:

1. One or more space characters.
2. A string that is an ASCII case-insensitive match for the string "SYSTEM".
3. One or more space characters.
4. A U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (the quote

mark).
5. The literal string "about:legacy-compat".
6. A matching U+0022 QUOTATION MARK or U+0027 APOSTROPHE character (i.e.

the same character as in the earlier step marked quote mark).

In other words, <!DOCTYPE HTML SYSTEM "about:legacy-compat"> or <!DOCTYPE HTML
SYSTEM 'about:legacy-compat'>, case-insensitively except for the bit in quotes.

The DOCTYPE legacy string should not be used unless the document is generated from a
system that cannot output the shorter string.

9.1.2 Elements

There are five different kinds of elements: void elements, raw text elements, RCDATA
elements, foreign elements, and normal elements.

Void elements
area, base, br, col, command, embed, hr, img, input, keygen, link, meta, param,
source

Raw text elements
script, style

RCDATA elements
textarea, title

Foreign elements
Elements from the MathML namespace and the SVG namespace.

Normal elements
All other allowed HTML elements are normal elements.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 705 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 705 from 931

Tags are used to delimit the start and end of elements in the markup. Raw text, RCDATA,
and normal elements have a start tag to indicate where they begin, and an end tag to
indicate where they end. The start and end tags of certain normal elements can be
omitted, as described later. Those that cannot be omitted must not be omitted. Void
elements only have a start tag; end tags must not be specified for void elements. Foreign
elements must either have a start tag and an end tag, or a start tag that is marked as self-
closing, in which case they must not have an end tag.

The contents of the element must be placed between just after the start tag (which might
be implied, in certain cases) and just before the end tag (which again, might be implied in
certain cases). The exact allowed contents of each individual element depends on the
content model of that element, as described earlier in this specification. Elements must not
contain content that their content model disallows. In addition to the restrictions placed on
the contents by those content models, however, the five types of elements have additional
syntactic requirements.

Void elements can't have any contents (since there's no end tag, no content can be put
between the start tag and the end tag).

Raw text elements can have text, though it has restrictions described below.

RCDATA elements can have text and character references, but the text must not contain
an ambiguous ampersand. There are also further restrictions described below.

Foreign elements whose start tag is marked as self-closing can't have any contents (since,
again, as there's no end tag, no content can be put between the start tag and the end tag).
Foreign elements whose start tag is not marked as self-closing can have text, character
references, CDATA sections, other elements, and comments, but the text must not
contain the character U+003C LESS-THAN SIGN (<) or an ambiguous ampersand.

Normal elements can have text, character references, other elements, and comments, but
the text must not contain the character U+003C LESS-THAN SIGN (<) or an ambiguous
ampersand. Some normal elements also have yet more restrictions on what content they
are allowed to hold, beyond the restrictions imposed by the content model and those
described in this paragraph. Those restrictions are described below.

Tags contain a tag name, giving the element's name. HTML elements all have names that
only use characters in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE, U+0061
LATIN SMALL LETTER A .. U+007A LATIN SMALL LETTER Z, U+0041 LATIN CAPITAL
LETTER A .. U+005A LATIN CAPITAL LETTER Z, and U+002D HYPHEN-MINUS (-). In
the HTML syntax, tag names may be written with any mix of lower- and uppercase letters
that, when converted to all-lowercase, matches the element's tag name; tag names are
case-insensitive.

9.1.2.1 Start tags

Start tags must have the following format:

1. The first character of a start tag must be a U+003C LESS-THAN SIGN (<).
2. The next few characters of a start tag must be the element's tag name.
3. If there are to be any attributes in the next step, there must first be one or more

space characters.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 706 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 706 from 931

4. Then, the start tag may have a number of attributes, the syntax for which is
described below. Attributes may be separated from each other by one or more
space characters.

5. After the attributes, there may be one or more space characters. (Some attributes
are required to be followed by a space. See the attributes section below.)

6. Then, if the element is one of the void elements, or if the element is a foreign
element, then there may be a single U+002F SOLIDUS (/) character. This
character has no effect on void elements, but on foreign elements it marks the start
tag as self-closing.

7. Finally, start tags must be closed by a U+003E GREATER-THAN SIGN (>)
character.

9.1.2.2 End tags

End tags must have the following format:

1. The first character of an end tag must be a U+003C LESS-THAN SIGN (<).
2. The second character of an end tag must be a U+002F SOLIDUS (/).
3. The next few characters of an end tag must be the element's tag name.
4. After the tag name, there may be one or more space characters.
5. Finally, end tags must be closed by a U+003E GREATER-THAN SIGN (>)

character.

9.1.2.3 Attributes

Attributes for an element are expressed inside the element's start tag.

Attributes have a name and a value. Attribute names must consist of one or more
characters other than the space characters, U+0000 NULL, U+0022 QUOTATION MARK
("), U+0027 APOSTROPHE ('), U+003E GREATER-THAN SIGN (>), U+002F SOLIDUS
(/), and U+003D EQUALS SIGN (=) characters, the control characters, and any characters
that are not defined by Unicode. In the HTML syntax, attribute names may be written with
any mix of lower- and uppercase letters that are an ASCII case-insensitive match for the
attribute's name.

Attribute values are a mixture of text and character references, except with the additional
restriction that the text cannot contain an ambiguous ampersand.

Attributes can be specified in four different ways:

Empty attribute syntax
Just the attribute name.

In the following example, the disabled attribute is given with the empty
attribute syntax:

<input disabled>

If an attribute using the empty attribute syntax is to be followed by another attribute,
then there must be a space character separating the two.

Unquoted attribute value syntax
The attribute name, followed by zero or more space characters, followed by a
single U+003D EQUALS SIGN character, followed by zero or more space

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 707 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 707 from 931

characters, followed by the attribute value, which, in addition to the requirements
given above for attribute values, must not contain any literal space characters, any
U+0022 QUOTATION MARK (") characters, U+0027 APOSTROPHE (')
characters, U+003D EQUALS SIGN (=) characters, U+003C LESS-THAN SIGN (<)
characters, or U+003E GREATER-THAN SIGN (>) characters, and must not be the
empty string.

In the following example, the value attribute is given with the unquoted
attribute value syntax:

<input value=yes>

If an attribute using the unquoted attribute syntax is to be followed by another
attribute or by the optional U+002F SOLIDUS (/) character allowed in step 6 of the
start tag syntax above, then there must be a space character separating the two.

Single-quoted attribute value syntax
The attribute name, followed by zero or more space characters, followed by a
single U+003D EQUALS SIGN character, followed by zero or more space
characters, followed by a single U+0027 APOSTROPHE (') character, followed by
the attribute value, which, in addition to the requirements given above for attribute
values, must not contain any literal U+0027 APOSTROPHE (') characters, and
finally followed by a second single U+0027 APOSTROPHE (') character.

In the following example, the type attribute is given with the single-quoted
attribute value syntax:

<input type='checkbox'>

If an attribute using the single-quoted attribute syntax is to be followed by another
attribute, then there must be a space character separating the two.

Double-quoted attribute value syntax
The attribute name, followed by zero or more space characters, followed by a
single U+003D EQUALS SIGN character, followed by zero or more space
characters, followed by a single U+0022 QUOTATION MARK (") character,
followed by the attribute value, which, in addition to the requirements given above
for attribute values, must not contain any literal U+0022 QUOTATION MARK (")
characters, and finally followed by a second single U+0022 QUOTATION MARK (")
character.

In the following example, the name attribute is given with the double-quoted
attribute value syntax:

<input name="be evil">

If an attribute using the double-quoted attribute syntax is to be followed by another
attribute, then there must be a space character separating the two.

There must never be two or more attributes on the same start tag whose names are an
ASCII case-insensitive match for each other.

9.1.2.4 Optional tags

Certain tags can be omitted.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 708 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 708 from 931

Omitting an element's start tag does not mean the element is not present; it is
implied, but it is still there. An HTML document always has a root html element,
even if the string <html> doesn't appear anywhere in the markup.

An html element's start tag may be omitted if the first thing inside the html element is not a
comment.

An html element's end tag may be omitted if the html element is not immediately followed
by a comment.

A head element's start tag may be omitted if the first thing inside the head element is an
element.

A head element's end tag may be omitted if the head element is not immediately followed
by a space character or a comment.

A body element's start tag may be omitted if the element is empty, or if the first thing inside
the body element is not a space character or a comment, except if the first thing inside the
body element is a script or style element.

A body element's end tag may be omitted if the body element is not immediately followed
by a comment.

A li element's end tag may be omitted if the li element is immediately followed by
another li element or if there is no more content in the parent element.

A dt element's end tag may be omitted if the dt element is immediately followed by
another dt element or a dd element.

A dd element's end tag may be omitted if the dd element is immediately followed by
another dd element or a dt element, or if there is no more content in the parent element.

A p element's end tag may be omitted if the p element is immediately followed by an
address, article, aside, blockquote, dialog, dir, div, dl, fieldset, footer, form, h1, h2,
h3, h4, h5, h6, header, hgroup, hr, menu, nav, ol, p, pre, section, table, or ul, element, or if
there is no more content in the parent element and the parent element is not an a element.

An rt element's end tag may be omitted if the rt element is immediately followed by an rt
or rp element, or if there is no more content in the parent element.

An rp element's end tag may be omitted if the rp element is immediately followed by an rt
or rp element, or if there is no more content in the parent element.

An optgroup element's end tag may be omitted if the optgroup element is immediately
followed by another optgroup element, or if there is no more content in the parent
element.

An option element's end tag may be omitted if the option element is immediately followed
by another option element, or if it is immediately followed by an optgroup element, or if
there is no more content in the parent element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 709 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 709 from 931

A colgroup element's start tag may be omitted if the first thing inside the colgroup element
is a col element, and if the element is not immediately preceded by another colgroup
element whose end tag has been omitted. (It can't be omitted if the element is empty.)

A colgroup element's end tag may be omitted if the colgroup element is not immediately
followed by a space character or a comment.

A thead element's end tag may be omitted if the thead element is immediately followed by
a tbody or tfoot element.

A tbody element's start tag may be omitted if the first thing inside the tbody element is a
tr element, and if the element is not immediately preceded by a tbody, thead, or tfoot
element whose end tag has been omitted. (It can't be omitted if the element is empty.)

A tbody element's end tag may be omitted if the tbody element is immediately followed by
a tbody or tfoot element, or if there is no more content in the parent element.

A tfoot element's end tag may be omitted if the tfoot element is immediately followed by
a tbody element, or if there is no more content in the parent element.

A tr element's end tag may be omitted if the tr element is immediately followed by
another tr element, or if there is no more content in the parent element.

A td element's end tag may be omitted if the td element is immediately followed by a td or
th element, or if there is no more content in the parent element.

A th element's end tag may be omitted if the th element is immediately followed by a td or
th element, or if there is no more content in the parent element.

However, a start tag must never be omitted if it has any attributes.

9.1.2.5 Restrictions on content models

For historical reasons, certain elements have extra restrictions beyond even the
restrictions given by their content model.

A table element must not contain tr elements, even though these elements are
technically allowed inside table elements according to the content models described in
this specification. (If a tr element is put inside a table in the markup, it will in fact imply a
tbody start tag before it.)

A single U+000A LINE FEED (LF) character may be placed immediately after the start tag
of pre and textarea elements. This does not affect the processing of the element. The
otherwise optional U+000A LINE FEED (LF) character must be included if the element's
contents start with that character (because otherwise the leading newline in the contents
would be treated like the optional newline, and ignored).

The following two pre blocks are equivalent:

<pre>Hello</pre>
<pre>
Hello</pre>

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 710 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 710 from 931

9.1.2.6 Restrictions on the contents of raw text and RCDATA elements

The text in raw text and RCDATA elements must not contain any occurrences of the string
"</" (U+003C LESS-THAN SIGN, U+002F SOLIDUS) followed by characters that case-
insensitively match the tag name of the element followed by one of U+0009 CHARACTER
TABULATION, U+000A LINE FEED (LF), U+000C FORM FEED (FF), U+0020 SPACE,
U+003E GREATER-THAN SIGN (>), or U+002F SOLIDUS (/), unless that string is part of
an escaping text span.

An escaping text span is a span of text that starts with an escaping text span start that is
not itself in an escaping text span, and ends at the next escaping text span end. There
cannot be any character references inside an escaping text span — sequences of
characters that would look like character references do not have special meaning.

An escaping text span start is a part of text that consists of the four character sequence
"<!--" (U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+002D HYPHEN-
MINUS, U+002D HYPHEN-MINUS).

An escaping text span end is a part of text that consists of the three character sequence
"-->" (U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E GREATER-THAN
SIGN).

An escaping text span start may share its U+002D HYPHEN-MINUS characters with its
corresponding escaping text span end.

The text in raw text elements and RCDATA elements must not have an escaping text
span start that is not followed by an escaping text span end.

9.1.3 Text

Text is allowed inside elements, attributes, and comments. Text must consist of Unicode
characters. Text must not contain U+0000 characters. Text must not contain permanently
undefined Unicode characters. Text must not contain control characters other than space
characters. Extra constraints are placed on what is and what is not allowed in text based
on where the text is to be put, as described in the other sections.

9.1.3.1 Newlines

Newlines in HTML may be represented either as U+000D CARRIAGE RETURN (CR)
characters, U+000A LINE FEED (LF) characters, or pairs of U+000D CARRIAGE
RETURN (CR), U+000A LINE FEED (LF) characters in that order.

9.1.4 Character references

In certain cases described in other sections, text may be mixed with character
references. These can be used to escape characters that couldn't otherwise legally be
included in text.

Character references must start with a U+0026 AMPERSAND (&). Following this, there are
three possible kinds of character references:

Named character references

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 711 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 711 from 931

The ampersand must be followed by one of the names given in the named
character references section, using the same case. The name must be one that is
terminated by a U+003B SEMICOLON (;) character.

Decimal numeric character reference
The ampersand must be followed by a U+0023 NUMBER SIGN (#) character,
followed by one or more digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT
NINE, representing a base-ten integer that itself is a Unicode code point that is not
U+0000, U+000D, in the range U+0080 .. U+009F, or in the range 0xD800 ..
0xDFFF (surrogates). The digits must then be followed by a U+003B SEMICOLON
character (;).

Hexadecimal numeric character reference
The ampersand must be followed by a U+0023 NUMBER SIGN (#) character,
which must be followed by either a U+0078 LATIN SMALL LETTER X or a U+0058
LATIN CAPITAL LETTER X character, which must then be followed by one or more
digits in the range U+0030 DIGIT ZERO .. U+0039 DIGIT NINE, U+0061 LATIN
SMALL LETTER A .. U+0066 LATIN SMALL LETTER F, and U+0041 LATIN
CAPITAL LETTER A .. U+0046 LATIN CAPITAL LETTER F, representing a base-
sixteen integer that itself is a Unicode code point that is not U+0000, U+000D, in
the range U+0080 .. U+009F, or in the range 0xD800 .. 0xDFFF (surrogates). The
digits must then be followed by a U+003B SEMICOLON character (;).

An ambiguous ampersand is a U+0026 AMPERSAND (&) character that is followed by
some text other than a space character, a U+003C LESS-THAN SIGN character ('<'), or
another U+0026 AMPERSAND (&) character.

9.1.5 CDATA sections

CDATA sections must start with the character sequence U+003C LESS-THAN SIGN,
U+0021 EXCLAMATION MARK, U+005B LEFT SQUARE BRACKET, U+0043 LATIN
CAPITAL LETTER C, U+0044 LATIN CAPITAL LETTER D, U+0041 LATIN CAPITAL
LETTER A, U+0054 LATIN CAPITAL LETTER T, U+0041 LATIN CAPITAL LETTER A,
U+005B LEFT SQUARE BRACKET (<![CDATA[). Following this sequence, the CDATA
section may have text, with the additional restriction that the text must not contain the
three character sequence U+005D RIGHT SQUARE BRACKET, U+005D RIGHT
SQUARE BRACKET, U+003E GREATER-THAN SIGN (]]>). Finally, the CDATA section
must be ended by the three character sequence U+005D RIGHT SQUARE BRACKET,
U+005D RIGHT SQUARE BRACKET, U+003E GREATER-THAN SIGN (]]>).

9.1.6 Comments

Status: Working draft

Comments must start with the four character sequence U+003C LESS-THAN SIGN,
U+0021 EXCLAMATION MARK, U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS
(<!--). Following this sequence, the comment may have text, with the additional restriction
that the text must not start with a single U+003E GREATER-THAN SIGN ('>') character,
nor start with a U+002D HYPHEN-MINUS (-) character followed by a U+003E GREATER-
THAN SIGN ('>') character, nor contain two consecutive U+002D HYPHEN-MINUS (-)
characters, nor end with a U+002D HYPHEN-MINUS (-) character. Finally, the comment
must be ended by the three character sequence U+002D HYPHEN-MINUS, U+002D
HYPHEN-MINUS, U+003E GREATER-THAN SIGN (-->).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 712 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 712 from 931

9.2 Parsing HTML documents

Status: Last call for comments

This section only applies to user agents, data mining tools, and conformance checkers.

The rules for parsing XML documents into DOM trees are covered by the next
section, entitled "The XHTML syntax".

For HTML documents, user agents must use the parsing rules described in this section to
generate the DOM trees. Together, these rules define what is referred to as the HTML
parser.

While the HTML syntax described in this specification bears a close resemblance to
SGML and XML, it is a separate language with its own parsing rules.

Some earlier versions of HTML (in particular from HTML 2 to HTML 4) were based
on SGML and used SGML parsing rules. However, few (if any) web browsers ever
implemented true SGML parsing for HTML documents; the only user agents to
strictly handle HTML as an SGML application have historically been validators. The
resulting confusion — with validators claiming documents to have one
representation while widely deployed Web browsers interoperably implemented a
different representation — has wasted decades of productivity. This version of
HTML thus returns to a non-SGML basis.

Authors interested in using SGML tools in their authoring pipeline are encouraged
to use XML tools and the XML serialization of HTML.

This specification defines the parsing rules for HTML documents, whether they are
syntactically correct or not. Certain points in the parsing algorithm are said to be parse
errors. The error handling for parse errors is well-defined: user agents must either act as
described below when encountering such problems, or must abort processing at the first
error that they encounter for which they do not wish to apply the rules described below.

Conformance checkers must report at least one parse error condition to the user if one or
more parse error conditions exist in the document and must not report parse error
conditions if none exist in the document. Conformance checkers may report more than
one parse error condition if more than one parse error conditions exist in the document.
Conformance checkers are not required to recover from parse errors.

Parse errors are only errors with the syntax of HTML. In addition to checking for
parse errors, conformance checkers will also verify that the document obeys all the
other conformance requirements described in this specification.

For the purposes of conformance checkers, if a resource is determined to be in the HTML
syntax, then it is an HTML document.

9.2.1 Overview of the parsing model

The input to the HTML parsing process consists of a stream of Unicode characters, which
is passed through a tokenization stage followed by a tree construction stage. The output is
a Document object.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 713 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 713 from 931

Implementations that do not support scripting do not have to actually create a DOM
Document object, but the DOM tree in such cases is still used as the model for the
rest of the specification.

In the common case, the data handled by the tokenization stage comes from the network,
but it can also come from script, e.g. using the document.write() API.

There is only one set of states for the tokenizer stage and the tree construction stage, but
the tree construction stage is reentrant, meaning that while the tree construction stage is
handling one token, the tokenizer might be resumed, causing further tokens to be emitted
and processed before the first token's processing is complete.

In the following example, the tree construction stage will be called upon to handle a "p"
start tag token while handling the "script" start tag token:

...
<script>
 document.write('<p>');
</script>
...

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 714 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 714 from 931

To handle these cases, parsers have a script nesting level, which must be initially set to
zero, and a parser pause flag, which must be initially set to false.

9.2.2 The input stream

The stream of Unicode characters that comprises the input to the tokenization stage will
be initially seen by the user agent as a stream of bytes (typically coming over the network
or from the local file system). The bytes encode the actual characters according to a
particular character encoding, which the user agent must use to decode the bytes into
characters.

For XML documents, the algorithm user agents must use to determine the character
encoding is given by the XML specification. This section does not apply to XML
documents. [XML]

9.2.2.1 Determining the character encoding

Status: Working draft. ISSUE-11 (default-encoding) blocks progress to Last Call

In some cases, it might be impractical to unambiguously determine the encoding before
parsing the document. Because of this, this specification provides for a two-pass
mechanism with an optional pre-scan. Implementations are allowed, as described below,
to apply a simplified parsing algorithm to whatever bytes they have available before
beginning to parse the document. Then, the real parser is started, using a tentative
encoding derived from this pre-parse and other out-of-band metadata. If, while the
document is being loaded, the user agent discovers an encoding declaration that conflicts
with this information, then the parser can get reinvoked to perform a parse of the
document with the real encoding.

User agents must use the following algorithm (the encoding sniffing algorithm) to
determine the character encoding to use when decoding a document in the first pass. This
algorithm takes as input any out-of-band metadata available to the user agent (e.g. the
Content-Type metadata of the document) and all the bytes available so far, and returns an
encoding and a confidence. The confidence is either tentative, certain, or irrelevant. The
encoding used, and whether the confidence in that encoding is tentative or certain, is used
during the parsing to determine whether to change the encoding. If no encoding is
necessary, e.g. because the parser is operating on a stream of Unicode characters and
doesn't have to use an encoding at all, then the confidence is irrelevant.

1. If the transport layer specifies an encoding, and it is supported, return that encoding
with the confidence certain, and abort these steps.

2. The user agent may wait for more bytes of the resource to be available, either in
this step or at any later step in this algorithm. For instance, a user agent might wait
500ms or 512 bytes, whichever came first. In general preparsing the source to find
the encoding improves performance, as it reduces the need to throw away the data
structures used when parsing upon finding the encoding information. However, if
the user agent delays too long to obtain data to determine the encoding, then the
cost of the delay could outweigh any performance improvements from the
preparse.

3. For each of the rows in the following table, starting with the first one and going
down, if there are as many or more bytes available than the number of bytes in the

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 715 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 715 from 931

first column, and the first bytes of the file match the bytes given in the first column,
then return the encoding given in the cell in the second column of that row, with the
confidence certain, and abort these steps:

Bytes in Hexadecimal Encoding
FE FF UTF-16BE
FF FE UTF-16LE
EF BB BF UTF-8

4. This step looks for Unicode Byte Order Marks (BOMs).

5. Otherwise, the user agent will have to search for explicit character encoding
information in the file itself. This should proceed as follows:

Let position be a pointer to a byte in the input stream, initially pointing at the first
byte. If at any point during these substeps the user agent either runs out of bytes or
decides that scanning further bytes would not be efficient, then skip to the next step
of the overall character encoding detection algorithm. User agents may decide that
scanning any bytes is not efficient, in which case these substeps are entirely
skipped.

Now, repeat the following "two" steps until the algorithm aborts (either because
user agent aborts, as described above, or because a character encoding is found):

1. If position points to:

A sequence of bytes starting with: 0x3C 0x21 0x2D 0x2D (ASCII '<!--')
Advance the position pointer so that it points at the first 0x3E byte which is
preceded by two 0x2D bytes (i.e. at the end of an ASCII '-->' sequence) and comes
after the 0x3C byte that was found. (The two 0x2D bytes can be the same as the
those in the '<!--' sequence.)

A sequence of bytes starting with: 0x3C, 0x4D or 0x6D, 0x45 or 0x65,
0x54 or 0x74, 0x41 or 0x61, and finally one of 0x09, 0x0A, 0x0C, 0x0D,
0x20, 0x2F (case-insensitive ASCII '<meta' followed by a space or
slash)

1. Advance the position pointer so that it points at the next 0x09, 0x0A,
0x0C, 0x0D, 0x20, or 0x2F byte (the one in sequence of characters matched
above).

2. Get an attribute and its value. If no attribute was sniffed, then skip this
inner set of steps, and jump to the second step in the overall "two step"
algorithm.

3. If the attribute's name is neither "charset" nor "content", then return
to step 2 in these inner steps.

4. If the attribute's name is "charset", let charset be the attribute's value,
interpreted as a character encoding.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 716 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 716 from 931

5. Otherwise, the attribute's name is "content": apply the algorithm for
extracting an encoding from a Content-Type, giving the attribute's value as
the string to parse. If an encoding is returned, let charset be that encoding.
Otherwise, return to step 2 in these inner steps.

6. If charset is a UTF-16 encoding, change the value of charset to UTF-
8.

7. If charset is a supported character encoding, then return the given
encoding, with confidence tentative, and abort all these steps.

8. Otherwise, return to step 2 in these inner steps.

A sequence of bytes starting with a 0x3C byte (ASCII '<'), optionally a
0x2F byte (ASCII '/'), and finally a byte in the range 0x41-0x5A or 0x61-
0x7A (an ASCII letter)

9. Advance the position pointer so that it points at the next 0x09 (ASCII
TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII CR), 0x20 (ASCII
space), or 0x3E (ASCII '>') byte.

10. Repeatedly get an attribute until no further attributes can be found,
then jump to the second step in the overall "two step" algorithm.

A sequence of bytes starting with: 0x3C 0x21 (ASCII '<!')
A sequence of bytes starting with: 0x3C 0x2F (ASCII '</')
A sequence of bytes starting with: 0x3C 0x3F (ASCII '<?')

Advance the position pointer so that it points at the first 0x3E byte (ASCII '>') that
comes after the 0x3C byte that was found.

Any other byte
Do nothing with that byte.

2. Move position so it points at the next byte in the input stream, and return to
the first step of this "two step" algorithm.

When the above "two step" algorithm says to get an attribute, it means doing this:

3. If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C
(ASCII FF), 0x0D (ASCII CR), 0x20 (ASCII space), or 0x2F (ASCII '/') then
advance position to the next byte and redo this substep.

4. If the byte at position is 0x3E (ASCII '>'), then abort the "get an attribute"
algorithm. There isn't one.

5. Otherwise, the byte at position is the start of the attribute name. Let attribute
name and attribute value be the empty string.

6. Attribute name: Process the byte at position as follows:

If it is 0x3D (ASCII '='), and the attribute name is longer than the empty
string

Advance position to the next byte and jump to the step below labeled value.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 717 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 717 from 931

If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII
CR), or 0x20 (ASCII space)

Jump to the step below labeled spaces.
If it is 0x2F (ASCII '/') or 0x3E (ASCII '>')

Abort the "get an attribute" algorithm. The attribute's name is the value of attribute
name, its value is the empty string.

If it is in the range 0x41 (ASCII 'A') to 0x5A (ASCII 'Z')
Append the Unicode character with code point b+0x20 to attribute name (where b is
the value of the byte at position).

Anything else
Append the Unicode character with the same code point as the value of the byte at
position) to attribute name. (It doesn't actually matter how bytes outside the ASCII
range are handled here, since only ASCII characters can contribute to the detection
of a character encoding.)

7. Advance position to the next byte and return to the previous step.

8. Spaces: If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF),
0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space) then advance
position to the next byte, then, repeat this step.

9. If the byte at position is not 0x3D (ASCII '='), abort the "get an attribute"
algorithm. The attribute's name is the value of attribute name, its value is the
empty string.

10. Advance position past the 0x3D (ASCII '=') byte.

11. Value: If the byte at position is one of 0x09 (ASCII TAB), 0x0A (ASCII LF),
0x0C (ASCII FF), 0x0D (ASCII CR), or 0x20 (ASCII space) then advance
position to the next byte, then, repeat this step.

12. Process the byte at position as follows:

If it is 0x22 (ASCII '"') or 0x27 ("'")

1. Let b be the value of the byte at position.
2. Advance position to the next byte.
3. If the value of the byte at position is the value of b, then advance

position to the next byte and abort the "get an attribute" algorithm. The
attribute's name is the value of attribute name, and its value is the value of
attribute value.

4. Otherwise, if the value of the byte at position is in the range 0x41
(ASCII 'A') to 0x5A (ASCII 'Z'), then append a Unicode character to attribute
value whose code point is 0x20 more than the value of the byte at position.

5. Otherwise, append a Unicode character to attribute value whose code
point is the same as the value of the byte at position.

6. Return to the second step in these substeps.

If it is 0x3E (ASCII '>')
Abort the "get an attribute" algorithm. The attribute's name is the value of attribute
name, its value is the empty string.

If it is in the range 0x41 (ASCII 'A') to 0x5A (ASCII 'Z')

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 718 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 718 from 931

Append the Unicode character with code point b+0x20 to attribute value (where b is
the value of the byte at position). Advance position to the next byte.

Anything else
Append the Unicode character with the same code point as the value of the byte at
position) to attribute value. Advance position to the next byte.

13. Process the byte at position as follows:

If it is 0x09 (ASCII TAB), 0x0A (ASCII LF), 0x0C (ASCII FF), 0x0D (ASCII
CR), 0x20 (ASCII space), or 0x3E (ASCII '>')

Abort the "get an attribute" algorithm. The attribute's name is the value of attribute
name and its value is the value of attribute value.

If it is in the range 0x41 (ASCII 'A') to 0x5A (ASCII 'Z')
Append the Unicode character with code point b+0x20 to attribute value (where b is
the value of the byte at position).

Anything else
Append the Unicode character with the same code point as the value of the byte at
position) to attribute value.

14. Advance position to the next byte and return to the previous step.

For the sake of interoperability, user agents should not use a pre-scan algorithm
that returns different results than the one described above. (But, if you do, please at
least let us know, so that we can improve this algorithm and benefit everyone...)

6. If the user agent has information on the likely encoding for this page, e.g. based on
the encoding of the page when it was last visited, then return that encoding, with
the confidence tentative, and abort these steps.

7. The user agent may attempt to autodetect the character encoding from applying
frequency analysis or other algorithms to the data stream. If autodetection
succeeds in determining a character encoding, then return that encoding, with the
confidence tentative, and abort these steps. [UNIVCHARDET]

8. Otherwise, return an implementation-defined or user-specified default character
encoding, with the confidence tentative. In non-legacy environments, the more
comprehensive UTF-8 encoding is recommended. Due to its use in legacy content,
windows-1252 is recommended as a default in predominantly Western
demographics instead. Since these encodings can in many cases be distinguished
by inspection, a user agent may heuristically decide which to use as a default.

The document's character encoding must immediately be set to the value returned from
this algorithm, at the same time as the user agent uses the returned value to select the
decoder to use for the input stream.

9.2.2.2 Preprocessing the input stream

Given an encoding, the bytes in the input stream must be converted to Unicode characters
for the tokenizer, as described by the rules for that encoding, except that the leading
U+FEFF BYTE ORDER MARK character, if any, must not be stripped by the encoding
layer (it is stripped by the rule below).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 719 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 719 from 931

Bytes or sequences of bytes in the original byte stream that could not be converted to
Unicode characters must be converted to U+FFFD REPLACEMENT CHARACTER code
points.

Bytes or sequences of bytes in the original byte stream that did not conform to the
encoding specification (e.g. invalid UTF-8 byte sequences in a UTF-8 input stream)
are errors that conformance checkers are expected to report.

Any byte or sequences of bytes in the original byte stream that is misinterpreted for
compatibility is a parse error.

One leading U+FEFF BYTE ORDER MARK character must be ignored if any are present.

All U+0000 NULL characters in the input must be replaced by U+FFFD REPLACEMENT
CHARACTERs. Any occurrences of such characters is a parse error.

Any occurrences of any characters in the ranges U+0001 to U+0008, U+000E to U+001F,
U+007F to U+009F, U+D800 to U+DFFF, U+FDD0 to U+FDEF, and characters U+000B,
U+FFFE, U+FFFF, U+1FFFE, U+1FFFF, U+2FFFE, U+2FFFF, U+3FFFE, U+3FFFF,
U+4FFFE, U+4FFFF, U+5FFFE, U+5FFFF, U+6FFFE, U+6FFFF, U+7FFFE, U+7FFFF,
U+8FFFE, U+8FFFF, U+9FFFE, U+9FFFF, U+AFFFE, U+AFFFF, U+BFFFE, U+BFFFF,
U+CFFFE, U+CFFFF, U+DFFFE, U+DFFFF, U+EFFFE, U+EFFFF, U+FFFFE, U+FFFFF,
U+10FFFE, and U+10FFFF are parse errors. (These are all control characters or
permanently undefined Unicode characters.)

U+000D CARRIAGE RETURN (CR) characters and U+000A LINE FEED (LF) characters
are treated specially. Any CR characters that are followed by LF characters must be
removed, and any CR characters not followed by LF characters must be converted to LF
characters. Thus, newlines in HTML DOMs are represented by LF characters, and there
are never any CR characters in the input to the tokenization stage.

The next input character is the first character in the input stream that has not yet been
consumed. Initially, the next input character is the first character in the input. The current
input character is the last character to have been consumed.

The insertion point is the position (just before a character or just before the end of the
input stream) where content inserted using document.write() is actually inserted. The
insertion point is relative to the position of the character immediately after it, it is not an
absolute offset into the input stream. Initially, the insertion point is undefined.

The "EOF" character in the tables below is a conceptual character representing the end of
the input stream. If the parser is a script-created parser, then the end of the input stream
is reached when an explicit "EOF" character (inserted by the document.close() method)
is consumed. Otherwise, the "EOF" character is not a real character in the stream, but
rather the lack of any further characters.

9.2.2.3 Changing the encoding while parsing

When the parser requires the user agent to change the encoding, it must run the
following steps. This might happen if the encoding sniffing algorithm described above
failed to find an encoding, or if it found an encoding that was not the actual encoding of
the file.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 720 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 720 from 931

1. If the new encoding is identical or equivalent to the encoding that is already being
used to interpret the input stream, then set the confidence to certain and abort
these steps. This happens when the encoding information found in the file matches
what the encoding sniffing algorithm determined to be the encoding, and in the
second pass through the parser if the first pass found that the encoding sniffing
algorithm described in the earlier section failed to find the right encoding.

2. If the encoding that is already being used to interpret the input stream is a UTF-16
encoding, then set the confidence to certain and abort these steps. The new
encoding is ignored; if it was anything but the same encoding, then it would be
clearly incorrect.

3. If the new encoding is a UTF-16 encoding, change it to UTF-8.
4. If all the bytes up to the last byte converted by the current decoder have the same

Unicode interpretations in both the current encoding and the new encoding, and if
the user agent supports changing the converter on the fly, then the user agent may
change to the new converter for the encoding on the fly. Set the document's
character encoding and the encoding used to convert the input stream to the new
encoding, set the confidence to certain, and abort these steps.

5. Otherwise, navigate to the document again, with replacement enabled, and using
the same source browsing context, but this time skip the encoding sniffing
algorithm and instead just set the encoding to the new encoding and the confidence
to certain. Whenever possible, this should be done without actually contacting the
network layer (the bytes should be re-parsed from memory), even if, e.g., the
document is marked as not being cacheable. If this is not possible and contacting
the network layer would involve repeating a request that uses a method other than
HTTP GET (or equivalent for non-HTTP URLs), then instead set the confidence to
certain and ignore the new encoding. The resource will be misinterpreted. User
agents may notify the user of the situation, to aid in application development.

9.2.3 Parse state

9.2.3.1 The insertion mode

The insertion mode is a state variable that controls the primary operation of the tree
construction stage.

Initially, the insertion mode is "initial". It can change to "before html", "before head", "in
head", "in head noscript", "after head", "in body", "in RAWTEXT/RCDATA", "in table", "in
table text", "in caption", "in column group", "in table body", "in row", "in cell", "in select", "in
select in table", "in foreign content", "after body", "in frameset", "after frameset", "after after
body", and "after after frameset" during the course of the parsing, as described in the tree
construction stage. The insertion mode affects how tokens are processed and whether
CDATA sections are supported.

Seven of these modes, namely "in head", "in body", "in table", "in table body", "in row", "in
cell", and "in select", are special, in that the other modes defer to them at various times.
When the algorithm below says that the user agent is to do something "using the rules
for the m insertion mode", where m is one of these modes, the user agent must use the
rules described under the m insertion mode's section, but must leave the insertion mode
unchanged unless the rules in m themselves switch the insertion mode to a new value.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 721 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 721 from 931

When the insertion mode is switched to "in RAWTEXT/RCDATA" or "in table text", the
original insertion mode is also set. This is the insertion mode to which the tree
construction stage will return.

When the insertion mode is switched to "in foreign content", the secondary insertion
mode is also set. This secondary mode is used within the rules for the "in foreign content"
mode to handle HTML (i.e. not foreign) content.

When the steps below require the UA to reset the insertion mode appropriately, it
means the UA must follow these steps:

1. Let last be false.
2. Let node be the last node in the stack of open elements.
3. If node is the first node in the stack of open elements, then set last to true and set

node to the context element. (fragment case)
4. If node is a select element, then switch the insertion mode to "in select" and abort

these steps. (fragment case)
5. If node is a td or th element and last is false, then switch the insertion mode to "in

cell" and abort these steps.
6. If node is a tr element, then switch the insertion mode to "in row" and abort these

steps.
7. If node is a tbody, thead, or tfoot element, then switch the insertion mode to "in

table body" and abort these steps.
8. If node is a caption element, then switch the insertion mode to "in caption" and

abort these steps.
9. If node is a colgroup element, then switch the insertion mode to "in column group"

and abort these steps. (fragment case)
10. If node is a table element, then switch the insertion mode to "in table" and abort

these steps.
11. If node is an element from the MathML namespace or the SVG namespace, then

switch the insertion mode to "in foreign content", let the secondary insertion mode
be "in body", and abort these steps.

12. If node is a head element, then switch the insertion mode to "in body" ("in body"! not
"in head"!) and abort these steps. (fragment case)

13. If node is a body element, then switch the insertion mode to "in body" and abort
these steps.

14. If node is a frameset element, then switch the insertion mode to "in frameset" and
abort these steps. (fragment case)

15. If node is an html element, then: if the head element pointer is null, switch the
insertion mode to "before head", otherwise, switch the insertion mode to "after
head". In either case, abort these steps. (fragment case)

16. If last is true, then switch the insertion mode to "in body" and abort these steps.
(fragment case)

17. Let node now be the node before node in the stack of open elements.
18. Return to step 3.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 722 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 722 from 931

9.2.3.2 The stack of open elements

Initially, the stack of open elements is empty. The stack grows downwards; the topmost
node on the stack is the first one added to the stack, and the bottommost node of the
stack is the most recently added node in the stack (notwithstanding when the stack is
manipulated in a random access fashion as part of the handling for misnested tags).

The "before html" insertion mode creates the html root element node, which is then added
to the stack.

In the fragment case, the stack of open elements is initialized to contain an html element
that is created as part of that algorithm. (The fragment case skips the "before html"
insertion mode.)

The html node, however it is created, is the topmost node of the stack. It never gets
popped off the stack.

The current node is the bottommost node in this stack.

The current table is the last table element in the stack of open elements, if there is one.
If there is no table element in the stack of open elements (fragment case), then the
current table is the first element in the stack of open elements (the html element).

Elements in the stack fall into the following categories:

Special
The following HTML elements have varying levels of special parsing rules: address,
area, article, aside, base, basefont, bgsound, blockquote, body, br, center, col,
colgroup, command, datagrid, dd, details, dialog, dir, div, dl, dt, embed, fieldset,
figure, footer, form, frame, frameset, h1, h2, h3, h4, h5, h6, head, header, hgroup,
hr, iframe, img, input, isindex, li, link, listing, menu, meta, nav, noembed,
noframes, noscript, ol, p, param, plaintext, pre, script, section, select, spacer,
style, tbody, textarea, tfoot, thead, title, tr, ul, and wbr.

Scoping
The following HTML elements introduce new scopes for various parts of the
parsing: applet, button, caption, html, marquee, object, table, td, th, and SVG's
foreignObject.

Formatting
The following HTML elements are those that end up in the list of active formatting
elements: a, b, big, code, em, font, i, nobr, s, small, strike, strong, tt, and u.

Phrasing
All other elements found while parsing an HTML document.

The stack of open elements is said to have an element in scope when the following
algorithm terminates in a match state:

1. Initialize node to be the current node (the bottommost node of the stack).

2. If node is the target node, terminate in a match state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 723 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 723 from 931

3. Otherwise, if node is one of the following elements, terminate in a failure state:

o applet in the HTML namespace
o caption in the HTML namespace
o html in the HTML namespace
o table in the HTML namespace
o td in the HTML namespace
o th in the HTML namespace
o button in the HTML namespace
o marquee in the HTML namespace
o object in the HTML namespace
o foreignObject in the SVG namespace

4. Otherwise, set node to the previous entry in the stack of open elements and return
to step 2. (This will never fail, since the loop will always terminate in the previous
step if the top of the stack — an html element — is reached.)

The stack of open elements is said to have an element in table scope when the
following algorithm terminates in a match state:

1. Initialize node to be the current node (the bottommost node of the stack).

2. If node is the target node, terminate in a match state.

3. Otherwise, if node is one of the following elements, terminate in a failure state:

o html in the HTML namespace
o table in the HTML namespace

4. Otherwise, set node to the previous entry in the stack of open elements and return
to step 2. (This will never fail, since the loop will always terminate in the previous
step if the top of the stack — an html element — is reached.)

Nothing happens if at any time any of the elements in the stack of open elements are
moved to a new location in, or removed from, the Document tree. In particular, the stack is
not changed in this situation. This can cause, amongst other strange effects, content to be
appended to nodes that are no longer in the DOM.

In some cases (namely, when closing misnested formatting elements), the stack is
manipulated in a random-access fashion.

9.2.3.3 The list of active formatting elements

Initially, the list of active formatting elements is empty. It is used to handle mis-nested
formatting element tags.

The list contains elements in the formatting category, and scope markers. The scope
markers are inserted when entering applet elements, buttons, object elements,
marquees, table cells, and table captions, and are used to prevent formatting from
"leaking" into applet elements, buttons, object elements, marquees, and tables.

The scope markers are unrelated to the concept of an element being in scope.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 724 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 724 from 931

In addition, each element in the list of active formatting elements is associated with the
token for which it was created, so that further elements can be created for that token if
necessary.

When the steps below require the UA to reconstruct the active formatting elements,
the UA must perform the following steps:

1. If there are no entries in the list of active formatting elements, then there is nothing
to reconstruct; stop this algorithm.

2. If the last (most recently added) entry in the list of active formatting elements is a
marker, or if it is an element that is in the stack of open elements, then there is
nothing to reconstruct; stop this algorithm.

3. Let entry be the last (most recently added) element in the list of active formatting
elements.

4. If there are no entries before entry in the list of active formatting elements, then
jump to step 8.

5. Let entry be the entry one earlier than entry in the list of active formatting elements.
6. If entry is neither a marker nor an element that is also in the stack of open

elements, go to step 4.
7. Let entry be the element one later than entry in the list of active formatting

elements.
8. Create an element for the token for which the element entry was created, to obtain

new element.
9. Append new element to the current node and push it onto the stack of open

elements so that it is the new current node.
10. Replace the entry for entry in the list with an entry for new element.
11. If the entry for new element in the list of active formatting elements is not the last

entry in the list, return to step 7.

This has the effect of reopening all the formatting elements that were opened in the
current body, cell, or caption (whichever is youngest) that haven't been explicitly closed.

The way this specification is written, the list of active formatting elements always
consists of elements in chronological order with the least recently added element
first and the most recently added element last (except for while steps 8 to 11 of the
above algorithm are being executed, of course).

When the steps below require the UA to clear the list of active formatting elements up
to the last marker, the UA must perform the following steps:

1. Let entry be the last (most recently added) entry in the list of active formatting
elements.

2. Remove entry from the list of active formatting elements.
3. If entry was a marker, then stop the algorithm at this point. The list has been

cleared up to the last marker.
4. Go to step 1.

9.2.3.4 The element pointers

Initially, the head element pointer and the form element pointer are both null.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 725 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 725 from 931

Once a head element has been parsed (whether implicitly or explicitly) the head element
pointer gets set to point to this node.

The form element pointer points to the last form element that was opened and whose end
tag has not yet been seen. It is used to make form controls associate with forms in the
face of dramatically bad markup, for historical reasons.

9.2.3.5 Other parsing state flags

The scripting flag is set to "enabled" if scripting was enabled for the Document with which
the parser is associated when the parser was created, and "disabled" otherwise.

The scripting flag can be enabled even when the parser was originally created for
the HTML fragment parsing algorithm, even though script elements don't execute
in that case.

The frameset-ok flag is set to "ok" when the parser is created. It is set to "not ok" after
certain tokens are seen.

9.2.4 Tokenization

Status: Last call for comments

Implementations must act as if they used the following state machine to tokenize HTML.
The state machine must start in the data state. Most states consume a single character,
which may have various side-effects, and either switches the state machine to a new state
to reconsume the same character, or switches it to a new state (to consume the next
character), or repeats the same state (to consume the next character). Some states have
more complicated behavior and can consume several characters before switching to
another state.

The exact behavior of certain states depends on a content model flag that is set after
certain tokens are emitted. The flag has several states: PCDATA, RCDATA, RAWTEXT,
and PLAINTEXT. Initially, it must be in the PCDATA state. In the RCDATA and RAWTEXT
states, a further escape flag is used to control the behavior of the tokenizer. It is either
true or false, and initially must be set to the false state. The insertion mode and the stack
of open elements also affects tokenization.

The output of the tokenization step is a series of zero or more of the following tokens:
DOCTYPE, start tag, end tag, comment, character, end-of-file. DOCTYPE tokens have a
name, a public identifier, a system identifier, and a force-quirks flag. When a DOCTYPE
token is created, its name, public identifier, and system identifier must be marked as
missing (which is a distinct state from the empty string), and the force-quirks flag must be
set to off (its other state is on). Start and end tag tokens have a tag name, a self-closing
flag, and a list of attributes, each of which has a name and a value. When a start or end
tag token is created, its self-closing flag must be unset (its other state is that it be set), and
its attributes list must be empty. Comment and character tokens have data.

When a token is emitted, it must immediately be handled by the tree construction stage.
The tree construction stage can affect the state of the content model flag, and can insert
additional characters into the stream. (For example, the script element can result in
scripts executing and using the dynamic markup insertion APIs to insert characters into
the stream being tokenized.)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 726 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 726 from 931

When a start tag token is emitted with its self-closing flag set, if the flag is not
acknowledged when it is processed by the tree construction stage, that is a parse error.

When an end tag token is emitted, the content model flag must be switched to the
PCDATA state.

When an end tag token is emitted with attributes, that is a parse error.

When an end tag token is emitted with its self-closing flag set, that is a parse error.

Before each step of the tokenizer, the user agent must first check the parser pause flag. If
it is true, then the tokenizer must abort the processing of any nested invocations of the
tokenizer, yielding control back to the caller. If it is false, then the user agent may then
check to see if either one of the scripts in the list of scripts that will execute as soon as
possible or the first script in the list of scripts that will execute asynchronously, has
completed loading. If one has, then it must be executed and removed from its list.

The tokenizer state machine consists of the states defined in the following subsections.

9.2.4.1 Data state

Consume the next input character:

U+0026 AMPERSAND (&)
When the content model flag is set to one of the PCDATA or RCDATA states and
the escape flag is false: switch to the character reference data state.
Otherwise: treat it as per the "anything else" entry below.

U+002D HYPHEN-MINUS (-)
If the content model flag is set to either the RCDATA state or the RAWTEXT state,
and the escape flag is false, and there are at least three characters before this one
in the input stream, and the last four characters in the input stream, including this
one, are U+003C LESS-THAN SIGN, U+0021 EXCLAMATION MARK, U+002D
HYPHEN-MINUS, and U+002D HYPHEN-MINUS ("<!--"), then set the escape flag
to true.

In any case, emit the input character as a character token. Stay in the data state.

U+003C LESS-THAN SIGN (<)
When the content model flag is set to the PCDATA state: switch to the tag open
state.
When the content model flag is set to either the RCDATA state or the RAWTEXT
state, and the escape flag is false: switch to the tag open state.
Otherwise: treat it as per the "anything else" entry below.

U+003E GREATER-THAN SIGN (>)
If the content model flag is set to either the RCDATA state or the RAWTEXT state,
and the escape flag is true, and the last three characters in the input stream
including this one are U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS,
U+003E GREATER-THAN SIGN ("-->"), set the escape flag to false.

In any case, emit the input character as a character token. Stay in the data state.

EOF
Emit an end-of-file token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 727 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 727 from 931

Anything else
Emit the input character as a character token. Stay in the data state.

9.2.4.2 Character reference data state

(This cannot happen if the content model flag is set to the RAWTEXT state.)

Attempt to consume a character reference, with no additional allowed character.

If nothing is returned, emit a U+0026 AMPERSAND character token.

Otherwise, emit the character token that was returned.

Finally, switch to the data state.

9.2.4.3 Tag open state

The behavior of this state depends on the content model flag.

If the content model flag is set to the RCDATA or RAWTEXT states
Consume the next input character. If it is a U+002F SOLIDUS (/) character, switch
to the close tag open state. Otherwise, emit a U+003C LESS-THAN SIGN
character token and reconsume the current input character in the data state.

If the content model flag is set to the PCDATA state
Consume the next input character:

U+0021 EXCLAMATION MARK (!)
Switch to the markup declaration open state.
U+002F SOLIDUS (/)
Switch to the close tag open state.
U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL
LETTER Z
Create a new start tag token, set its tag name to the lowercase version of the input
character (add 0x0020 to the character's code point), then switch to the tag name
state. (Don't emit the token yet; further details will be filled in before it is emitted.)
U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Create a new start tag token, set its tag name to the input character, then switch to
the tag name state. (Don't emit the token yet; further details will be filled in before it
is emitted.)
U+003E GREATER-THAN SIGN (>)
Parse error. Emit a U+003C LESS-THAN SIGN character token and a U+003E
GREATER-THAN SIGN character token. Switch to the data state.
U+003F QUESTION MARK (?)
Parse error. Switch to the bogus comment state.
Anything else
Parse error. Emit a U+003C LESS-THAN SIGN character token and reconsume the
current input character in the data state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 728 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 728 from 931

9.2.4.4 Close tag open state

If the content model flag is set to the RCDATA or RAWTEXT states but no start tag token
has ever been emitted by this instance of the tokenizer (fragment case), or, if the content
model flag is set to the RCDATA or RAWTEXT states and the next few characters do not
match the tag name of the last start tag token emitted (compared in an ASCII case-
insensitive manner), or if they do but they are not immediately followed by one of the
following characters:

• U+0009 CHARACTER TABULATION
• U+000A LINE FEED (LF)
• U+000C FORM FEED (FF)
• U+0020 SPACE
• U+003E GREATER-THAN SIGN (>)
• U+002F SOLIDUS (/)
• EOF

...then emit a U+003C LESS-THAN SIGN character token, a U+002F SOLIDUS character
token, and switch to the data state to process the next input character.

Otherwise, if the content model flag is set to the PCDATA state, or if the next few
characters do match that tag name, consume the next input character:

U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Create a new end tag token, set its tag name to the lowercase version of the input
character (add 0x0020 to the character's code point), then switch to the tag name
state. (Don't emit the token yet; further details will be filled in before it is emitted.)

U+0061 LATIN SMALL LETTER A through to U+007A LATIN SMALL LETTER Z
Create a new end tag token, set its tag name to the input character, then switch to
the tag name state. (Don't emit the token yet; further details will be filled in before it
is emitted.)

U+003E GREATER-THAN SIGN (>)
Parse error. Switch to the data state.

EOF
Parse error. Emit a U+003C LESS-THAN SIGN character token and a U+002F
SOLIDUS character token. Reconsume the EOF character in the data state.

Anything else
Parse error. Switch to the bogus comment state.

9.2.4.5 Tag name state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Switch to the before attribute name state.
U+002F SOLIDUS (/)

Switch to the self-closing start tag state.
U+003E GREATER-THAN SIGN (>)

Emit the current tag token. Switch to the data state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 729 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 729 from 931

U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input character (add 0x0020 to the
character's code point) to the current tag token's tag name. Stay in the tag name
state.

EOF
Parse error. Reconsume the EOF character in the data state.

Anything else
Append the current input character to the current tag token's tag name. Stay in the
tag name state.

9.2.4.6 Before attribute name state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Stay in the before attribute name state.
U+002F SOLIDUS (/)

Switch to the self-closing start tag state.
U+003E GREATER-THAN SIGN (>)

Emit the current tag token. Switch to the data state.
U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z

Start a new attribute in the current tag token. Set that attribute's name to the
lowercase version of the current input character (add 0x0020 to the character's
code point), and its value to the empty string. Switch to the attribute name state.

U+0022 QUOTATION MARK (")
U+0027 APOSTROPHE (')
U+003C LESS-THAN SIGN (<)
U+003D EQUALS SIGN (=)

Parse error. Treat it as per the "anything else" entry below.
EOF

Parse error. Reconsume the EOF character in the data state.
Anything else

Start a new attribute in the current tag token. Set that attribute's name to the current
input character, and its value to the empty string. Switch to the attribute name state.

9.2.4.7 Attribute name state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Switch to the after attribute name state.
U+002F SOLIDUS (/)

Switch to the self-closing start tag state.
U+003D EQUALS SIGN (=)

Switch to the before attribute value state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 730 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 730 from 931

U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data state.

U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Append the lowercase version of the current input character (add 0x0020 to the
character's code point) to the current attribute's name. Stay in the attribute name
state.

U+0022 QUOTATION MARK (")
U+0027 APOSTROPHE (')
U+003C LESS-THAN SIGN (<)

Parse error. Treat it as per the "anything else" entry below.
EOF

Parse error. Reconsume the EOF character in the data state.
Anything else

Append the current input character to the current attribute's name. Stay in the
attribute name state.

When the user agent leaves the attribute name state (and before emitting the tag token, if
appropriate), the complete attribute's name must be compared to the other attributes on
the same token; if there is already an attribute on the token with the exact same name,
then this is a parse error and the new attribute must be dropped, along with the value that
gets associated with it (if any).

9.2.4.8 After attribute name state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Stay in the after attribute name state.
U+002F SOLIDUS (/)

Switch to the self-closing start tag state.
U+003D EQUALS SIGN (=)

Switch to the before attribute value state.
U+003E GREATER-THAN SIGN (>)

Emit the current tag token. Switch to the data state.
U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z

Start a new attribute in the current tag token. Set that attribute's name to the
lowercase version of the current input character (add 0x0020 to the character's
code point), and its value to the empty string. Switch to the attribute name state.

U+0022 QUOTATION MARK (")
U+0027 APOSTROPHE (')
U+003C LESS-THAN SIGN (<)

Parse error. Treat it as per the "anything else" entry below.
EOF

Parse error. Reconsume the EOF character in the data state.
Anything else

Start a new attribute in the current tag token. Set that attribute's name to the current
input character, and its value to the empty string. Switch to the attribute name state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 731 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 731 from 931

9.2.4.9 Before attribute value state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Stay in the before attribute value state.
U+0022 QUOTATION MARK (")

Switch to the attribute value (double-quoted) state.
U+0026 AMPERSAND (&)

Switch to the attribute value (unquoted) state and reconsume this input character.
U+0027 APOSTROPHE (')

Switch to the attribute value (single-quoted) state.
U+003E GREATER-THAN SIGN (>)

Parse error. Emit the current tag token. Switch to the data state.
U+003C LESS-THAN SIGN (<)
U+003D EQUALS SIGN (=)

Parse error. Treat it as per the "anything else" entry below.
EOF

Parse error. Reconsume the EOF character in the data state.
Anything else

Append the current input character to the current attribute's value. Switch to the
attribute value (unquoted) state.

9.2.4.10 Attribute value (double-quoted) state

Consume the next input character:

U+0022 QUOTATION MARK (")
Switch to the after attribute value (quoted) state.

U+0026 AMPERSAND (&)
Switch to the character reference in attribute value state, with the additional allowed
character being U+0022 QUOTATION MARK (").

EOF
Parse error. Reconsume the EOF character in the data state.

Anything else
Append the current input character to the current attribute's value. Stay in the
attribute value (double-quoted) state.

9.2.4.11 Attribute value (single-quoted) state

Consume the next input character:

U+0027 APOSTROPHE (')
Switch to the after attribute value (quoted) state.

U+0026 AMPERSAND (&)
Switch to the character reference in attribute value state, with the additional allowed
character being U+0027 APOSTROPHE (').

EOF
Parse error. Reconsume the EOF character in the data state.

Anything else

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 732 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 732 from 931

Append the current input character to the current attribute's value. Stay in the
attribute value (single-quoted) state.

9.2.4.12 Attribute value (unquoted) state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Switch to the before attribute name state.
U+0026 AMPERSAND (&)

Switch to the character reference in attribute value state, with no additional allowed
character.

U+003E GREATER-THAN SIGN (>)
Emit the current tag token. Switch to the data state.

U+0022 QUOTATION MARK (")
U+0027 APOSTROPHE (')
U+003C LESS-THAN SIGN (<)
U+003D EQUALS SIGN (=)

Parse error. Treat it as per the "anything else" entry below.
EOF

Parse error. Reconsume the EOF character in the data state.
Anything else

Append the current input character to the current attribute's value. Stay in the
attribute value (unquoted) state.

9.2.4.13 Character reference in attribute value state

Attempt to consume a character reference.

If nothing is returned, append a U+0026 AMPERSAND character to the current attribute's
value.

Otherwise, append the returned character token to the current attribute's value.

Finally, switch back to the attribute value state that you were in when were switched into
this state.

9.2.4.14 After attribute value (quoted) state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Switch to the before attribute name state.
U+002F SOLIDUS (/)

Switch to the self-closing start tag state.
U+003E GREATER-THAN SIGN (>)

Emit the current tag token. Switch to the data state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 733 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 733 from 931

EOF
Parse error. Reconsume the EOF character in the data state.

Anything else
Parse error. Reconsume the character in the before attribute name state.

9.2.4.15 Self-closing start tag state

Consume the next input character:

U+003E GREATER-THAN SIGN (>)
Set the self-closing flag of the current tag token. Emit the current tag token. Switch
to the data state.

EOF
Parse error. Reconsume the EOF character in the data state.

Anything else
Parse error. Reconsume the character in the before attribute name state.

9.2.4.16 Bogus comment state

(This can only happen if the content model flag is set to the PCDATA state.)

Consume every character up to and including the first U+003E GREATER-THAN SIGN
character (>) or the end of the file (EOF), whichever comes first. Emit a comment token
whose data is the concatenation of all the characters starting from and including the
character that caused the state machine to switch into the bogus comment state, up to
and including the character immediately before the last consumed character (i.e. up to the
character just before the U+003E or EOF character). (If the comment was started by the
end of the file (EOF), the token is empty.)

Switch to the data state.

If the end of the file was reached, reconsume the EOF character.

9.2.4.17 Markup declaration open state

(This can only happen if the content model flag is set to the PCDATA state.)

If the next two characters are both U+002D HYPHEN-MINUS (-) characters, consume
those two characters, create a comment token whose data is the empty string, and switch
to the comment start state.

Otherwise, if the next seven characters are an ASCII case-insensitive match for the word
"DOCTYPE", then consume those characters and switch to the DOCTYPE state.

Otherwise, if the insertion mode is "in foreign content" and the current node is not an
element in the HTML namespace and the next seven characters are an ASCII case-
sensitive match for the string "[CDATA[" (the five uppercase letters "CDATA" with a
U+005B LEFT SQUARE BRACKET character before and after), then consume those
characters and switch to the CDATA section state.

Otherwise, this is a parse error. Switch to the bogus comment state. The next character
that is consumed, if any, is the first character that will be in the comment.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 734 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 734 from 931

9.2.4.18 Comment start state

Consume the next input character:

U+002D HYPHEN-MINUS (-)
Switch to the comment start dash state.

U+003E GREATER-THAN SIGN (>)
Parse error. Emit the comment token. Switch to the data state.

EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

Anything else
Append the input character to the comment token's data. Switch to the comment
state.

9.2.4.19 Comment start dash state

Consume the next input character:

U+002D HYPHEN-MINUS (-)
Switch to the comment end state

U+003E GREATER-THAN SIGN (>)
Parse error. Emit the comment token. Switch to the data state.

EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

Anything else
Append a U+002D HYPHEN-MINUS (-) character and the input character to the
comment token's data. Switch to the comment state.

9.2.4.20 Comment state

Consume the next input character:

U+002D HYPHEN-MINUS (-)
Switch to the comment end dash state

EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

Anything else
Append the input character to the comment token's data. Stay in the comment
state.

9.2.4.21 Comment end dash state

Consume the next input character:

U+002D HYPHEN-MINUS (-)
Switch to the comment end state

EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

Anything else

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 735 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 735 from 931

Append a U+002D HYPHEN-MINUS (-) character and the input character to the
comment token's data. Switch to the comment state.

9.2.4.22 Comment end state

Consume the next input character:

U+003E GREATER-THAN SIGN (>)
Emit the comment token. Switch to the data state.

U+002D HYPHEN-MINUS (-)
Parse error. Append a U+002D HYPHEN-MINUS (-) character to the comment
token's data. Stay in the comment end state.

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Parse error. Append two U+002D HYPHEN-MINUS (-) characters and the input
character to the comment token's data. Switch to the comment end space state.

U+0021 EXCLAMATION MARK (!)
Parse error. Switch to the comment end bang state.

EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

Anything else
Parse error. Append two U+002D HYPHEN-MINUS (-) characters and the input
character to the comment token's data. Switch to the comment state.

9.2.4.23 Comment end bang state

Consume the next input character:

U+003E GREATER-THAN SIGN (>)
Emit the comment token. Switch to the data state.

U+002D HYPHEN-MINUS (-)
Append two U+002D HYPHEN-MINUS (-) characters and a U+0021
EXCLAMATION MARK (!) character to the comment token's data. Switch to the
comment end dash state.

EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

Anything else
Append two U+002D HYPHEN-MINUS (-) characters, a U+0021 EXCLAMATION
MARK (!) character, and the input character to the comment token's data. Switch to
the comment state.

9.2.4.24 Comment end space state

Consume the next input character:

U+003E GREATER-THAN SIGN (>)
Emit the comment token. Switch to the data state.

U+002D HYPHEN-MINUS (-)
Switch to the comment end dash state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 736 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 736 from 931

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Append the input character to the comment token's data. Stay in the comment end
space state.

EOF
Parse error. Emit the comment token. Reconsume the EOF character in the data
state.

Anything else
Append the input character to the comment token's data. Switch to the comment
state.

9.2.4.25 DOCTYPE state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Switch to the before DOCTYPE name state.
EOF

Parse error. Create a new DOCTYPE token. Set its force-quirks flag to on. Emit the
token. Reconsume the EOF character in the data state.

Anything else
Parse error. Reconsume the current character in the before DOCTYPE name state.

9.2.4.26 Before DOCTYPE name state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Stay in the before DOCTYPE name state.
U+003E GREATER-THAN SIGN (>)

Parse error. Create a new DOCTYPE token. Set its force-quirks flag to on. Emit the
token. Switch to the data state.

U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z
Create a new DOCTYPE token. Set the token's name to the lowercase version of
the input character (add 0x0020 to the character's code point). Switch to the
DOCTYPE name state.

EOF
Parse error. Create a new DOCTYPE token. Set its force-quirks flag to on. Emit the
token. Reconsume the EOF character in the data state.

Anything else
Create a new DOCTYPE token. Set the token's name to the current input
character. Switch to the DOCTYPE name state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 737 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 737 from 931

9.2.4.27 DOCTYPE name state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Switch to the after DOCTYPE name state.
U+003E GREATER-THAN SIGN (>)

Emit the current DOCTYPE token. Switch to the data state.
U+0041 LATIN CAPITAL LETTER A through to U+005A LATIN CAPITAL LETTER Z

Append the lowercase version of the input character (add 0x0020 to the character's
code point) to the current DOCTYPE token's name. Stay in the DOCTYPE name
state.

EOF
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Reconsume the EOF character in the data state.

Anything else
Append the current input character to the current DOCTYPE token's name. Stay in
the DOCTYPE name state.

9.2.4.28 After DOCTYPE name state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Stay in the after DOCTYPE name state.
U+003E GREATER-THAN SIGN (>)

Emit the current DOCTYPE token. Switch to the data state.
EOF

Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Reconsume the EOF character in the data state.

Anything else
If the six characters starting from the current input character are an ASCII case-
insensitive match for the word "PUBLIC", then consume those characters and
switch to the before DOCTYPE public identifier state.

Otherwise, if the six characters starting from the current input character are an
ASCII case-insensitive match for the word "SYSTEM", then consume those
characters and switch to the before DOCTYPE system identifier state.

Otherwise, this is the parse error. Set the DOCTYPE token's force-quirks flag to on.
Switch to the bogus DOCTYPE state.

9.2.4.29 Before DOCTYPE public identifier state

Consume the next input character:

U+0009 CHARACTER TABULATION

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 738 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 738 from 931

U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Stay in the before DOCTYPE public identifier state.
U+0022 QUOTATION MARK (")

Set the DOCTYPE token's public identifier to the empty string (not missing), then
switch to the DOCTYPE public identifier (double-quoted) state.

U+0027 APOSTROPHE (')
Set the DOCTYPE token's public identifier to the empty string (not missing), then
switch to the DOCTYPE public identifier (single-quoted) state.

U+003E GREATER-THAN SIGN (>)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Switch to the data state.

EOF
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Reconsume the EOF character in the data state.

Anything else
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus
DOCTYPE state.

9.2.4.30 DOCTYPE public identifier (double-quoted) state

Consume the next input character:

U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE public identifier state.

U+003E GREATER-THAN SIGN (>)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Switch to the data state.

EOF
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Reconsume the EOF character in the data state.

Anything else
Append the current input character to the current DOCTYPE token's public
identifier. Stay in the DOCTYPE public identifier (double-quoted) state.

9.2.4.31 DOCTYPE public identifier (single-quoted) state

Consume the next input character:

U+0027 APOSTROPHE (')
Switch to the after DOCTYPE public identifier state.

U+003E GREATER-THAN SIGN (>)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Switch to the data state.

EOF
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Reconsume the EOF character in the data state.

Anything else
Append the current input character to the current DOCTYPE token's public
identifier. Stay in the DOCTYPE public identifier (single-quoted) state.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 739 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 739 from 931

9.2.4.32 After DOCTYPE public identifier state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Stay in the after DOCTYPE public identifier state.
U+0022 QUOTATION MARK (")

Set the DOCTYPE token's system identifier to the empty string (not missing), then
switch to the DOCTYPE system identifier (double-quoted) state.

U+0027 APOSTROPHE (')
Set the DOCTYPE token's system identifier to the empty string (not missing), then
switch to the DOCTYPE system identifier (single-quoted) state.

U+003E GREATER-THAN SIGN (>)
Emit the current DOCTYPE token. Switch to the data state.

EOF
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Reconsume the EOF character in the data state.

Anything else
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus
DOCTYPE state.

9.2.4.33 Before DOCTYPE system identifier state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Stay in the before DOCTYPE system identifier state.
U+0022 QUOTATION MARK (")

Set the DOCTYPE token's system identifier to the empty string (not missing), then
switch to the DOCTYPE system identifier (double-quoted) state.

U+0027 APOSTROPHE (')
Set the DOCTYPE token's system identifier to the empty string (not missing), then
switch to the DOCTYPE system identifier (single-quoted) state.

U+003E GREATER-THAN SIGN (>)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Switch to the data state.

EOF
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Reconsume the EOF character in the data state.

Anything else
Parse error. Set the DOCTYPE token's force-quirks flag to on. Switch to the bogus
DOCTYPE state.

9.2.4.34 DOCTYPE system identifier (double-quoted) state

Consume the next input character:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 740 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 740 from 931

U+0022 QUOTATION MARK (")
Switch to the after DOCTYPE system identifier state.

U+003E GREATER-THAN SIGN (>)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Switch to the data state.

EOF
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Reconsume the EOF character in the data state.

Anything else
Append the current input character to the current DOCTYPE token's system
identifier. Stay in the DOCTYPE system identifier (double-quoted) state.

9.2.4.35 DOCTYPE system identifier (single-quoted) state

Consume the next input character:

U+0027 APOSTROPHE (')
Switch to the after DOCTYPE system identifier state.

U+003E GREATER-THAN SIGN (>)
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Switch to the data state.

EOF
Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Reconsume the EOF character in the data state.

Anything else
Append the current input character to the current DOCTYPE token's system
identifier. Stay in the DOCTYPE system identifier (single-quoted) state.

9.2.4.36 After DOCTYPE system identifier state

Consume the next input character:

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE

Stay in the after DOCTYPE system identifier state.
U+003E GREATER-THAN SIGN (>)

Emit the current DOCTYPE token. Switch to the data state.
EOF

Parse error. Set the DOCTYPE token's force-quirks flag to on. Emit that DOCTYPE
token. Reconsume the EOF character in the data state.

Anything else
Parse error. Switch to the bogus DOCTYPE state. (This does not set the
DOCTYPE token's force-quirks flag to on.)

9.2.4.37 Bogus DOCTYPE state

Consume the next input character:

U+003E GREATER-THAN SIGN (>)
Emit the DOCTYPE token. Switch to the data state.

EOF

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 741 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 741 from 931

Emit the DOCTYPE token. Reconsume the EOF character in the data state.
Anything else

Stay in the bogus DOCTYPE state.

9.2.4.38 CDATA section state

(This can only happen if the content model flag is set to the PCDATA state.)

Consume every character up to the next occurrence of the three character sequence
U+005D RIGHT SQUARE BRACKET U+005D RIGHT SQUARE BRACKET U+003E
GREATER-THAN SIGN (]]>), or the end of the file (EOF), whichever comes first. Emit a
series of character tokens consisting of all the characters consumed except the matching
three character sequence at the end (if one was found before the end of the file).

Switch to the data state.

If the end of the file was reached, reconsume the EOF character.

9.2.4.39 Tokenizing character references

This section defines how to consume a character reference. This definition is used when
parsing character references in text and in attributes.

The behavior depends on the identity of the next character (the one immediately after the
U+0026 AMPERSAND character):

U+0009 CHARACTER TABULATION
U+000A LINE FEED (LF)
U+000C FORM FEED (FF)
U+0020 SPACE
U+003C LESS-THAN SIGN
U+0026 AMPERSAND
EOF
The additional allowed character, if there is one

Not a character reference. No characters are consumed, and nothing is returned.
(This is not an error, either.)

U+0023 NUMBER SIGN (#)
Consume the U+0023 NUMBER SIGN.

The behavior further depends on the character after the U+0023 NUMBER SIGN:

U+0078 LATIN SMALL LETTER X
U+0058 LATIN CAPITAL LETTER X
Consume the X.

Follow the steps below, but using the range of characters U+0030 DIGIT ZERO
through to U+0039 DIGIT NINE, U+0061 LATIN SMALL LETTER A through to
U+0066 LATIN SMALL LETTER F, and U+0041 LATIN CAPITAL LETTER A,
through to U+0046 LATIN CAPITAL LETTER F (in other words, 0-9, A-F, a-f).

When it comes to interpreting the number, interpret it as a hexadecimal number.

Anything else

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 742 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 742 from 931

Follow the steps below, but using the range of characters U+0030 DIGIT ZERO
through to U+0039 DIGIT NINE (i.e. just 0-9).

When it comes to interpreting the number, interpret it as a decimal number.

Consume as many characters as match the range of characters given above.

If no characters match the range, then don't consume any characters (and
unconsume the U+0023 NUMBER SIGN character and, if appropriate, the X
character). This is a parse error; nothing is returned.

Otherwise, if the next character is a U+003B SEMICOLON, consume that too. If it
isn't, there is a parse error.

If one or more characters match the range, then take them all and interpret the
string of characters as a number (either hexadecimal or decimal as appropriate).

If that number is one of the numbers in the first column of the following table, then
this is a parse error. Find the row with that number in the first column, and return a
character token for the Unicode character given in the second column of that row.

Number Unicode character
0x00 U+FFFD REPLACEMENT CHARACTER
0x0D U+000A LINE FEED (LF)
0x80 U+20AC EURO SIGN ('€')
0x81 U+0081 <control>
0x82 U+201A SINGLE LOW-9 QUOTATION MARK ('‚')
0x83 U+0192 LATIN SMALL LETTER F WITH HOOK ('ƒ')
0x84 U+201E DOUBLE LOW-9 QUOTATION MARK ('„')
0x85 U+2026 HORIZONTAL ELLIPSIS ('…')
0x86 U+2020 DAGGER ('†')
0x87 U+2021 DOUBLE DAGGER ('‡')
0x88 U+02C6 MODIFIER LETTER CIRCUMFLEX ACCENT ('ˆ')
0x89 U+2030 PER MILLE SIGN ('‰')
0x8A U+0160 LATIN CAPITAL LETTER S WITH CARON ('Š')
0x8B U+2039 SINGLE LEFT-POINTING ANGLE QUOTATION MARK ('‹')
0x8C U+0152 LATIN CAPITAL LIGATURE OE ('Œ')
0x8D U+008D <control>
0x8E U+017D LATIN CAPITAL LETTER Z WITH CARON ('Ž')
0x8F U+008F <control>
0x90 U+0090 <control>
0x91 U+2018 LEFT SINGLE QUOTATION MARK ('‘')
0x92 U+2019 RIGHT SINGLE QUOTATION MARK ('’')
0x93 U+201C LEFT DOUBLE QUOTATION MARK ('“')

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 743 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 743 from 931

Number Unicode character
0x94 U+201D RIGHT DOUBLE QUOTATION MARK ('”')
0x95 U+2022 BULLET ('•')
0x96 U+2013 EN DASH ('–')
0x97 U+2014 EM DASH ('—')
0x98 U+02DC SMALL TILDE ('˜')
0x99 U+2122 TRADE MARK SIGN ('™')
0x9A U+0161 LATIN SMALL LETTER S WITH CARON ('š')
0x9B U+203A SINGLE RIGHT-POINTING ANGLE QUOTATION MARK ('›')
0x9C U+0153 LATIN SMALL LIGATURE OE ('œ')
0x9D U+009D <control>
0x9E U+017E LATIN SMALL LETTER Z WITH CARON ('ž')
0x9F U+0178 LATIN CAPITAL LETTER Y WITH DIAERESIS ('Ÿ')
Otherwise, if the number is greater than 0x10FFFF, then this is a parse error.
Return a U+FFFD REPLACEMENT CHARACTER.

Otherwise, return a character token for the Unicode character whose code point is
that number. If the number is in the range 0x0001 to 0x0008, 0x000E to 0x001F,
0x007F to 0x009F, 0xD800 to 0xDFFF, 0xFDD0 to 0xFDEF, or is one of 0x000B,
0xFFFE, 0xFFFF, 0x1FFFE, 0x1FFFF, 0x2FFFE, 0x2FFFF, 0x3FFFE, 0x3FFFF,
0x4FFFE, 0x4FFFF, 0x5FFFE, 0x5FFFF, 0x6FFFE, 0x6FFFF, 0x7FFFE, 0x7FFFF,
0x8FFFE, 0x8FFFF, 0x9FFFE, 0x9FFFF, 0xAFFFE, 0xAFFFF, 0xBFFFE,
0xBFFFF, 0xCFFFE, 0xCFFFF, 0xDFFFE, 0xDFFFF, 0xEFFFE, 0xEFFFF,
0xFFFFE, 0xFFFFF, 0x10FFFE, or 0x10FFFF, then this is a parse error.

Anything else
Consume the maximum number of characters possible, with the consumed
characters matching one of the identifiers in the first column of the named character
references table (in a case-sensitive manner).

If no match can be made, then this is a parse error. No characters are consumed,
and nothing is returned.

If the last character matched is not a U+003B SEMICOLON (;), there is a parse
error.

If the character reference is being consumed as part of an attribute, and the last
character matched is not a U+003B SEMICOLON (;), and the next character is in
the range U+0030 DIGIT ZERO to U+0039 DIGIT NINE, U+0041 LATIN CAPITAL
LETTER A to U+005A LATIN CAPITAL LETTER Z, or U+0061 LATIN SMALL
LETTER A to U+007A LATIN SMALL LETTER Z, then, for historical reasons, all the
characters that were matched after the U+0026 AMPERSAND (&) must be
unconsumed, and nothing is returned.

Otherwise, return a character token for the character corresponding to the
character reference name (as given by the second column of the named character
references table).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 744 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 744 from 931

If the markup contains I'm ¬it; I tell you, the character reference is
parsed as "not", as in, I'm ¬it; I tell you. But if the markup was I'm
∉ I tell you, the character reference would be parsed as "notin;",
resulting in I'm ∉ I tell you.

9.2.5 Tree construction

The input to the tree construction stage is a sequence of tokens from the tokenization
stage. The tree construction stage is associated with a DOM Document object when a
parser is created. The "output" of this stage consists of dynamically modifying or extending
that document's DOM tree.

This specification does not define when an interactive user agent has to render the
Document so that it is available to the user, or when it has to begin accepting user input.

As each token is emitted from the tokenizer, the user agent must process the token
according to the rules given in the section corresponding to the current insertion mode.

When the steps below require the UA to insert a character into a node, if that node has a
child immediately before where the character is to be inserted, and that child is a Text
node, and that Text node was the last node that the parser inserted into the document,
then the character must be appended to that Text node; otherwise, a new Text node
whose data is just that character must be inserted in the appropriate place.

Here are some sample inputs to the parser and the corresponding number of text nodes
that they result in, assuming a user agent that executes scripts.

Input Number of
text nodes

A<script>
var script = document.getElementsByTagName('script')[0];
document.body.removeChild(script);
</script>B

Two
adjacent
text nodes
in the
document,
containing
"A" and "B".

A<script>
var text = document.createTextNode('B');
document.body.appendChild(text);
</script>C

Four text
nodes; "A"
before the
script, the
script's
contents,
"B" after the
script, and
then,
immediately
after that,
"C".

A<script>
var text = document.getElementsByTagName('script')[0].firstChild;
text.data = 'B';

Two
adjacent

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 745 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 745 from 931

Input Number of
text nodes

document.body.appendChild(text);
</script>B

text nodes
in the
document,
containing
"A" and
"BB".

A<table>B<tr>C</tr>C</table> Three
adjacent
text nodes
before the
table,
containing
"A", "B", and
"CC"
respectively.
(This is
caused by
foster
parenting.)

A<table><tr> B</tr> B</table> Two
adjacent
text nodes
before the
table,
containing
"A" and
" B B"
(space-B-
space-B)
respectively.
(This is
caused by
foster
parenting.)

A<table><tr> B</tr> C</table> Three
adjacent
text nodes
before the
table,
containing
"A", " B"
(space-B),
and "C"
respectively,
and one text
node inside
the table (as

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 746 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 746 from 931

Input Number of
text nodes

a child of a
tbody) with
a single
space
character.
(Space
characters
separated
from non-
space
characters
by non-
character
tokens are
not affected
by foster
parenting,
even if
those other
tokens then
get
ignored.)

DOM mutation events must not fire for changes caused by the UA parsing the document.
(Conceptually, the parser is not mutating the DOM, it is constructing it.) This includes the
parsing of any content inserted using document.write() and document.writeln() calls.
[DOMEVENTS]

Not all of the tag names mentioned below are conformant tag names in this
specification; many are included to handle legacy content. They still form part of
the algorithm that implementations are required to implement to claim
conformance.

The algorithm described below places no limit on the depth of the DOM tree
generated, or on the length of tag names, attribute names, attribute values, text
nodes, etc. While implementors are encouraged to avoid arbitrary limits, it is
recognized that practical concerns will likely force user agents to impose nesting
depths.

9.2.5.1 Creating and inserting elements

When the steps below require the UA to create an element for a token in a particular
namespace, the UA must create a node implementing the interface appropriate for the
element type corresponding to the tag name of the token in the given namespace (as
given in the specification that defines that element, e.g. for an a element in the HTML
namespace, this specification defines it to be the HTMLAnchorElement interface), with the
tag name being the name of that element, with the node being in the given namespace,
and with the attributes on the node being those given in the given token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 747 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 747 from 931

The interface appropriate for an element in the HTML namespace that is not defined in
this specification is HTMLUnknownElement. Element in other namespaces whose interface is
not defined by that namespace's specification must use the interface Element.

When a resettable element is created in this manner, its reset algorithm must be invoked
once the attributes are set. (This initializes the element's value and checkedness based on
the element's attributes.)

When the steps below require the UA to insert an HTML element for a token, the UA
must first create an element for the token in the HTML namespace, and then append this
node to the current node, and push it onto the stack of open elements so that it is the new
current node.

The steps below may also require that the UA insert an HTML element in a particular
place, in which case the UA must follow the same steps except that it must insert or
append the new node in the location specified instead of appending it to the current node.
(This happens in particular during the parsing of tables with invalid content.)

If an element created by the insert an HTML element algorithm is a form-associated
element, and the form element pointer is not null, and the newly created element doesn't
have a form attribute, the user agent must associate the newly created element with the
form element pointed to by the form element pointer before inserting it wherever it is to be
inserted.

When the steps below require the UA to insert a foreign element for a token, the UA
must first create an element for the token in the given namespace, and then append this
node to the current node, and push it onto the stack of open elements so that it is the new
current node. If the newly created element has an xmlns attribute in the XMLNS
namespace whose value is not exactly the same as the element's namespace, that is a
parse error. Similarly, if the newly created element has an xmlns:xlink attribute in the
XMLNS namespace whose value is not the XLink Namespace, that is a parse error.

When the steps below require the user agent to adjust MathML attributes for a token,
then, if the token has an attribute named definitionurl, change its name to
definitionURL (note the case difference).

When the steps below require the user agent to adjust SVG attributes for a token, then,
for each attribute on the token whose attribute name is one of the ones in the first column
of the following table, change the attribute's name to the name given in the corresponding
cell in the second column. (This fixes the case of SVG attributes that are not all
lowercase.)

Attribute name on token Attribute name on element
attributename attributeName
attributetype attributeType
basefrequency baseFrequency
baseprofile baseProfile

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 748 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 748 from 931

Attribute name on token Attribute name on element
calcmode calcMode
clippathunits clipPathUnits
contentscripttype contentScriptType
contentstyletype contentStyleType
diffuseconstant diffuseConstant
edgemode edgeMode
externalresourcesrequired externalResourcesRequired
filterres filterRes
filterunits filterUnits
glyphref glyphRef
gradienttransform gradientTransform
gradientunits gradientUnits
kernelmatrix kernelMatrix
kernelunitlength kernelUnitLength
keypoints keyPoints
keysplines keySplines
keytimes keyTimes
lengthadjust lengthAdjust
limitingconeangle limitingConeAngle
markerheight markerHeight
markerunits markerUnits
markerwidth markerWidth
maskcontentunits maskContentUnits
maskunits maskUnits
numoctaves numOctaves
pathlength pathLength
patterncontentunits patternContentUnits
patterntransform patternTransform
patternunits patternUnits
pointsatx pointsAtX
pointsaty pointsAtY
pointsatz pointsAtZ
preservealpha preserveAlpha
preserveaspectratio preserveAspectRatio
primitiveunits primitiveUnits
refx refX
refy refY
repeatcount repeatCount
repeatdur repeatDur
requiredextensions requiredExtensions
requiredfeatures requiredFeatures
specularconstant specularConstant
specularexponent specularExponent

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 749 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 749 from 931

Attribute name on token Attribute name on element
spreadmethod spreadMethod
startoffset startOffset
stddeviation stdDeviation
stitchtiles stitchTiles
surfacescale surfaceScale
systemlanguage systemLanguage
tablevalues tableValues
targetx targetX
targety targetY
textlength textLength
viewbox viewBox
viewtarget viewTarget
xchannelselector xChannelSelector
ychannelselector yChannelSelector
zoomandpan zoomAndPan

When the steps below require the user agent to adjust foreign attributes for a token,
then, if any of the attributes on the token match the strings given in the first column of the
following table, let the attribute be a namespaced attribute, with the prefix being the string
given in the corresponding cell in the second column, the local name being the string
given in the corresponding cell in the third column, and the namespace being the
namespace given in the corresponding cell in the fourth column. (This fixes the use of
namespaced attributes, in particular lang attributes in the XML namespace.)

Attribute name Prefix Local name Namespace
xlink:actuate xlink actuate XLink namespace
xlink:arcrole xlink arcrole XLink namespace
xlink:href xlink href XLink namespace
xlink:role xlink role XLink namespace
xlink:show xlink show XLink namespace
xlink:title xlink title XLink namespace
xlink:type xlink type XLink namespace
xml:base xml base XML namespace
xml:lang xml lang XML namespace
xml:space xml space XML namespace
xmlns (none) xmlns XMLNS namespace
xmlns:xlink xmlns xlink XMLNS namespace

The generic raw text element parsing algorithm and the generic RCDATA element
parsing algorithm consist of the following steps. These algorithms are always invoked in
response to a start tag token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 750 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 750 from 931

1. Insert an HTML element for the token.

2. If the algorithm that was invoked is the generic raw text element parsing algorithm,
switch the tokenizer's content model flag to the RAWTEXT state; otherwise the
algorithm invoked was the generic RCDATA element parsing algorithm, switch the
tokenizer's content model flag to the RCDATA state.

3. Let the original insertion mode be the current insertion mode.

4. Then, switch the insertion mode to "in RAWTEXT/RCDATA".

9.2.5.2 Closing elements that have implied end tags

When the steps below require the UA to generate implied end tags, then, while the
current node is a dd element, a dt element, an li element, an option element, an
optgroup element, a p element, an rp element, or an rt element, the UA must pop the
current node off the stack of open elements.

If a step requires the UA to generate implied end tags but lists an element to exclude from
the process, then the UA must perform the above steps as if that element was not in the
above list.

9.2.5.3 Foster parenting

Foster parenting happens when content is misnested in tables.

When a node node is to be foster parented, the node node must be inserted into the
foster parent element.

The foster parent element is the parent element of the last table element in the stack of
open elements, if there is a table element and it has such a parent element. If there is no
table element in the stack of open elements (fragment case), then the foster parent
element is the first element in the stack of open elements (the html element). Otherwise, if
there is a table element in the stack of open elements, but the last table element in the
stack of open elements has no parent, or its parent node is not an element, then the foster
parent element is the element before the last table element in the stack of open elements.

If the foster parent element is the parent element of the last table element in the stack of
open elements, then node must be inserted immediately before the last table element in
the stack of open elements in the foster parent element; otherwise, node must be
appended to the foster parent element.

9.2.5.4 The "initial" insertion mode

When the insertion mode is "initial", tokens must be handled as follows:

A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE

Ignore the token.

A comment token
Append a Comment node to the Document object with the data attribute set to the
data given in the comment token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 751 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 751 from 931

A DOCTYPE token
If the DOCTYPE token's name is not a case-sensitive match for the string "html", or
the token's public identifier is not missing, or the token's system identifier is neither
missing nor a case-sensitive match for the string "about:legacy-compat", and none
of the sets of conditions in the following list are matched, then there is a parse
error. If one of the sets of conditions in the following list is matched, then there is an
obsolete permitted DOCTYPE.

• The DOCTYPE token's name is an ASCII case-insensitive match for the
string "html", the token's public identifier is the case-sensitive string "-
//W3C//DTD HTML 4.0//EN", and the token's system identifier is either
missing or the case-sensitive string "http://www.w3.org/TR/REC-
html40/strict.dtd".

• The DOCTYPE token's name is an ASCII case-insensitive match for the
string "html", the token's public identifier is the case-sensitive string "-
//W3C//DTD HTML 4.01//EN", and the token's system identifier is either
missing or the case-sensitive string
"http://www.w3.org/TR/html4/strict.dtd".

• The DOCTYPE token's name is an ASCII case-insensitive match for the
string "html", the token's public identifier is the case-sensitive string "-
//W3C//DTD XHTML 1.0 Strict//EN", and the token's system identifier is the
case-sensitive string "http://www.w3.org/TR/xhtml1/DTD/xhtml1-
strict.dtd".

• The DOCTYPE token's name is an ASCII case-insensitive match for the
string "html", the token's public identifier is the case-sensitive string "-
//W3C//DTD XHTML 1.1//EN", and the token's system identifier is the case-
sensitive string "http://www.w3.org/TR/xhtml11/DTD/xhtml11.dtd".

Conformance checkers may, based on the values (including presence or lack
thereof) of the DOCTYPE token's name, public identifier, or system identifier,
switch to a conformance checking mode for another language (e.g. based on the
DOCTYPE token a conformance checker could recognize that the document is an
HTML 4-era document, and defer to an HTML 4 conformance checker.)

Append a DocumentType node to the Document node, with the name attribute set to
the name given in the DOCTYPE token, or the empty string if the name was
missing; the publicId attribute set to the public identifier given in the DOCTYPE
token, or the empty string if the public identifier was missing; the systemId attribute
set to the system identifier given in the DOCTYPE token, or the empty string if the
system identifier was missing; and the other attributes specific to DocumentType
objects set to null and empty lists as appropriate. Associate the DocumentType node
with the Document object so that it is returned as the value of the doctype attribute of
the Document object.

Then, if the DOCTYPE token matches one of the conditions in the following list,
then set the Document to quirks mode:

• The force-quirks flag is set to on.
• The name is set to anything other than "HTML".
• The public identifier starts with: "+//Silmaril//dtd html Pro v0r11

19970101//"

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 752 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 752 from 931

• The public identifier starts with: "-//AdvaSoft Ltd//DTD HTML 3.0 asWedit +
extensions//"

• The public identifier starts with: "-//AS//DTD HTML 3.0 asWedit +
extensions//"

• The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0 Strict//"
• The public identifier starts with: "-//IETF//DTD HTML 2.0//"
• The public identifier starts with: "-//IETF//DTD HTML 2.1E//"
• The public identifier starts with: "-//IETF//DTD HTML 3.0//"
• The public identifier starts with: "-//IETF//DTD HTML 3.2 Final//"
• The public identifier starts with: "-//IETF//DTD HTML 3.2//"
• The public identifier starts with: "-//IETF//DTD HTML 3//"
• The public identifier starts with: "-//IETF//DTD HTML Level 0//"
• The public identifier starts with: "-//IETF//DTD HTML Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML Level 3//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 0//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 1//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 2//"
• The public identifier starts with: "-//IETF//DTD HTML Strict Level 3//"
• The public identifier starts with: "-//IETF//DTD HTML Strict//"
• The public identifier starts with: "-//IETF//DTD HTML//"
• The public identifier starts with: "-//Metrius//DTD Metrius

Presentational//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0

HTML Strict//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0

HTML//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 2.0

Tables//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0

HTML Strict//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0

HTML//"
• The public identifier starts with: "-//Microsoft//DTD Internet Explorer 3.0

Tables//"
• The public identifier starts with: "-//Netscape Comm. Corp.//DTD HTML//"
• The public identifier starts with: "-//Netscape Comm. Corp.//DTD Strict

HTML//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML

2.0//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML

Extended 1.0//"
• The public identifier starts with: "-//O'Reilly and Associates//DTD HTML

Extended Relaxed 1.0//"
• The public identifier starts with: "-//SoftQuad Software//DTD HoTMetaL PRO

6.0::19990601::extensions to HTML 4.0//"

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 753 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 753 from 931

• The public identifier starts with: "-//SoftQuad//DTD HoTMetaL PRO
4.0::19971010::extensions to HTML 4.0//"

• The public identifier starts with: "-//Spyglass//DTD HTML 2.0 Extended//"
• The public identifier starts with: "-//SQ//DTD HTML 2.0 HoTMetaL +

extensions//"
• The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava

HTML//"
• The public identifier starts with: "-//Sun Microsystems Corp.//DTD HotJava

Strict HTML//"
• The public identifier starts with: "-//W3C//DTD HTML 3 1995-03-24//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2 Draft//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2 Final//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2//"
• The public identifier starts with: "-//W3C//DTD HTML 3.2S Draft//"
• The public identifier starts with: "-//W3C//DTD HTML 4.0 Frameset//"
• The public identifier starts with: "-//W3C//DTD HTML 4.0 Transitional//"
• The public identifier starts with: "-//W3C//DTD HTML Experimental

19960712//"
• The public identifier starts with: "-//W3C//DTD HTML Experimental 970421//"
• The public identifier starts with: "-//W3C//DTD W3 HTML//"
• The public identifier starts with: "-//W3O//DTD W3 HTML 3.0//"
• The public identifier is set to: "-//W3O//DTD W3 HTML Strict 3.0//EN//"
• The public identifier starts with: "-//WebTechs//DTD Mozilla HTML 2.0//"
• The public identifier starts with: "-//WebTechs//DTD Mozilla HTML//"
• The public identifier is set to: "-/W3C/DTD HTML 4.0 Transitional/EN"
• The public identifier is set to: "HTML"
• The system identifier is set to:

"http://www.ibm.com/data/dtd/v11/ibmxhtml1-transitional.dtd"
• The system identifier is missing and the public identifier starts with: "-

//W3C//DTD HTML 4.01 Frameset//"
• The system identifier is missing and the public identifier starts with: "-

//W3C//DTD HTML 4.01 Transitional//"
Otherwise, if the DOCTYPE token matches one of the conditions in the following
list, then set the Document to limited quirks mode:

• The public identifier starts with: "-//W3C//DTD XHTML 1.0 Frameset//"
• The public identifier starts with: "-//W3C//DTD XHTML 1.0 Transitional//"
• The system identifier is not missing and the public identifier starts with: "-

//W3C//DTD HTML 4.01 Frameset//"
• The system identifier is not missing and the public identifier starts with: "-

//W3C//DTD HTML 4.01 Transitional//"
The name, system identifier, and public identifier strings must be compared to the
values given in the lists above in an ASCII case-insensitive manner. A system
identifier whose value is the empty string is not considered missing for the
purposes of the conditions above.

Then, switch the insertion mode to "before html".

Anything else
Parse error.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 754 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 754 from 931

Set the Document to quirks mode.

Switch the insertion mode to "before html", then reprocess the current token.

9.2.5.5 The "before html" insertion mode

When the insertion mode is "before html", tokens must be handled as follows:

A DOCTYPE token
Parse error. Ignore the token.

A comment token
Append a Comment node to the Document object with the data attribute set to the
data given in the comment token.

A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE

Ignore the token.

A start tag whose tag name is "html"
Create an element for the token in the HTML namespace. Append it to the
Document object. Put this element in the stack of open elements.

If the Document is being loaded as part of navigation of a browsing context, then: if
the newly created element has a manifest attribute, then resolve the value of that
attribute to an absolute URL, relative to the newly created element, and if that is
successful, run the application cache selection algorithm with the resulting absolute
URL with any <fragment> component removed; otherwise, if there is no such
attribute or resolving it fails, run the application cache selection algorithm with no
manifest. The algorithm must be passed the Document object.

Switch the insertion mode to "before head".

Anything else
Create an html element. Append it to the Document object. Put this element in the
stack of open elements.

If the Document is being loaded as part of navigation of a browsing context, then:
run the application cache selection algorithm with no manifest, passing it the
Document object.

Switch the insertion mode to "before head", then reprocess the current token.

Should probably make end tags be ignored, so that "</head><!-- --><html>" puts
the comment before the root node (or should we?)

The root element can end up being removed from the Document object, e.g. by scripts;
nothing in particular happens in such cases, content continues being appended to the
nodes as described in the next section.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 755 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 755 from 931

9.2.5.6 The "before head" insertion mode

When the insertion mode is "before head", tokens must be handled as follows:

A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE

Ignore the token.

A comment token
Append a Comment node to the current node with the data attribute set to the data
given in the comment token.

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "html"
Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is "head"
Insert an HTML element for the token.

Set the head element pointer to the newly created head element.

Switch the insertion mode to "in head".

An end tag whose tag name is one of: "head", "body", "html", "br"
Act as if a start tag token with the tag name "head" and no attributes had been
seen, then reprocess the current token.

Any other end tag
Parse error. Ignore the token.

Anything else
Act as if a start tag token with the tag name "head" and no attributes had been
seen, then reprocess the current token.

9.2.5.7 The "in head" insertion mode

When the insertion mode is "in head", tokens must be handled as follows:

A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE

Insert the character into the current node.

A comment token
Append a Comment node to the current node with the data attribute set to the data
given in the comment token.

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "html"
Process the token using the rules for the "in body" insertion mode.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 756 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 756 from 931

A start tag whose tag name is one of: "base", "command", "link"
Insert an HTML element for the token. Immediately pop the current node off the
stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

A start tag whose tag name is "meta"
Insert an HTML element for the token. Immediately pop the current node off the
stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

If the element has a charset attribute, and its value is a supported encoding, and
the confidence is currently tentative, then change the encoding to the encoding
given by the value of the charset attribute.

Otherwise, if the element has a content attribute, and applying the algorithm for
extracting an encoding from a Content-Type to its value returns a supported
encoding encoding, and the confidence is currently tentative, then change the
encoding to the encoding encoding.

A start tag whose tag name is "title"
Follow the generic RCDATA element parsing algorithm.

A start tag whose tag name is "noscript", if the scripting flag is enabled
A start tag whose tag name is one of: "noframes", "style"

Follow the generic raw text element parsing algorithm.

A start tag whose tag name is "noscript", if the scripting flag is disabled
Insert an HTML element for the token.

Switch the insertion mode to "in head noscript".

A start tag whose tag name is "script"
1. Create an element for the token in the HTML namespace.

2. Mark the element as being "parser-inserted".

This ensures that, if the script is external, any document.write() calls in
the script will execute in-line, instead of blowing the document away,
as would happen in most other cases. It also prevents the script from
executing until the end tag is seen.

3. If the parser was originally created for the HTML fragment parsing algorithm,
then mark the script element as "already executed". (fragment case)

4. Append the new element to the current node and push it onto the stack of
open elements.

5. Switch the tokenizer's content model flag to the RAWTEXT state.

6. Let the original insertion mode be the current insertion mode.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 757 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 757 from 931

7. Switch the insertion mode to "in RAWTEXT/RCDATA".

An end tag whose tag name is "head"
Pop the current node (which will be the head element) off the stack of open
elements.

Switch the insertion mode to "after head".

An end tag whose tag name is one of: "body", "html", "br"
Act as described in the "anything else" entry below.

A start tag whose tag name is "head"
Any other end tag

Parse error. Ignore the token.

Anything else
Act as if an end tag token with the tag name "head" had been seen, and reprocess
the current token.

In certain UAs, some elements don't trigger the "in body" mode straight away, but
instead get put into the head. Do we want to copy that?

9.2.5.8 The "in head noscript" insertion mode

When the insertion mode is "in head noscript", tokens must be handled as follows:

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "html"
Process the token using the rules for the "in body" insertion mode.

An end tag whose tag name is "noscript"
Pop the current node (which will be a noscript element) from the stack of open
elements; the new current node will be a head element.

Switch the insertion mode to "in head".

A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE
A comment token
A start tag whose tag name is one of: "link", "meta", "noframes", "style"

Process the token using the rules for the "in head" insertion mode.

An end tag whose tag name is "br"
Act as described in the "anything else" entry below.

A start tag whose tag name is one of: "head", "noscript"
Any other end tag

Parse error. Ignore the token.

Anything else

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 758 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 758 from 931

Parse error. Act as if an end tag with the tag name "noscript" had been seen and
reprocess the current token.

9.2.5.9 The "after head" insertion mode

When the insertion mode is "after head", tokens must be handled as follows:

A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE

Insert the character into the current node.

A comment token
Append a Comment node to the current node with the data attribute set to the data
given in the comment token.

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "html"
Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is "body"
Insert an HTML element for the token.

Set the frameset-ok flag to "not ok".

Switch the insertion mode to "in body".

A start tag whose tag name is "frameset"
Insert an HTML element for the token.

Switch the insertion mode to "in frameset".

A start tag token whose tag name is one of: "base", "link", "meta", "noframes",
"script", "style", "title"

Parse error.

Push the node pointed to by the head element pointer onto the stack of open
elements.

Process the token using the rules for the "in head" insertion mode.

Remove the node pointed to by the head element pointer from the stack of open
elements.

The head element pointer cannot be null at this point.

An end tag whose tag name is one of: "body", "html", "br"
Act as described in the "anything else" entry below.

A start tag whose tag name is "head"
Any other end tag

Parse error. Ignore the token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 759 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 759 from 931

Anything else
Act as if a start tag token with the tag name "body" and no attributes had been
seen, then set the frameset-ok flag back to "ok", and then reprocess the current
token.

9.2.5.10 The "in body" insertion mode

When the insertion mode is "in body", tokens must be handled as follows:

A character token
Reconstruct the active formatting elements, if any.

Insert the token's character into the current node.

If the token is not one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE, then set the frameset-
ok flag to "not ok".

A comment token
Append a Comment node to the current node with the data attribute set to the data
given in the comment token.

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "html"
Parse error. For each attribute on the token, check to see if the attribute is already
present on the top element of the stack of open elements. If it is not, add the
attribute and its corresponding value to that element.

A start tag token whose tag name is one of: "base", "command", "link", "meta",
"noframes", "script", "style", "title"

Process the token using the rules for the "in head" insertion mode.

A start tag whose tag name is "body"
Parse error.

If the second element on the stack of open elements is not a body element, or, if the
stack of open elements has only one node on it, then ignore the token. (fragment
case)

Otherwise, for each attribute on the token, check to see if the attribute is already
present on the body element (the second element) on the stack of open elements. If
it is not, add the attribute and its corresponding value to that element.

A start tag whose tag name is "frameset"
Parse error.

If the second element on the stack of open elements is not a body element, or, if the
stack of open elements has only one node on it, then ignore the token. (fragment
case)

If the frameset-ok flag is set to "not ok", ignore the token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 760 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 760 from 931

Otherwise, run the following steps:

1. Remove the second element on the stack of open elements from its parent
node, if it has one.

2. Pop all the nodes from the bottom of the stack of open elements, from the
current node up to, but not including, the root html element.

3. Insert an HTML element for the token.

4. Switch the insertion mode to "in frameset".

An end-of-file token
If there is a node in the stack of open elements that is not either a dd element, a dt
element, an li element, a p element, a tbody element, a td element, a tfoot
element, a th element, a thead element, a tr element, the body element, or the
html element, then this is a parse error.

Stop parsing.

An end tag whose tag name is "body"
If the stack of open elements does not have a body element in scope, this is a
parse error; ignore the token.

Otherwise, if there is a node in the stack of open elements that is not either a dd
element, a dt element, an li element, an optgroup element, an option element, a
p element, an rp element, an rt element, a tbody element, a td element, a tfoot
element, a th element, a thead element, a tr element, the body element, or the
html element, then this is a parse error.

Switch the insertion mode to "after body".

An end tag whose tag name is "html"
Act as if an end tag with tag name "body" had been seen, then, if that token wasn't
ignored, reprocess the current token.

The fake end tag token here can only be ignored in the fragment case.

A start tag whose tag name is one of: "address", "article", "aside", "blockquote",
"center", "datagrid", "details", "dialog", "dir", "div", "dl", "fieldset", "figure",
"footer", "header", "hgroup", "menu", "nav", "ol", "p", "section", "ul"

If the stack of open elements has a p element in scope, then act as if an end tag
with the tag name "p" had been seen.

Insert an HTML element for the token.

A start tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"
If the stack of open elements has a p element in scope, then act as if an end tag
with the tag name "p" had been seen.

If the current node is an element whose tag name is one of "h1", "h2", "h3", "h4",
"h5", or "h6", then this is a parse error; pop the current node off the stack of open
elements.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 761 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 761 from 931

Insert an HTML element for the token.

A start tag whose tag name is one of: "pre", "listing"
If the stack of open elements has a p element in scope, then act as if an end tag
with the tag name "p" had been seen.

Insert an HTML element for the token.

If the next token is a U+000A LINE FEED (LF) character token, then ignore that
token and move on to the next one. (Newlines at the start of pre blocks are ignored
as an authoring convenience.)

Set the frameset-ok flag to "not ok".

A start tag whose tag name is "form"
If the form element pointer is not null, then this is a parse error; ignore the token.

Otherwise:

If the stack of open elements has a p element in scope, then act as if an end tag
with the tag name "p" had been seen.

Insert an HTML element for the token, and set the form element pointer to point to
the element created.

A start tag whose tag name is "li"
Run the following algorithm:

1. Set the frameset-ok flag to "not ok".

2. Initialize node to be the current node (the bottommost node of the stack).

3. If node is an li element, then act as if an end tag with the tag name "li" had
been seen, then jump to the last step.

4. Loop: If node is not in the formatting category, and is not in the phrasing
category, and is not an address, div, or p element, then jump to the last
step.

5. Otherwise, set node to the previous entry in the stack of open elements and
return to the step labeled loop.

6. This is the last step.

If the stack of open elements has a p element in scope, then act as if an end
tag with the tag name "p" had been seen.

Finally, insert an HTML element for the token.

A start tag whose tag name is one of: "dd", "dt"
Run the following algorithm:

1. Set the frameset-ok flag to "not ok".

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 762 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 762 from 931

2. Initialize node to be the current node (the bottommost node of the stack).

3. Loop: If node is a dd or dt element, then act as if an end tag with the same
tag name as node had been seen, then jump to the last step.

4. If node is not in the formatting category, and is not in the phrasing category,
and is not an address, div, or p element, then jump to the last step.

5. Otherwise, set node to the previous entry in the stack of open elements and
return to the step labeled loop.

6. This is the last step.

If the stack of open elements has a p element in scope, then act as if an end
tag with the tag name "p" had been seen.

Finally, insert an HTML element for the token.

A start tag whose tag name is "plaintext"
If the stack of open elements has a p element in scope, then act as if an end tag
with the tag name "p" had been seen.

Insert an HTML element for the token.

Switch the content model flag to the PLAINTEXT state.

Once a start tag with the tag name "plaintext" has been seen, that will be the
last token ever seen other than character tokens (and the end-of-file token),
because there is no way to switch the content model flag out of the
PLAINTEXT state.

An end tag whose tag name is one of: "address", "article", "aside", "blockquote",
"center", "datagrid", "details", "dialog", "dir", "div", "dl", "fieldset", "figure",
"footer", "header", "hgroup", "listing", "menu", "nav", "ol", "pre", "section", "ul"

If the stack of open elements does not have an element in scope with the same tag
name as that of the token, then this is a parse error; ignore the token.

Otherwise, run these steps:

1. Generate implied end tags.

2. If the current node is not an element with the same tag name as that of the
token, then this is a parse error.

3. Pop elements from the stack of open elements until an element with the
same tag name as the token has been popped from the stack.

An end tag whose tag name is "form"
Let node be the element that the form element pointer is set to.

Set the form element pointer to null.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 763 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 763 from 931

If node is null or the stack of open elements does not have node in scope, then this
is a parse error; ignore the token.

Otherwise, run these steps:

1. Generate implied end tags.

2. If the current node is not node, then this is a parse error.

3. Remove node from the stack of open elements.

An end tag whose tag name is "p"
If the stack of open elements does not have an element in scope with the same tag
name as that of the token, then this is a parse error; act as if a start tag with the tag
name "p" had been seen, then reprocess the current token.

Otherwise, run these steps:

1. Generate implied end tags, except for elements with the same tag name as
the token.

2. If the current node is not an element with the same tag name as that of the
token, then this is a parse error.

3. Pop elements from the stack of open elements until an element with the
same tag name as the token has been popped from the stack.

An end tag whose tag name is one of: "dd", "dt", "li"
If the stack of open elements does not have an element in scope with the same tag
name as that of the token, then this is a parse error; ignore the token.

Otherwise, run these steps:

1. Generate implied end tags, except for elements with the same tag name as
the token.

2. If the current node is not an element with the same tag name as that of the
token, then this is a parse error.

3. Pop elements from the stack of open elements until an element with the
same tag name as the token has been popped from the stack.

An end tag whose tag name is one of: "h1", "h2", "h3", "h4", "h5", "h6"
If the stack of open elements does not have an element in scope whose tag name
is one of "h1", "h2", "h3", "h4", "h5", or "h6", then this is a parse error; ignore the
token.

Otherwise, run these steps:

1. Generate implied end tags.

2. If the current node is not an element with the same tag name as that of the
token, then this is a parse error.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 764 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 764 from 931

3. Pop elements from the stack of open elements until an element whose tag
name is one of "h1", "h2", "h3", "h4", "h5", or "h6" has been popped from the
stack.

An end tag whose tag name is "sarcasm"
Take a deep breath, then act as described in the "any other end tag" entry below.

A start tag whose tag name is "a"
If the list of active formatting elements contains an element whose tag name is "a"
between the end of the list and the last marker on the list (or the start of the list if
there is no marker on the list), then this is a parse error; act as if an end tag with
the tag name "a" had been seen, then remove that element from the list of active
formatting elements and the stack of open elements if the end tag didn't already
remove it (it might not have if the element is not in table scope).

In the non-conforming stream a<table>b</table>x,
the first a element would be closed upon seeing the second one, and the "x"
character would be inside a link to "b", not to "a". This is despite the fact that
the outer a element is not in table scope (meaning that a regular end tag
at the start of the table wouldn't close the outer a element).

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Add that element to the list of active
formatting elements.

A start tag whose tag name is one of: "b", "big", "code", "em", "font", "i", "s",
"small", "strike", "strong", "tt", "u"

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Add that element to the list of active
formatting elements.

A start tag whose tag name is "nobr"
Reconstruct the active formatting elements, if any.

If the stack of open elements has a nobr element in scope, then this is a parse
error; act as if an end tag with the tag name "nobr" had been seen, then once again
reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Add that element to the list of active
formatting elements.

An end tag whose tag name is one of: "a", "b", "big", "code", "em", "font", "i",
"nobr", "s", "small", "strike", "strong", "tt", "u"

Follow these steps:

1. Let the formatting element be the last element in the list of active formatting
elements that:

o is between the end of the list and the last scope marker in the list, if
any, or the start of the list otherwise, and

o has the same tag name as the token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 765 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 765 from 931

If there is no such node, or, if that node is also in the stack of open elements
but the element is not in scope, then this is a parse error; ignore the token,
and abort these steps.

Otherwise, if there is such a node, but that node is not in the stack of open
elements, then this is a parse error; remove the element from the list, and
abort these steps.

Otherwise, there is a formatting element and that element is in the stack and
is in scope. If the element is not the current node, this is a parse error. In any
case, proceed with the algorithm as written in the following steps.

2. Let the furthest block be the topmost node in the stack of open elements that
is lower in the stack than the formatting element, and is not an element in
the phrasing or formatting categories. There might not be one.

3. If there is no furthest block, then the UA must skip the subsequent steps and
instead just pop all the nodes from the bottom of the stack of open elements,
from the current node up to and including the formatting element, and
remove the formatting element from the list of active formatting elements.

4. Let the common ancestor be the element immediately above the formatting
element in the stack of open elements.

5. Let a bookmark note the position of the formatting element in the list of active
formatting elements relative to the elements on either side of it in the list.

6. Let node and last node be the furthest block. Follow these steps:

1. Let node be the element immediately above node in the stack of open
elements.

2. If node is not in the list of active formatting elements, then remove
node from the stack of open elements and then go back to step 1.

3. Otherwise, if node is the formatting element, then go to the next step
in the overall algorithm.

4. Otherwise, if last node is the furthest block, then move the
aforementioned bookmark to be immediately after the node in the list
of active formatting elements.

5. Create an element for the token for which the element node was
created, replace the entry for node in the list of active formatting
elements with an entry for the new element, replace the entry for
node in the stack of open elements with an entry for the new element,
and let node be the new element.

6. Insert last node into node, first removing it from its previous parent
node if any.

7. Let last node be node.
8. Return to step 1 of this inner set of steps.

7. If the common ancestor node is a table, tbody, tfoot, thead, or tr element,
then, foster parent whatever last node ended up being in the previous step,
first removing it from its previous parent node if any.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 766 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 766 from 931

Otherwise, append whatever last node ended up being in the previous step
to the common ancestor node, first removing it from its previous parent node
if any.

8. Create an element for the token for which the formatting element was
created.

9. Take all of the child nodes of the furthest block and append them to the
element created in the last step.

10. Append that new element to the furthest block.

11. Remove the formatting element from the list of active formatting elements,
and insert the new element into the list of active formatting elements at the
position of the aforementioned bookmark.

12. Remove the formatting element from the stack of open elements, and insert
the new element into the stack of open elements immediately below the
position of the furthest block in that stack.

13. Jump back to step 1 in this series of steps.

Because of the way this algorithm causes elements to change parents, it has
been dubbed the "adoption agency algorithm" (in contrast with other
possibly algorithms for dealing with misnested content, which included the
"incest algorithm", the "secret affair algorithm", and the "Heisenberg
algorithm").

A start tag whose tag name is "button"
If the stack of open elements has a button element in scope, then this is a parse
error; act as if an end tag with the tag name "button" had been seen, then
reprocess the token.

Otherwise:

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

Insert a marker at the end of the list of active formatting elements.

Set the frameset-ok flag to "not ok".

A start tag token whose tag name is one of: "applet", "marquee", "object"
Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

Insert a marker at the end of the list of active formatting elements.

Set the frameset-ok flag to "not ok".

An end tag token whose tag name is one of: "applet", "button", "marquee", "object"

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 767 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 767 from 931

If the stack of open elements does not have an element in scope with the same tag
name as that of the token, then this is a parse error; ignore the token.

Otherwise, run these steps:

1. Generate implied end tags.

2. If the current node is not an element with the same tag name as that of the
token, then this is a parse error.

3. Pop elements from the stack of open elements until an element with the
same tag name as the token has been popped from the stack.

4. Clear the list of active formatting elements up to the last marker.

A start tag whose tag name is "table"
If the Document is not set to quirks mode, and the stack of open elements has a p
element in scope, then act as if an end tag with the tag name "p" had been seen.

Insert an HTML element for the token.

Set the frameset-ok flag to "not ok".

Switch the insertion mode to "in table".

A start tag whose tag name is one of: "area", "basefont", "bgsound", "br", "embed",
"img", "input", "keygen", "spacer", "wbr"

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token. Immediately pop the current node off the
stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

Set the frameset-ok flag to "not ok".

A start tag whose tag name is one of: "param", "source"
Insert an HTML element for the token. Immediately pop the current node off the
stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

A start tag whose tag name is "hr"
If the stack of open elements has a p element in scope, then act as if an end tag
with the tag name "p" had been seen.

Insert an HTML element for the token. Immediately pop the current node off the
stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

Set the frameset-ok flag to "not ok".

A start tag whose tag name is "image"

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 768 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 768 from 931

Parse error. Change the token's tag name to "img" and reprocess it. (Don't ask.)

A start tag whose tag name is "isindex"
Parse error.

If the form element pointer is not null, then ignore the token.

Otherwise:

Acknowledge the token's self-closing flag, if it is set.

Act as if a start tag token with the tag name "form" had been seen.

If the token has an attribute called "action", set the action attribute on the resulting
form element to the value of the "action" attribute of the token.

Act as if a start tag token with the tag name "hr" had been seen.

Act as if a start tag token with the tag name "label" had been seen.

Act as if a stream of character tokens had been seen (see below for what they
should say).

Act as if a start tag token with the tag name "input" had been seen, with all the
attributes from the "isindex" token except "name", "action", and "prompt". Set the
name attribute of the resulting input element to the value "isindex".

Act as if a stream of character tokens had been seen (see below for what they
should say).

Act as if an end tag token with the tag name "label" had been seen.

Act as if a start tag token with the tag name "hr" had been seen.

Act as if an end tag token with the tag name "form" had been seen.

If the token has an attribute with the name "prompt", then the first stream of
characters must be the same string as given in that attribute, and the second
stream of characters must be empty. Otherwise, the two streams of character
tokens together should, together with the input element, express the equivalent of
"This is a searchable index. Insert your search keywords here: (input field)" in the
user's preferred language.

A start tag whose tag name is "textarea"
1. Insert an HTML element for the token.

2. If the next token is a U+000A LINE FEED (LF) character token, then ignore
that token and move on to the next one. (Newlines at the start of textarea
elements are ignored as an authoring convenience.)

3. Switch the tokenizer's content model flag to the RCDATA state.

4. Let the original insertion mode be the current insertion mode.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 769 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 769 from 931

5. Set the frameset-ok flag to "not ok".

6. Switch the insertion mode to "in RAWTEXT/RCDATA".

A start tag whose tag name is "xmp"
Reconstruct the active formatting elements, if any.

Set the frameset-ok flag to "not ok".

Follow the generic raw text element parsing algorithm.

A start tag whose tag name is "iframe"
Set the frameset-ok flag to "not ok".

Follow the generic raw text element parsing algorithm.

A start tag whose tag name is "noembed"
A start tag whose tag name is "noscript", if the scripting flag is enabled

Follow the generic raw text element parsing algorithm.

A start tag whose tag name is "select"
Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

Set the frameset-ok flag to "not ok".

If the insertion mode is one of in table", "in caption", "in column group", "in table
body", "in row", or "in cell", then switch the insertion mode to "in select in table".
Otherwise, switch the insertion mode to "in select".

A start tag whose tag name is one of: "optgroup", "option"
If the stack of open elements has an option element in scope, then act as if an end
tag with the tag name "option" had been seen.

Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

A start tag whose tag name is one of: "rp", "rt"
If the stack of open elements has a ruby element in scope, then generate implied
end tags. If the current node is not then a ruby element, this is a parse error; pop all
the nodes from the current node up to the node immediately before the bottommost
ruby element on the stack of open elements.

Insert an HTML element for the token.

An end tag whose tag name is "br"
Parse error. Act as if a start tag token with the tag name "br" had been seen. Ignore
the end tag token.

A start tag whose tag name is "math"
Reconstruct the active formatting elements, if any.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 770 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 770 from 931

Adjust MathML attributes for the token. (This fixes the case of MathML attributes
that are not all lowercase.)

Adjust foreign attributes for the token. (This fixes the use of namespaced attributes,
in particular XLink.)

Insert a foreign element for the token, in the MathML namespace.

If the token has its self-closing flag set, pop the current node off the stack of open
elements and acknowledge the token's self-closing flag.

Otherwise, if the insertion mode is not already "in foreign content", let the
secondary insertion mode be the current insertion mode, and then switch the
insertion mode to "in foreign content".

A start tag whose tag name is "svg"
Reconstruct the active formatting elements, if any.

Adjust SVG attributes for the token. (This fixes the case of SVG attributes that are
not all lowercase.)

Adjust foreign attributes for the token. (This fixes the use of namespaced attributes,
in particular XLink in SVG.)

Insert a foreign element for the token, in the SVG namespace.

If the token has its self-closing flag set, pop the current node off the stack of open
elements and acknowledge the token's self-closing flag.

Otherwise, if the insertion mode is not already "in foreign content", let the
secondary insertion mode be the current insertion mode, and then switch the
insertion mode to "in foreign content".

A start tag whose tag name is one of: "caption", "col", "colgroup", "frame", "head",
"tbody", "td", "tfoot", "th", "thead", "tr"

Parse error. Ignore the token.

Any other start tag
Reconstruct the active formatting elements, if any.

Insert an HTML element for the token.

This element will be a phrasing element.

Any other end tag
Run the following steps:

1. Initialize node to be the current node (the bottommost node of the stack).

2. If node has the same tag name as the end tag token, then:

1. Generate implied end tags.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 771 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 771 from 931

2. If the tag name of the end tag token does not match the tag name of
the current node, this is a parse error.

3. Pop all the nodes from the current node up to node, including node,
then stop these steps.

3. Otherwise, if node is in neither the formatting category nor the phrasing
category, then this is a parse error; ignore the token, and abort these steps.

4. Set node to the previous entry in the stack of open elements.

5. Return to step 2.

9.2.5.11 The "in RAWTEXT/RCDATA" insertion mode

When the insertion mode is "in RAWTEXT/RCDATA", tokens must be handled as follows:

A character token
Insert the token's character into the current node.

An end-of-file token
Parse error.

If the current node is a script element, mark the script element as "already
executed".

Pop the current node off the stack of open elements.

Switch the insertion mode to the original insertion mode and reprocess the current
token.

An end tag whose tag name is "script"
Let script be the current node (which will be a script element).

Pop the current node off the stack of open elements.

Switch the insertion mode to the original insertion mode.

Let the old insertion point have the same value as the current insertion point. Let
the insertion point be just before the next input character.

Increment the parser's script nesting level by one.

Run the script. This might cause some script to execute, which might cause new
characters to be inserted into the tokenizer, and might cause the tokenizer to output
more tokens, resulting in a reentrant invocation of the parser.

Decrement the parser's script nesting level by one. If the parser's script nesting
level is zero, then set the parser pause flag to false.

Let the insertion point have the value of the old insertion point. (In other words,
restore the insertion point to its previous value. This value might be the "undefined"
value.)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 772 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 772 from 931

At this stage, if there is a pending external script, then:

If the script nesting level is not zero:
Set the parser pause flag to true, and abort the processing of any nested
invocations of the tokenizer, yielding control back to the caller. (Tokenization will
resume when the caller returns to the "outer" tree construction stage.)

The tree construction stage of this particular parser is being called
reentrantly, say from a call to document.write().

Otherwise:
Follow these steps:

1. Let the script be the pending external script. There is no longer a pending
external script.

2. Pause until the script has completed loading.

3. Let the insertion point be just before the next input character.

4. Increment the parser's script nesting level by one (it should be zero before
this step, so this sets it to one).

5. Execute the script.

6. Decrement the parser's script nesting level by one. If the parser's script
nesting level is zero (which it always should be at this point), then set the
parser pause flag to false.

7. Let the insertion point be undefined again.

8. If there is once again a pending external script, then repeat these steps from
step 1.

Any other end tag
Pop the current node off the stack of open elements.

Switch the insertion mode to the original insertion mode.

9.2.5.12 The "in table" insertion mode

When the insertion mode is "in table", tokens must be handled as follows:

A character token
Let the pending table character tokens be an empty list of tokens.

Let the original insertion mode be the current insertion mode.

Switch the insertion mode to "in table text" and reprocess the token.

A comment token
Append a Comment node to the current node with the data attribute set to the data
given in the comment token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 773 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 773 from 931

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "caption"
Clear the stack back to a table context. (See below.)

Insert a marker at the end of the list of active formatting elements.

Insert an HTML element for the token, then switch the insertion mode to "in
caption".

A start tag whose tag name is "colgroup"
Clear the stack back to a table context. (See below.)

Insert an HTML element for the token, then switch the insertion mode to "in column
group".

A start tag whose tag name is "col"
Act as if a start tag token with the tag name "colgroup" had been seen, then
reprocess the current token.

A start tag whose tag name is one of: "tbody", "tfoot", "thead"
Clear the stack back to a table context. (See below.)

Insert an HTML element for the token, then switch the insertion mode to "in table
body".

A start tag whose tag name is one of: "td", "th", "tr"
Act as if a start tag token with the tag name "tbody" had been seen, then reprocess
the current token.

A start tag whose tag name is "table"
Parse error. Act as if an end tag token with the tag name "table" had been seen,
then, if that token wasn't ignored, reprocess the current token.

The fake end tag token here can only be ignored in the fragment case.

An end tag whose tag name is "table"
If the stack of open elements does not have an element in table scope with the
same tag name as the token, this is a parse error. Ignore the token. (fragment
case)

Otherwise:

Pop elements from this stack until a table element has been popped from the
stack.

Reset the insertion mode appropriately.

An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html",
"tbody", "td", "tfoot", "th", "thead", "tr"

Parse error. Ignore the token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 774 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 774 from 931

A start tag whose tag name is one of: "style", "script"
Process the token using the rules for the "in head" insertion mode.

A start tag whose tag name is "input"
If the token does not have an attribute with the name "type", or if it does, but that
attribute's value is not an ASCII case-insensitive match for the string "hidden", then:
act as described in the "anything else" entry below.

Otherwise:

Parse error.

Insert an HTML element for the token.

Pop that input element off the stack of open elements.

An end-of-file token
If the current node is not the root html element, then this is a parse error.

It can only be the current node in the fragment case.

Stop parsing.

Anything else
Parse error. Process the token using the rules for the "in body" insertion mode,
except that if the current node is a table, tbody, tfoot, thead, or tr element, then,
whenever a node would be inserted into the current node, it must instead be foster
parented.

When the steps above require the UA to clear the stack back to a table context, it
means that the UA must, while the current node is not a table element or an html
element, pop elements from the stack of open elements.

The current node being an html element after this process is a fragment case.

9.2.5.13 The "in table text" insertion mode

When the insertion mode is "in table text", tokens must be handled as follows:

A character token
Append the character token to the pending table character tokens list.

Anything else
If any of the tokens in the pending table character tokens list are character tokens
that are not one of U+0009 CHARACTER TABULATION, U+000A LINE FEED (LF),
U+000C FORM FEED (FF), or U+0020 SPACE, then reprocess those character
tokens using the rules given in the "anything else" entry in the in table" insertion
mode.

Otherwise, insert the characters given by the pending table character tokens list
into the current node.

Switch the insertion mode to the original insertion mode and reprocess the token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 775 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 775 from 931

9.2.5.14 The "in caption" insertion mode

When the insertion mode is "in caption", tokens must be handled as follows:

An end tag whose tag name is "caption"
If the stack of open elements does not have an element in table scope with the
same tag name as the token, this is a parse error. Ignore the token. (fragment
case)

Otherwise:

Generate implied end tags.

Now, if the current node is not a caption element, then this is a parse error.

Pop elements from this stack until a caption element has been popped from the
stack.

Clear the list of active formatting elements up to the last marker.

Switch the insertion mode to "in table".

A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "td",
"tfoot", "th", "thead", "tr"
An end tag whose tag name is "table"

Parse error. Act as if an end tag with the tag name "caption" had been seen, then, if
that token wasn't ignored, reprocess the current token.

The fake end tag token here can only be ignored in the fragment case.

An end tag whose tag name is one of: "body", "col", "colgroup", "html", "tbody",
"td", "tfoot", "th", "thead", "tr"

Parse error. Ignore the token.

Anything else
Process the token using the rules for the "in body" insertion mode.

9.2.5.15 The "in column group" insertion mode

When the insertion mode is "in column group", tokens must be handled as follows:

A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE

Insert the character into the current node.

A comment token
Append a Comment node to the current node with the data attribute set to the data
given in the comment token.

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "html"
Process the token using the rules for the "in body" insertion mode.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 776 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 776 from 931

A start tag whose tag name is "col"
Insert an HTML element for the token. Immediately pop the current node off the
stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

An end tag whose tag name is "colgroup"
If the current node is the root html element, then this is a parse error; ignore the
token. (fragment case)

Otherwise, pop the current node (which will be a colgroup element) from the stack
of open elements. Switch the insertion mode to "in table".

An end tag whose tag name is "col"
Parse error. Ignore the token.

An end-of-file token
If the current node is the root html element, then stop parsing. (fragment case)

Otherwise, act as described in the "anything else" entry below.

Anything else
Act as if an end tag with the tag name "colgroup" had been seen, and then, if that
token wasn't ignored, reprocess the current token.

The fake end tag token here can only be ignored in the fragment case.

9.2.5.16 The "in table body" insertion mode

When the insertion mode is "in table body", tokens must be handled as follows:

A start tag whose tag name is "tr"
Clear the stack back to a table body context. (See below.)

Insert an HTML element for the token, then switch the insertion mode to "in row".

A start tag whose tag name is one of: "th", "td"
Parse error. Act as if a start tag with the tag name "tr" had been seen, then
reprocess the current token.

An end tag whose tag name is one of: "tbody", "tfoot", "thead"
If the stack of open elements does not have an element in table scope with the
same tag name as the token, this is a parse error. Ignore the token.

Otherwise:

Clear the stack back to a table body context. (See below.)

Pop the current node from the stack of open elements. Switch the insertion mode to
"in table".

A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "tfoot",
"thead"
An end tag whose tag name is "table"

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 777 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 777 from 931

If the stack of open elements does not have a tbody, thead, or tfoot element in
table scope, this is a parse error. Ignore the token. (fragment case)

Otherwise:

Clear the stack back to a table body context. (See below.)

Act as if an end tag with the same tag name as the current node ("tbody", "tfoot", or
"thead") had been seen, then reprocess the current token.

An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html",
"td", "th", "tr"

Parse error. Ignore the token.

Anything else
Process the token using the rules for the "in table" insertion mode.

When the steps above require the UA to clear the stack back to a table body context, it
means that the UA must, while the current node is not a tbody, tfoot, thead, or html
element, pop elements from the stack of open elements.

The current node being an html element after this process is a fragment case.

9.2.5.17 The "in row" insertion mode

When the insertion mode is "in row", tokens must be handled as follows:

A start tag whose tag name is one of: "th", "td"
Clear the stack back to a table row context. (See below.)

Insert an HTML element for the token, then switch the insertion mode to "in cell".

Insert a marker at the end of the list of active formatting elements.

An end tag whose tag name is "tr"
If the stack of open elements does not have an element in table scope with the
same tag name as the token, this is a parse error. Ignore the token. (fragment
case)

Otherwise:

Clear the stack back to a table row context. (See below.)

Pop the current node (which will be a tr element) from the stack of open elements.
Switch the insertion mode to "in table body".

A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "tfoot",
"thead", "tr"
An end tag whose tag name is "table"

Act as if an end tag with the tag name "tr" had been seen, then, if that token wasn't
ignored, reprocess the current token.

The fake end tag token here can only be ignored in the fragment case.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 778 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 778 from 931

An end tag whose tag name is one of: "tbody", "tfoot", "thead"
If the stack of open elements does not have an element in table scope with the
same tag name as the token, this is a parse error. Ignore the token.

Otherwise, act as if an end tag with the tag name "tr" had been seen, then
reprocess the current token.

An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html",
"td", "th"

Parse error. Ignore the token.

Anything else
Process the token using the rules for the "in table" insertion mode.

When the steps above require the UA to clear the stack back to a table row context, it
means that the UA must, while the current node is not a tr element or an html element,
pop elements from the stack of open elements.

The current node being an html element after this process is a fragment case.

9.2.5.18 The "in cell" insertion mode

When the insertion mode is "in cell", tokens must be handled as follows:

An end tag whose tag name is one of: "td", "th"
If the stack of open elements does not have an element in table scope with the
same tag name as that of the token, then this is a parse error and the token must
be ignored.

Otherwise:

Generate implied end tags.

Now, if the current node is not an element with the same tag name as the token,
then this is a parse error.

Pop elements from this stack until an element with the same tag name as the token
has been popped from the stack.

Clear the list of active formatting elements up to the last marker.

Switch the insertion mode to "in row". (The current node will be a tr element at this
point.)

A start tag whose tag name is one of: "caption", "col", "colgroup", "tbody", "td",
"tfoot", "th", "thead", "tr"

If the stack of open elements does not have a td or th element in table scope, then
this is a parse error; ignore the token. (fragment case)

Otherwise, close the cell (see below) and reprocess the current token.

An end tag whose tag name is one of: "body", "caption", "col", "colgroup", "html"
Parse error. Ignore the token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 779 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 779 from 931

An end tag whose tag name is one of: "table", "tbody", "tfoot", "thead", "tr"
If the stack of open elements does not have an element in table scope with the
same tag name as that of the token (which can only happen for "tbody", "tfoot" and
"thead", or, in the fragment case), then this is a parse error and the token must be
ignored.

Otherwise, close the cell (see below) and reprocess the current token.

Anything else
Process the token using the rules for the "in body" insertion mode.

Where the steps above say to close the cell, they mean to run the following algorithm:

1. If the stack of open elements has a td element in table scope, then act as if an end
tag token with the tag name "td" had been seen.

2. Otherwise, the stack of open elements will have a th element in table scope; act as
if an end tag token with the tag name "th" had been seen.

The stack of open elements cannot have both a td and a th element in table scope
at the same time, nor can it have neither when the insertion mode is "in cell".

9.2.5.19 The "in select" insertion mode

When the insertion mode is "in select", tokens must be handled as follows:

A character token
Insert the token's character into the current node.

A comment token
Append a Comment node to the current node with the data attribute set to the data
given in the comment token.

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "html"
Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is "option"
If the current node is an option element, act as if an end tag with the tag name
"option" had been seen.

Insert an HTML element for the token.

A start tag whose tag name is "optgroup"
If the current node is an option element, act as if an end tag with the tag name
"option" had been seen.

If the current node is an optgroup element, act as if an end tag with the tag name
"optgroup" had been seen.

Insert an HTML element for the token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 780 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 780 from 931

An end tag whose tag name is "optgroup"
First, if the current node is an option element, and the node immediately before it
in the stack of open elements is an optgroup element, then act as if an end tag with
the tag name "option" had been seen.

If the current node is an optgroup element, then pop that node from the stack of
open elements. Otherwise, this is a parse error; ignore the token.

An end tag whose tag name is "option"
If the current node is an option element, then pop that node from the stack of open
elements. Otherwise, this is a parse error; ignore the token.

An end tag whose tag name is "select"
If the stack of open elements does not have an element in table scope with the
same tag name as the token, this is a parse error. Ignore the token. (fragment
case)

Otherwise:

Pop elements from the stack of open elements until a select element has been
popped from the stack.

Reset the insertion mode appropriately.

A start tag whose tag name is "select"
Parse error. Act as if the token had been an end tag with the tag name "select"
instead.

A start tag whose tag name is one of: "input", "keygen", "textarea"
Parse error.

If the stack of open elements does not have a select element in table scope,
ignore the token. (fragment case)

Otherwise, act as if an end tag with the tag name "select" had been seen, and
reprocess the token.

A start tag token whose tag name is "script"
Process the token using the rules for the "in head" insertion mode.

An end-of-file token
If the current node is not the root html element, then this is a parse error.

It can only be the current node in the fragment case.

Stop parsing.

Anything else
Parse error. Ignore the token.

9.2.5.20 The "in select in table" insertion mode

When the insertion mode is "in select in table", tokens must be handled as follows:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 781 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 781 from 931

A start tag whose tag name is one of: "caption", "table", "tbody", "tfoot", "thead",
"tr", "td", "th"

Parse error. Act as if an end tag with the tag name "select" had been seen, and
reprocess the token.

An end tag whose tag name is one of: "caption", "table", "tbody", "tfoot", "thead",
"tr", "td", "th"

Parse error.

If the stack of open elements has an element in table scope with the same tag
name as that of the token, then act as if an end tag with the tag name "select" had
been seen, and reprocess the token. Otherwise, ignore the token.

Anything else
Process the token using the rules for the "in select" insertion mode.

9.2.5.21 The "in foreign content" insertion mode

ISSUE-37 (html-svg-mathml) blocks progress to Last Call

When the insertion mode is "in foreign content", tokens must be handled as follows:

A character token
Insert the token's character into the current node.

If the token is not one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE, then set the frameset-
ok flag to "not ok".

A comment token
Append a Comment node to the current node with the data attribute set to the data
given in the comment token.

A DOCTYPE token
Parse error. Ignore the token.

An end tag whose tag name is "script", if the current node is a script element in the
SVG namespace.

Pop the current node off the stack of open elements.

Let the old insertion point have the same value as the current insertion point. Let
the insertion point be just before the next input character.

Increment the parser's script nesting level by one. Set the parser pause flag to true.

Process the script element according to the SVG rules. [SVG]

Even if this causes new characters to be inserted into the tokenizer, the
parser will not be executed reentrantly, since the parser pause flag is true.

Decrement the parser's script nesting level by one. If the parser's script nesting
level is zero, then set the parser pause flag to false.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 782 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 782 from 931

Let the insertion point have the value of the old insertion point. (In other words,
restore the insertion point to its previous value. This value might be the "undefined"
value.)

A start tag whose tag name is neither "mglyph" nor "malignmark", if the current
node is an mi element in the MathML namespace.
A start tag whose tag name is neither "mglyph" nor "malignmark", if the current
node is an mo element in the MathML namespace.
A start tag whose tag name is neither "mglyph" nor "malignmark", if the current
node is an mn element in the MathML namespace.
A start tag whose tag name is neither "mglyph" nor "malignmark", if the current
node is an ms element in the MathML namespace.
A start tag whose tag name is neither "mglyph" nor "malignmark", if the current
node is an mtext element in the MathML namespace.
A start tag whose tag name is "svg", if the current node is an annotation-xml
element in the MathML namespace.
A start tag, if the current node is a foreignObject element in the SVG namespace.
A start tag, if the current node is a desc element in the SVG namespace.
A start tag, if the current node is a title element in the SVG namespace.
A start tag, if the current node is an element in the HTML namespace.
An end tag

Process the token using the rules for the secondary insertion mode.

If, after doing so, the insertion mode is still "in foreign content", but there is no
element in scope that has a namespace other than the HTML namespace, switch
the insertion mode to the secondary insertion mode.

A start tag whose tag name is one of: "b", "big", "blockquote", "body", "br",
"center", "code", "dd", "div", "dl", "dt", "em", "embed", "h1", "h2", "h3", "h4", "h5",
"h6", "head", "hr", "i", "img", "li", "listing", "menu", "meta", "nobr", "ol", "p", "pre",
"ruby", "s", "small", "span", "strong", "strike", "sub", "sup", "table", "tt", "u", "ul",
"var"
A start tag whose tag name is "font", if the token has any attributes named "color",
"face", or "size"
An end-of-file token

Parse error.

Pop elements from the stack of open elements until the current node is in the
HTML namespace.

Switch the insertion mode to the secondary insertion mode, and reprocess the
token.

Any other start tag
If the current node is an element in the MathML namespace, adjust MathML
attributes for the token. (This fixes the case of MathML attributes that are not all
lowercase.)

If the current node is an element in the SVG namespace, and the token's tag name
is one of the ones in the first column of the following table, change the tag name to
the name given in the corresponding cell in the second column. (This fixes the case
of SVG elements that are not all lowercase.)

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 783 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 783 from 931

Tag name Element name
altglyph altGlyph
altglyphdef altGlyphDef
altglyphitem altGlyphItem
animatecolor animateColor
animatemotion animateMotion
animatetransform animateTransform
clippath clipPath
feblend feBlend
fecolormatrix feColorMatrix
fecomponenttransfer feComponentTransfer
fecomposite feComposite
feconvolvematrix feConvolveMatrix
fediffuselighting feDiffuseLighting
fedisplacementmap feDisplacementMap
fedistantlight feDistantLight
feflood feFlood
fefunca feFuncA
fefuncb feFuncB
fefuncg feFuncG
fefuncr feFuncR
fegaussianblur feGaussianBlur
feimage feImage
femerge feMerge
femergenode feMergeNode
femorphology feMorphology
feoffset feOffset
fepointlight fePointLight
fespecularlighting feSpecularLighting
fespotlight feSpotLight
fetile feTile
feturbulence feTurbulence
foreignobject foreignObject
glyphref glyphRef
lineargradient linearGradient
radialgradient radialGradient
textpath textPath
If the current node is an element in the SVG namespace, adjust SVG attributes for
the token. (This fixes the case of SVG attributes that are not all lowercase.)

Adjust foreign attributes for the token. (This fixes the use of namespaced attributes,
in particular XLink in SVG.)

Insert a foreign element for the token, in the same namespace as the current node.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 784 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 784 from 931

If the token has its self-closing flag set, pop the current node off the stack of open
elements and acknowledge the token's self-closing flag.

9.2.5.22 The "after body" insertion mode

When the insertion mode is "after body", tokens must be handled as follows:

A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE

Process the token using the rules for the "in body" insertion mode.

A comment token
Append a Comment node to the first element in the stack of open elements (the html
element), with the data attribute set to the data given in the comment token.

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "html"
Process the token using the rules for the "in body" insertion mode.

An end tag whose tag name is "html"
If the parser was originally created as part of the HTML fragment parsing algorithm,
this is a parse error; ignore the token. (fragment case)

Otherwise, switch the insertion mode to "after after body".

An end-of-file token
Stop parsing.

Anything else
Parse error. Switch the insertion mode to "in body" and reprocess the token.

9.2.5.23 The "in frameset" insertion mode

When the insertion mode is "in frameset", tokens must be handled as follows:

A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE

Insert the character into the current node.

A comment token
Append a Comment node to the current node with the data attribute set to the data
given in the comment token.

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "html"
Process the token using the rules for the "in body" insertion mode.

A start tag whose tag name is "frameset"
Insert an HTML element for the token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 785 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 785 from 931

An end tag whose tag name is "frameset"
If the current node is the root html element, then this is a parse error; ignore the
token. (fragment case)

Otherwise, pop the current node from the stack of open elements.

If the parser was not originally created as part of the HTML fragment parsing
algorithm (fragment case), and the current node is no longer a frameset element,
then switch the insertion mode to "after frameset".

A start tag whose tag name is "frame"
Insert an HTML element for the token. Immediately pop the current node off the
stack of open elements.

Acknowledge the token's self-closing flag, if it is set.

A start tag whose tag name is "noframes"
Process the token using the rules for the "in head" insertion mode.

An end-of-file token
If the current node is not the root html element, then this is a parse error.

It can only be the current node in the fragment case.

Stop parsing.

Anything else
Parse error. Ignore the token.

9.2.5.24 The "after frameset" insertion mode

When the insertion mode is "after frameset", tokens must be handled as follows:

A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE

Insert the character into the current node.

A comment token
Append a Comment node to the current node with the data attribute set to the data
given in the comment token.

A DOCTYPE token
Parse error. Ignore the token.

A start tag whose tag name is "html"
Process the token using the rules for the "in body" insertion mode.

An end tag whose tag name is "html"
Switch the insertion mode to "after after frameset".

A start tag whose tag name is "noframes"
Process the token using the rules for the "in head" insertion mode.

An end-of-file token

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 786 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 786 from 931

Stop parsing.

Anything else
Parse error. Ignore the token.

This doesn't handle UAs that don't support frames, or that do support frames but want to
show the NOFRAMES content. Supporting the former is easy; supporting the latter is
harder.

9.2.5.25 The "after after body" insertion mode

When the insertion mode is "after after body", tokens must be handled as follows:

A comment token
Append a Comment node to the Document object with the data attribute set to the
data given in the comment token.

A DOCTYPE token
A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE
A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

An end-of-file token
Stop parsing.

Anything else
Parse error. Switch the insertion mode to "in body" and reprocess the token.

9.2.5.26 The "after after frameset" insertion mode

When the insertion mode is "after after frameset", tokens must be handled as follows:

A comment token
Append a Comment node to the Document object with the data attribute set to the
data given in the comment token.

A DOCTYPE token
A character token that is one of U+0009 CHARACTER TABULATION, U+000A LINE
FEED (LF), U+000C FORM FEED (FF), or U+0020 SPACE
A start tag whose tag name is "html"

Process the token using the rules for the "in body" insertion mode.

An end-of-file token
Stop parsing.

A start tag whose tag name is "noframes"
Process the token using the rules for the "in head" insertion mode.

Anything else
Parse error. Ignore the token.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 787 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 787 from 931

9.2.6 The end

Once the user agent stops parsing the document, the user agent must follow the steps in
this section.

First, the user agent must set the current document readiness to "interactive" and the
insertion point to undefined.

Then, the user agent must then make a list of all the scripts that are in the list of scripts
that will execute when the document has finished parsing, the list of scripts that will
execute asynchronously, and the list of scripts that will execute as soon as possible. This
is the list of scripts pending after the parser stopped.

The rules for when a script completes loading start applying (script execution is no longer
managed by the parser).

If any of the scripts in the list of scripts that will execute as soon as possible have
completed loading, or if the list of scripts that will execute asynchronously is not empty
and the first script in that list has completed loading, then the user agent must act as if
those scripts just completed loading, following the rules given for that in the script
element definition.

If the list of scripts that will execute when the document has finished parsing is not empty,
and the first item in this list has already completed loading, then the user agent must act
as if that script just finished loading.

By this point, there will be no scripts that have loaded but have not yet been
executed.

Once all the scripts on the list of scripts pending after the parser stopped have completed
loading and been executed, the user agent must queue a task to fire a simple event called
DOMContentLoaded at the Document. (If the list is empty, this happens immediately.)

Once everything that delays the load event of the document has completed, the user
agent must run the following steps:

1. Queue a task to set the current document readiness to "complete".
2. If the Document is in a browsing context, then queue a task to fire a simple event

called load at the Document's Window object, but with its target set to the Document
object (and the currentTarget set to the Window object).

3. If the Document has a pending state object, then queue a task to fire a popstate
event in no namespace on the Document's Window object using the PopStateEvent
interface, with the state attribute set to the current value of the pending state
object. This event must bubble but not be cancelable and has no default action.

The task source for these tasks is the DOM manipulation task source.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 788 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 788 from 931

delaying the load event for things like image loads allows for intranet port scans (even
without javascript!). Should we really encode that into the spec?

9.2.7 Coercing an HTML DOM into an infoset

When an application uses an HTML parser in conjunction with an XML pipeline, it is
possible that the constructed DOM is not compatible with the XML tool chain in certain
subtle ways. For example, an XML toolchain might not be able to represent attributes with
the name xmlns, since they conflict with the Namespaces in XML syntax. There is also
some data that the HTML parser generates that isn't included in the DOM itself. This
section specifies some rules for handling these issues.

If the XML API being used doesn't support DOCTYPEs, the tool may drop DOCTYPEs
altogether.

If the XML API doesn't support attributes in no namespace that are named "xmlns",
attributes whose names start with "xmlns:", or attributes in the XMLNS namespace, then
the tool may drop such attributes.

The tool may annotate the output with any namespace declarations required for proper
operation.

If the XML API being used restricts the allowable characters in the local names of
elements and attributes, then the tool may map all element and attribute local names that
the API wouldn't support to a set of names that are allowed, by replacing any character
that isn't supported with the uppercase letter U and the six digits of the character's
Unicode code point when expressed in hexadecimal, using digits 0-9 and capital letters A-
F as the symbols, in increasing numeric order.

For example, the element name foo<bar, which can be output by the HTML parser,
though it is neither a legal HTML element name nor a well-formed XML element
name, would be converted into fooU00003Cbar, which is a well-formed XML element
name (though it's still not legal in HTML by any means).

As another example, consider the attribute xlink:href. Used on a MathML element, it
becomes, after being adjusted, an attribute with a prefix "xlink" and a local name
"href". However, used on an HTML element, it becomes an attribute with no prefix
and the local name "xlink:href", which is not a valid NCName, and thus might not be
accepted by an XML API. It could thus get converted, becoming "xlinkU00003Ahref".

The resulting names from this conversion conveniently can't clash with any
attribute generated by the HTML parser, since those are all either lowercase or
those listed in the adjust foreign attributes algorithm's table.

If the XML API restricts comments from having two consecutive U+002D HYPHEN-MINUS
characters (--), the tool may insert a single U+0020 SPACE character between any such
offending characters.

If the XML API restricts comments from ending in a U+002D HYPHEN-MINUS character (-
), the tool may insert a single U+0020 SPACE character at the end of such comments.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 789 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 789 from 931

If the XML API restricts allowed characters in character data, the tool may replace any
U+000C FORM FEED (FF) character with a U+0020 SPACE character, and any other
literal non-XML character with a U+FFFD REPLACEMENT CHARACTER.

If the tool has no way to convey out-of-band information, then the tool may drop the
following information:

• Whether the document is set to no quirks mode, limited quirks mode, or quirks
mode

• The association between form controls and forms that aren't their nearest form
element ancestor (use of the form element pointer in the parser)

The mutations allowed by this section apply after the HTML parser's rules have
been applied. For example, a <a::> start tag will be closed by a </a::> end tag, and
never by a </aU00003AU00003A> end tag, even if the user agent is using the rules
above to then generate an actual element in the DOM with the name aU00003AU00003A
for that start tag.

9.2.8 An introduction to error handling and strange cases in the parser

This section is non-normative.

This section examines some erroneous markup and discusses how the HTML parser
handles these cases.

9.2.8.1 Misnested tags: <i></i>

This section is non-normative.

The most-often discussed example of erroneous markup is as follows:

<p>12<i>34</i>5</p>

The parsing of this markup is straightforward up to the "3". At this point, the DOM looks
like this:

• html
o head
o body
 p
 #text: 1
 b
 #text: 2
 i
 #text: 3

Here, the stack of open elements has five elements on it: html, body, p, b, and i. The list
of active formatting elements just has two: b and i. The insertion mode is "in body".

Upon receiving the end tag token with the tag name "b", the "adoption agency algorithm"
is invoked. This is a simple case, in that the formatting element is the b element, and there
is no furthest block. Thus, the stack of open elements ends up with just three elements:
html, body, and p, while the list of active formatting elements has just one: i. The DOM
tree is unmodified at this point.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 790 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 790 from 931

The next token is a character ("4"), triggers the reconstruction of the active formatting
elements, in this case just the i element. A new i element is thus created for the "4" text
node. After the end tag token for the "i" is also received, and the "5" text node is inserted,
the DOM looks as follows:

• html
o head
o body
 p
 #text: 1
 b
 #text: 2
 i
 #text: 3
 i
 #text: 4
 #text: 5

9.2.8.2 Misnested tags: <p></p>

This section is non-normative.

A case similar to the previous one is the following:

1<p>23</p>

Up to the "2" the parsing here is straightforward:

• html
o head
o body
 b
 #text: 1
 p
 #text: 2

The interesting part is when the end tag token with the tag name "b" is parsed.

Before that token is seen, the stack of open elements has four elements on it: html, body,
b, and p. The list of active formatting elements just has the one: b. The insertion mode is
"in body".

Upon receiving the end tag token with the tag name "b", the "adoption agency algorithm"
is invoked, as in the previous example. However, in this case, there is a furthest block,
namely the p element. Thus, this time the adoption agency algorithm isn't skipped over.

The common ancestor is the body element. A conceptual "bookmark" marks the position of
the b in the list of active formatting elements, but since that list has only one element in it,
it won't have much effect.

As the algorithm progresses, node ends up set to the formatting element (b), and last
node ends up set to the furthest block (p).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 791 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 791 from 931

The last node gets appended (moved) to the common ancestor, so that the DOM looks
like:

• html
o head
o body
 b
 #text: 1
 p
 #text: 2

A new b element is created, and the children of the p element are moved to it:

• html
o head
o body
 b
 #text: 1
 p

• b
o #text: 2

Finally, the new b element is appended to the p element, so that the DOM looks like:

• html
o head
o body
 b
 #text: 1
 p
 b
 #text: 2

The b element is removed from the list of active formatting elements and the stack of open
elements, so that when the "3" is parsed, it is appended to the p element:

• html
o head
o body
 b
 #text: 1
 p
 b
 #text: 2
 #text: 3

9.2.8.3 Unexpected markup in tables

This section is non-normative.

Error handling in tables is, for historical reasons, especially strange. For example,
consider the following markup:

<table><tr><td>aaa</td></tr>bbb</table>ccc

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 792 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 792 from 931

The highlighted b element start tag is not allowed directly inside a table like that, and the
parser handles this case by placing the element before the table. (This is called foster
parenting.) This can be seen by examining the DOM tree as it stands just after the table
element's start tag has been seen:

• html
o head
o body
 table

...and then immediately after the b element start tag has been seen:

• html
o head
o body
 b
 table

At this point, the stack of open elements has on it the elements html, body, table, and b
(in that order, despite the resulting DOM tree); the list of active formatting elements just
has the b element in it; and the insertion mode is "in table".

The tr start tag causes the b element to be popped off the stack and a tbody start tag to
be implied; the tbody and tr elements are then handled in a rather straight-forward
manner, taking the parser through the "in table body" and "in row" insertion modes, after
which the DOM looks as follows:

• html
o head
o body
 b
 table
 tbody
 tr

Here, the stack of open elements has on it the elements html, body, table, tbody, and tr;
the list of active formatting elements still has the b element in it; and the insertion mode is
"in row".

The td element start tag token, after putting a td element on the tree, puts a marker on
the list of active formatting elements (it also switches to the "in cell" insertion mode).

• html
o head
o body
 b
 table
 tbody
 tr
 td

The marker means that when the "aaa" character tokens are seen, no b element is
created to hold the resulting text node:

• html
o head

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 793 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 793 from 931

o body
 b
 table
 tbody
 tr
 td
 #text: aaa

The end tags are handled in a straight-forward manner; after handling them, the stack of
open elements has on it the elements html, body, table, and tbody; the list of active
formatting elements still has the b element in it (the marker having been removed by the
"td" end tag token); and the insertion mode is "in table body".

Thus it is that the "bbb" character tokens are found. These trigger the "in table text"
insertion mode to be used (with the original insertion mode set to "in table body"). The
character tokens are collected, and when the next token (the table element end tag) is
seen, they are processed as a group. Since they are not all spaces, they are handled as
per the "anything else" rules in the "in table" insertion mode, which defer to the "in body"
insertion mode but with foster parenting.

When the active formatting elements are reconstructed, a b element is created and foster
parented, and then the "bbb" text node is appended to it:

• html
o head
o body
 b
 b
 #text: bbb
 table
 tbody
 tr
 td
 #text: aaa

The stack of open elements has on it the elements html, body, table, tbody, and the new
b (again, note that this doesn't match the resulting tree!); the list of active formatting
elements has the new b element in it; and the insertion mode is still "in table body".

Had the character tokens been only space characters instead of "bbb", then those space
characters would just be appended to the tbody element.

Finally, the table is closed by a "table" end tag. This pops all the nodes from the stack of
open elements up to and including the table element, but it doesn't affect the list of active
formatting elements, so the "ccc" character tokens after the table result in yet another b
element being created, this time after the table:

• html
o head
o body
 b
 b
 #text: bbb
 table
 tbody

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 794 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 794 from 931

 tr
 td
 #text: aaa
 b
 #text: ccc

9.2.8.4 Scripts that modify the page as it is being parsed

This section is non-normative.

Consider the following markup, which for this example we will assume is the document
with URL http://example.com/inner, being rendered as the content of an iframe in
another document with the URL http://example.com/outer:

<div id=a>
 <script>
 var div = document.getElementById('a');
 parent.document.body.appendChild(div);
 </script>
 <script>
 alert(document.URL);
 </script>
</div>
<script>
 alert(document.URL);
</script>

Up to the first "script" end tag, before the script is parsed, the result is relatively
straightforward:

• html
o head
o body
 div id="a"
 #text:
 script
 #text: var div = document.getElementById('a'); ⏎

parent.document.body.appendChild(div);

After the script is parsed, though, the div element and its child script element are gone:

• html
o head
o body

They are, at this point, in the Document of the aforementioned outer browsing context.
However, the stack of open elements still contains the div element.

Thus, when the second script element is parsed, it is inserted into the outer Document
object.

This also means that the script's global object is the outer browsing context's Window
object, not the Window object inside the iframe.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 795 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 795 from 931

This isn't a security problem since the script that moves the div into the outer
Document can only do so because they have the two Document object have the same
origin.

Thus, the first alert says "http://example.com/outer".

Once the div element's end tag is parsed, the div element is popped off the stack, and so
the next script element is in the inner Document:

• html
o head
o body
 script
 #text: alert(document.URL);

This second alert will say "http://example.com/inner".

9.3 Namespaces

ISSUE-60 (html5-xhtml-namespace) blocks progress to Last Call

The HTML namespace is: http://www.w3.org/1999/xhtml

The MathML namespace is: http://www.w3.org/1998/Math/MathML

The SVG namespace is: http://www.w3.org/2000/svg

The XLink namespace is: http://www.w3.org/1999/xlink

The XML namespace is: http://www.w3.org/XML/1998/namespace

The XMLNS namespace is: http://www.w3.org/2000/xmlns/

Data mining tools and other user agents that perform operations on text/html content
without running scripts, evaluating CSS or XPath expressions, or otherwise exposing the
resulting DOM to arbitrary content, may "support namespaces" by just asserting that their
DOM node analogues are in certain namespaces, without actually exposing the above
strings.

9.4 Serializing HTML fragments

The following steps form the HTML fragment serialization algorithm. The algorithm
takes as input a DOM Element or Document, referred to as the node, and either returns a
string or raises an exception.

This algorithm serializes the children of the node being serialized, not the node
itself.

1. Let s be a string, and initialize it to the empty string.

2. For each child node of the node, in tree order, run the following steps:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 796 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 796 from 931

1. Let current node be the child node being processed.

2. Append the appropriate string from the following list to s:

If current node is an Element
Append a U+003C LESS-THAN SIGN (<) character, followed by the element's tag
name. (For nodes created by the HTML parser or Document.createElement(), the
tag name will be lowercase.)

For each attribute that the element has, append a U+0020 SPACE character, the
attribute's name (which, for attributes set by the HTML parser or by
Element.setAttributeNode() or Element.setAttribute(), will be lowercase), a
U+003D EQUALS SIGN (=) character, a U+0022 QUOTATION MARK (")
character, the attribute's value, escaped as described below in attribute mode, and
a second U+0022 QUOTATION MARK (") character.

While the exact order of attributes is UA-defined, and may depend on factors such
as the order that the attributes were given in the original markup, the sort order
must be stable, such that consecutive invocations of this algorithm serialize an
element's attributes in the same order.

Append a U+003E GREATER-THAN SIGN (>) character.

If current node is an area, base, basefont, bgsound, br, col, embed, frame, hr, img,
input, keygen, link, meta, param, spacer, or wbr element, then continue on to the
next child node at this point.

If current node is a pre, textarea, or listing element, append a U+000A LINE
FEED (LF) character.

Append the value of running the HTML fragment serialization algorithm on the
current node element (thus recursing into this algorithm for that element), followed
by a U+003C LESS-THAN SIGN (<) character, a U+002F SOLIDUS (/) character,
the element's tag name again, and finally a U+003E GREATER-THAN SIGN (>)
character.

If current node is a Text or CDATASection node
If the parent of current node is a style, script, xmp, iframe, noembed, noframes,
noscript, or plaintext element, then append the value of current node's data
DOM attribute literally.

Otherwise, append the value of current node's data DOM attribute, escaped as
described below.

If current node is a Comment
Append the literal string <!-- (U+003C LESS-THAN SIGN, U+0021
EXCLAMATION MARK, U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS),
followed by the value of current node's data DOM attribute, followed by the literal
string --> (U+002D HYPHEN-MINUS, U+002D HYPHEN-MINUS, U+003E
GREATER-THAN SIGN).

If current node is a ProcessingInstruction

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 797 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 797 from 931

Append the literal string <? (U+003C LESS-THAN SIGN, U+003F QUESTION
MARK), followed by the value of current node's target DOM attribute, followed by a
single U+0020 SPACE character, followed by the value of current node's data DOM
attribute, followed by a single U+003E GREATER-THAN SIGN character ('>').

If current node is a DocumentType
Append the literal string <!DOCTYPE (U+003C LESS-THAN SIGN, U+0021
EXCLAMATION MARK, U+0044 LATIN CAPITAL LETTER D, U+004F LATIN
CAPITAL LETTER O, U+0043 LATIN CAPITAL LETTER C, U+0054 LATIN
CAPITAL LETTER T, U+0059 LATIN CAPITAL LETTER Y, U+0050 LATIN
CAPITAL LETTER P, U+0045 LATIN CAPITAL LETTER E), followed by a space
(U+0020 SPACE), followed by the value of current node's name DOM attribute,
followed by the literal string > (U+003E GREATER-THAN SIGN).

Other node types (e.g. Attr) cannot occur as children of elements. If,
despite this, they somehow do occur, this algorithm must raise an
INVALID_STATE_ERR exception.

3. The result of the algorithm is the string s.

Escaping a string (for the purposes of the algorithm above) consists of replacing any
occurrences of the "&" character by the string "&", any occurrences of the U+00A0
NO-BREAK SPACE character by the string " ", and, if the algorithm was invoked in
the attribute mode, any occurrences of the """ character by the string """, or if it was
not, any occurrences of the "<" character by the string "<", any occurrences of the ">"
character by the string ">".

Entity reference nodes are assumed to be expanded by the user agent, and are
therefore not covered in the algorithm above.

It is possible that the output of this algorithm, if parsed with an HTML parser, will
not return the original tree structure. For instance, if a textarea element to which a
Comment node has been appended is serialized and the output is then reparsed, the
comment will end up being displayed in the text field. Similarly, if, as a result of
DOM manipulation, an element contains a comment that contains the literal string
"-->", then when the result of serializing the element is parsed, the comment will be
truncated at that point and the rest of the comment will be interpreted as markup.
More examples would be making a script element contain a text node with the text
string "</script>", or having a p element that contains a ul element (as the ul
element's start tag would imply the end tag for the p).

9.5 Parsing HTML fragments

The following steps form the HTML fragment parsing algorithm. The algorithm optionally
takes as input an Element node, referred to as the context element, which gives the
context for the parser, as well as input, a string to parse, and returns a list of zero or more
nodes.

Parts marked fragment case in algorithms in the parser section are parts that only
occur if the parser was created for the purposes of this algorithm (and with a
context element). The algorithms have been annotated with such markings for
informational purposes only; such markings have no normative weight. If it is

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 798 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 798 from 931

possible for a condition described as a fragment case to occur even when the
parser wasn't created for the purposes of handling this algorithm, then that is an
error in the specification.

1. Create a new Document node, and mark it as being an HTML document.

2. If there is a context element, and the Document of the context element is in quirks
mode, then let the Document be in quirks mode. Otherwise, if there is a context
element, and the Document of the context element is in limited quirks mode, then let
the Document be in limited quirks mode. Otherwise, leave the Document in no quirks
mode.

3. Create a new HTML parser, and associate it with the just created Document node.

4. If there is a context element, run these substeps:

1. Set the HTML parser's tokenization stage's content model flag according to
the context element, as follows:

If it is a title or textarea element
Set the content model flag to the RCDATA state.

If it is a style, script, xmp, iframe, noembed, or noframes element
Set the content model flag to the RAWTEXT state.

If it is a noscript element
If the scripting flag is enabled, set the content model flag to the RAWTEXT state.
Otherwise, set the content model flag to the PCDATA state.

If it is a plaintext element
Set the content model flag to PLAINTEXT.

Otherwise
Leave the content model flag in the PCDATA state.

2. Let root be a new html element with no attributes.

3. Append the element root to the Document node created above.

4. Set up the parser's stack of open elements so that it contains just the single
element root.

5. Reset the parser's insertion mode appropriately.

The parser will reference the context element as part of that algorithm.

6. Set the parser's form element pointer to the nearest node to the context
element that is a form element (going straight up the ancestor chain, and
including the element itself, if it is a form element), or, if there is no such form
element, to null.

5. Place into the input stream for the HTML parser just created the input. The
encoding confidence is irrelevant.

6. Start the parser and let it run until it has consumed all the characters just inserted
into the input stream.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 799 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 799 from 931

7. If there is a context element, return the child nodes of root, in tree order.

Otherwise, return the children of the Document object, in tree order.

9.6 Named character references

This table lists the character reference names that are supported by HTML, and the code
points to which they refer. It is referenced by the previous sections.

Name Character
AElig; U+000C6
AElig U+000C6
AMP; U+00026
AMP U+00026
Aacute; U+000C1
Aacute U+000C1
Abreve; U+00102
Acirc; U+000C2
Acirc U+000C2
Acy; U+00410
Afr; U+1D504
Agrave; U+000C0
Agrave U+000C0
Alpha; U+00391
Amacr; U+00100
And; U+02A53
Aogon; U+00104
Aopf; U+1D538
ApplyFunction; U+02061
Aring; U+000C5
Aring U+000C5
Ascr; U+1D49C
Assign; U+02254
Atilde; U+000C3
Atilde U+000C3
Auml; U+000C4
Auml U+000C4
Backslash; U+02216
Barv; U+02AE7
Barwed; U+02306
Bcy; U+00411

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 800 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 800 from 931

Name Character
Because; U+02235
Bernoullis; U+0212C
Beta; U+00392
Bfr; U+1D505
Bopf; U+1D539
Breve; U+002D8
Bscr; U+0212C
Bumpeq; U+0224E
CHcy; U+00427
COPY; U+000A9
COPY U+000A9
Cacute; U+00106
Cap; U+022D2
CapitalDifferentialD; U+02145
Cayleys; U+0212D
Ccaron; U+0010C
Ccedil; U+000C7
Ccedil U+000C7
Ccirc; U+00108
Cconint; U+02230
Cdot; U+0010A
Cedilla; U+000B8
CenterDot; U+000B7
Cfr; U+0212D
Chi; U+003A7
CircleDot; U+02299
CircleMinus; U+02296
CirclePlus; U+02295
CircleTimes; U+02297
ClockwiseContourIntegral; U+02232
CloseCurlyDoubleQuote; U+0201D
CloseCurlyQuote; U+02019
Colon; U+02237
Colone; U+02A74
Congruent; U+02261
Conint; U+0222F
ContourIntegral; U+0222E

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 801 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 801 from 931

Name Character
Copf; U+02102
Coproduct; U+02210
CounterClockwiseContourIntegral; U+02233
Cross; U+02A2F
Cscr; U+1D49E
Cup; U+022D3
CupCap; U+0224D
DD; U+02145
DDotrahd; U+02911
DJcy; U+00402
DScy; U+00405
DZcy; U+0040F
Dagger; U+02021
Darr; U+021A1
Dashv; U+02AE4
Dcaron; U+0010E
Dcy; U+00414
Del; U+02207
Delta; U+00394
Dfr; U+1D507
DiacriticalAcute; U+000B4
DiacriticalDot; U+002D9
DiacriticalDoubleAcute; U+002DD
DiacriticalGrave; U+00060
DiacriticalTilde; U+002DC
Diamond; U+022C4
DifferentialD; U+02146
Dopf; U+1D53B
Dot; U+000A8
DotDot; U+020DC
DotEqual; U+02250
DoubleContourIntegral; U+0222F
DoubleDot; U+000A8
DoubleDownArrow; U+021D3
DoubleLeftArrow; U+021D0
DoubleLeftRightArrow; U+021D4
DoubleLeftTee; U+02AE4

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 802 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 802 from 931

Name Character
DoubleLongLeftArrow; U+027F8
DoubleLongLeftRightArrow; U+027FA
DoubleLongRightArrow; U+027F9
DoubleRightArrow; U+021D2
DoubleRightTee; U+022A8
DoubleUpArrow; U+021D1
DoubleUpDownArrow; U+021D5
DoubleVerticalBar; U+02225
DownArrow; U+02193
DownArrowBar; U+02913
DownArrowUpArrow; U+021F5
DownBreve; U+00311
DownLeftRightVector; U+02950
DownLeftTeeVector; U+0295E
DownLeftVector; U+021BD
DownLeftVectorBar; U+02956
DownRightTeeVector; U+0295F
DownRightVector; U+021C1
DownRightVectorBar; U+02957
DownTee; U+022A4
DownTeeArrow; U+021A7
Downarrow; U+021D3
Dscr; U+1D49F
Dstrok; U+00110
ENG; U+0014A
ETH; U+000D0
ETH U+000D0
Eacute; U+000C9
Eacute U+000C9
Ecaron; U+0011A
Ecirc; U+000CA
Ecirc U+000CA
Ecy; U+0042D
Edot; U+00116
Efr; U+1D508
Egrave; U+000C8
Egrave U+000C8

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 803 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 803 from 931

Name Character
Element; U+02208
Emacr; U+00112
EmptySmallSquare; U+025FB
EmptyVerySmallSquare; U+025AB
Eogon; U+00118
Eopf; U+1D53C
Epsilon; U+00395
Equal; U+02A75
EqualTilde; U+02242
Equilibrium; U+021CC
Escr; U+02130
Esim; U+02A73
Eta; U+00397
Euml; U+000CB
Euml U+000CB
Exists; U+02203
ExponentialE; U+02147
Fcy; U+00424
Ffr; U+1D509
FilledSmallSquare; U+025FC
FilledVerySmallSquare; U+025AA
Fopf; U+1D53D
ForAll; U+02200
Fouriertrf; U+02131
Fscr; U+02131
GJcy; U+00403
GT; U+0003E
GT U+0003E
Gamma; U+00393
Gammad; U+003DC
Gbreve; U+0011E
Gcedil; U+00122
Gcirc; U+0011C
Gcy; U+00413
Gdot; U+00120
Gfr; U+1D50A
Gg; U+022D9

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 804 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 804 from 931

Name Character
Gopf; U+1D53E
GreaterEqual; U+02265
GreaterEqualLess; U+022DB
GreaterFullEqual; U+02267
GreaterGreater; U+02AA2
GreaterLess; U+02277
GreaterSlantEqual; U+02A7E
GreaterTilde; U+02273
Gscr; U+1D4A2
Gt; U+0226B
HARDcy; U+0042A
Hacek; U+002C7
Hat; U+0005E
Hcirc; U+00124
Hfr; U+0210C
HilbertSpace; U+0210B
Hopf; U+0210D
HorizontalLine; U+02500
Hscr; U+0210B
Hstrok; U+00126
HumpDownHump; U+0224E
HumpEqual; U+0224F
IEcy; U+00415
IJlig; U+00132
IOcy; U+00401
Iacute; U+000CD
Iacute U+000CD
Icirc; U+000CE
Icirc U+000CE
Icy; U+00418
Idot; U+00130
Ifr; U+02111
Igrave; U+000CC
Igrave U+000CC
Im; U+02111
Imacr; U+0012A
ImaginaryI; U+02148

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 805 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 805 from 931

Name Character
Implies; U+021D2
Int; U+0222C
Integral; U+0222B
Intersection; U+022C2
InvisibleComma; U+02063
InvisibleTimes; U+02062
Iogon; U+0012E
Iopf; U+1D540
Iota; U+00399
Iscr; U+02110
Itilde; U+00128
Iukcy; U+00406
Iuml; U+000CF
Iuml U+000CF
Jcirc; U+00134
Jcy; U+00419
Jfr; U+1D50D
Jopf; U+1D541
Jscr; U+1D4A5
Jsercy; U+00408
Jukcy; U+00404
KHcy; U+00425
KJcy; U+0040C
Kappa; U+0039A
Kcedil; U+00136
Kcy; U+0041A
Kfr; U+1D50E
Kopf; U+1D542
Kscr; U+1D4A6
LJcy; U+00409
LT; U+0003C
LT U+0003C
Lacute; U+00139
Lambda; U+0039B
Lang; U+027EA
Laplacetrf; U+02112
Larr; U+0219E

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 806 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 806 from 931

Name Character
Lcaron; U+0013D
Lcedil; U+0013B
Lcy; U+0041B
LeftAngleBracket; U+027E8
LeftArrow; U+02190
LeftArrowBar; U+021E4
LeftArrowRightArrow; U+021C6
LeftCeiling; U+02308
LeftDoubleBracket; U+027E6
LeftDownTeeVector; U+02961
LeftDownVector; U+021C3
LeftDownVectorBar; U+02959
LeftFloor; U+0230A
LeftRightArrow; U+02194
LeftRightVector; U+0294E
LeftTee; U+022A3
LeftTeeArrow; U+021A4
LeftTeeVector; U+0295A
LeftTriangle; U+022B2
LeftTriangleBar; U+029CF
LeftTriangleEqual; U+022B4
LeftUpDownVector; U+02951
LeftUpTeeVector; U+02960
LeftUpVector; U+021BF
LeftUpVectorBar; U+02958
LeftVector; U+021BC
LeftVectorBar; U+02952
Leftarrow; U+021D0
Leftrightarrow; U+021D4
LessEqualGreater; U+022DA
LessFullEqual; U+02266
LessGreater; U+02276
LessLess; U+02AA1
LessSlantEqual; U+02A7D
LessTilde; U+02272
Lfr; U+1D50F
Ll; U+022D8

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 807 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 807 from 931

Name Character
Lleftarrow; U+021DA
Lmidot; U+0013F
LongLeftArrow; U+027F5
LongLeftRightArrow; U+027F7
LongRightArrow; U+027F6
Longleftarrow; U+027F8
Longleftrightarrow; U+027FA
Longrightarrow; U+027F9
Lopf; U+1D543
LowerLeftArrow; U+02199
LowerRightArrow; U+02198
Lscr; U+02112
Lsh; U+021B0
Lstrok; U+00141
Lt; U+0226A
Map; U+02905
Mcy; U+0041C
MediumSpace; U+0205F
Mellintrf; U+02133
Mfr; U+1D510
MinusPlus; U+02213
Mopf; U+1D544
Mscr; U+02133
Mu; U+0039C
NJcy; U+0040A
Nacute; U+00143
Ncaron; U+00147
Ncedil; U+00145
Ncy; U+0041D
NegativeMediumSpace; U+0200B
NegativeThickSpace; U+0200B
NegativeThinSpace; U+0200B
NegativeVeryThinSpace; U+0200B
NestedGreaterGreater; U+0226B
NestedLessLess; U+0226A
NewLine; U+0000A
Nfr; U+1D511

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 808 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 808 from 931

Name Character
NoBreak; U+02060
NonBreakingSpace; U+000A0
Nopf; U+02115
Not; U+02AEC
NotCongruent; U+02262
NotCupCap; U+0226D
NotDoubleVerticalBar; U+02226
NotElement; U+02209
NotEqual; U+02260
NotExists; U+02204
NotGreater; U+0226F
NotGreaterEqual; U+02271
NotGreaterLess; U+02279
NotGreaterTilde; U+02275
NotLeftTriangle; U+022EA
NotLeftTriangleEqual; U+022EC
NotLess; U+0226E
NotLessEqual; U+02270
NotLessGreater; U+02278
NotLessTilde; U+02274
NotPrecedes; U+02280
NotPrecedesSlantEqual; U+022E0
NotReverseElement; U+0220C
NotRightTriangle; U+022EB
NotRightTriangleEqual; U+022ED
NotSquareSubsetEqual; U+022E2
NotSquareSupersetEqual; U+022E3
NotSubsetEqual; U+02288
NotSucceeds; U+02281
NotSucceedsSlantEqual; U+022E1
NotSupersetEqual; U+02289
NotTilde; U+02241
NotTildeEqual; U+02244
NotTildeFullEqual; U+02247
NotTildeTilde; U+02249
NotVerticalBar; U+02224
Nscr; U+1D4A9

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 809 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 809 from 931

Name Character
Ntilde; U+000D1
Ntilde U+000D1
Nu; U+0039D
OElig; U+00152
Oacute; U+000D3
Oacute U+000D3
Ocirc; U+000D4
Ocirc U+000D4
Ocy; U+0041E
Odblac; U+00150
Ofr; U+1D512
Ograve; U+000D2
Ograve U+000D2
Omacr; U+0014C
Omega; U+003A9
Omicron; U+0039F
Oopf; U+1D546
OpenCurlyDoubleQuote; U+0201C
OpenCurlyQuote; U+02018
Or; U+02A54
Oscr; U+1D4AA
Oslash; U+000D8
Oslash U+000D8
Otilde; U+000D5
Otilde U+000D5
Otimes; U+02A37
Ouml; U+000D6
Ouml U+000D6
OverBar; U+000AF
OverBrace; U+023DE
OverBracket; U+023B4
OverParenthesis; U+023DC
PartialD; U+02202
Pcy; U+0041F
Pfr; U+1D513
Phi; U+003A6
Pi; U+003A0

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 810 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 810 from 931

Name Character
PlusMinus; U+000B1
Poincareplane; U+0210C
Popf; U+02119
Pr; U+02ABB
Precedes; U+0227A
PrecedesEqual; U+02AAF
PrecedesSlantEqual; U+0227C
PrecedesTilde; U+0227E
Prime; U+02033
Product; U+0220F
Proportion; U+02237
Proportional; U+0221D
Pscr; U+1D4AB
Psi; U+003A8
QUOT; U+00022
QUOT U+00022
Qfr; U+1D514
Qopf; U+0211A
Qscr; U+1D4AC
RBarr; U+02910
REG; U+000AE
REG U+000AE
Racute; U+00154
Rang; U+027EB
Rarr; U+021A0
Rarrtl; U+02916
Rcaron; U+00158
Rcedil; U+00156
Rcy; U+00420
Re; U+0211C
ReverseElement; U+0220B
ReverseEquilibrium; U+021CB
ReverseUpEquilibrium; U+0296F
Rfr; U+0211C
Rho; U+003A1
RightAngleBracket; U+027E9
RightArrow; U+02192

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 811 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 811 from 931

Name Character
RightArrowBar; U+021E5
RightArrowLeftArrow; U+021C4
RightCeiling; U+02309
RightDoubleBracket; U+027E7
RightDownTeeVector; U+0295D
RightDownVector; U+021C2
RightDownVectorBar; U+02955
RightFloor; U+0230B
RightTee; U+022A2
RightTeeArrow; U+021A6
RightTeeVector; U+0295B
RightTriangle; U+022B3
RightTriangleBar; U+029D0
RightTriangleEqual; U+022B5
RightUpDownVector; U+0294F
RightUpTeeVector; U+0295C
RightUpVector; U+021BE
RightUpVectorBar; U+02954
RightVector; U+021C0
RightVectorBar; U+02953
Rightarrow; U+021D2
Ropf; U+0211D
RoundImplies; U+02970
Rrightarrow; U+021DB
Rscr; U+0211B
Rsh; U+021B1
RuleDelayed; U+029F4
SHCHcy; U+00429
SHcy; U+00428
SOFTcy; U+0042C
Sacute; U+0015A
Sc; U+02ABC
Scaron; U+00160
Scedil; U+0015E
Scirc; U+0015C
Scy; U+00421
Sfr; U+1D516

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 812 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 812 from 931

Name Character
ShortDownArrow; U+02193
ShortLeftArrow; U+02190
ShortRightArrow; U+02192
ShortUpArrow; U+02191
Sigma; U+003A3
SmallCircle; U+02218
Sopf; U+1D54A
Sqrt; U+0221A
Square; U+025A1
SquareIntersection; U+02293
SquareSubset; U+0228F
SquareSubsetEqual; U+02291
SquareSuperset; U+02290
SquareSupersetEqual; U+02292
SquareUnion; U+02294
Sscr; U+1D4AE
Star; U+022C6
Sub; U+022D0
Subset; U+022D0
SubsetEqual; U+02286
Succeeds; U+0227B
SucceedsEqual; U+02AB0
SucceedsSlantEqual; U+0227D
SucceedsTilde; U+0227F
SuchThat; U+0220B
Sum; U+02211
Sup; U+022D1
Superset; U+02283
SupersetEqual; U+02287
Supset; U+022D1
THORN; U+000DE
THORN U+000DE
TRADE; U+02122
TSHcy; U+0040B
TScy; U+00426
Tab; U+00009
Tau; U+003A4

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 813 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 813 from 931

Name Character
Tcaron; U+00164
Tcedil; U+00162
Tcy; U+00422
Tfr; U+1D517
Therefore; U+02234
Theta; U+00398
ThinSpace; U+02009
Tilde; U+0223C
TildeEqual; U+02243
TildeFullEqual; U+02245
TildeTilde; U+02248
Topf; U+1D54B
TripleDot; U+020DB
Tscr; U+1D4AF
Tstrok; U+00166
Uacute; U+000DA
Uacute U+000DA
Uarr; U+0219F
Uarrocir; U+02949
Ubrcy; U+0040E
Ubreve; U+0016C
Ucirc; U+000DB
Ucirc U+000DB
Ucy; U+00423
Udblac; U+00170
Ufr; U+1D518
Ugrave; U+000D9
Ugrave U+000D9
Umacr; U+0016A
UnderBar; U+00332
UnderBrace; U+023DF
UnderBracket; U+023B5
UnderParenthesis; U+023DD
Union; U+022C3
UnionPlus; U+0228E
Uogon; U+00172
Uopf; U+1D54C

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 814 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 814 from 931

Name Character
UpArrow; U+02191
UpArrowBar; U+02912
UpArrowDownArrow; U+021C5
UpDownArrow; U+02195
UpEquilibrium; U+0296E
UpTee; U+022A5
UpTeeArrow; U+021A5
Uparrow; U+021D1
Updownarrow; U+021D5
UpperLeftArrow; U+02196
UpperRightArrow; U+02197
Upsi; U+003D2
Upsilon; U+003A5
Uring; U+0016E
Uscr; U+1D4B0
Utilde; U+00168
Uuml; U+000DC
Uuml U+000DC
VDash; U+022AB
Vbar; U+02AEB
Vcy; U+00412
Vdash; U+022A9
Vdashl; U+02AE6
Vee; U+022C1
Verbar; U+02016
Vert; U+02016
VerticalBar; U+02223
VerticalLine; U+0007C
VerticalSeparator; U+02758
VerticalTilde; U+02240
VeryThinSpace; U+0200A
Vfr; U+1D519
Vopf; U+1D54D
Vscr; U+1D4B1
Vvdash; U+022AA
Wcirc; U+00174
Wedge; U+022C0

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 815 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 815 from 931

Name Character
Wfr; U+1D51A
Wopf; U+1D54E
Wscr; U+1D4B2
Xfr; U+1D51B
Xi; U+0039E
Xopf; U+1D54F
Xscr; U+1D4B3
YAcy; U+0042F
YIcy; U+00407
YUcy; U+0042E
Yacute; U+000DD
Yacute U+000DD
Ycirc; U+00176
Ycy; U+0042B
Yfr; U+1D51C
Yopf; U+1D550
Yscr; U+1D4B4
Yuml; U+00178
ZHcy; U+00416
Zacute; U+00179
Zcaron; U+0017D
Zcy; U+00417
Zdot; U+0017B
ZeroWidthSpace; U+0200B
Zeta; U+00396
Zfr; U+02128
Zopf; U+02124
Zscr; U+1D4B5
aacute; U+000E1
aacute U+000E1
abreve; U+00103
ac; U+0223E
acd; U+0223F
acirc; U+000E2
acirc U+000E2
acute; U+000B4
acute U+000B4

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 816 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 816 from 931

Name Character
acy; U+00430
aelig; U+000E6
aelig U+000E6
af; U+02061
afr; U+1D51E
agrave; U+000E0
agrave U+000E0
alefsym; U+02135
aleph; U+02135
alpha; U+003B1
amacr; U+00101
amalg; U+02A3F
amp; U+00026
amp U+00026
and; U+02227
andand; U+02A55
andd; U+02A5C
andslope; U+02A58
andv; U+02A5A
ang; U+02220
ange; U+029A4
angle; U+02220
angmsd; U+02221
angmsdaa; U+029A8
angmsdab; U+029A9
angmsdac; U+029AA
angmsdad; U+029AB
angmsdae; U+029AC
angmsdaf; U+029AD
angmsdag; U+029AE
angmsdah; U+029AF
angrt; U+0221F
angrtvb; U+022BE
angrtvbd; U+0299D
angsph; U+02222
angst; U+0212B
angzarr; U+0237C

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 817 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 817 from 931

Name Character
aogon; U+00105
aopf; U+1D552
ap; U+02248
apE; U+02A70
apacir; U+02A6F
ape; U+0224A
apid; U+0224B
apos; U+00027
approx; U+02248
approxeq; U+0224A
aring; U+000E5
aring U+000E5
ascr; U+1D4B6
ast; U+0002A
asymp; U+02248
asympeq; U+0224D
atilde; U+000E3
atilde U+000E3
auml; U+000E4
auml U+000E4
awconint; U+02233
awint; U+02A11
bNot; U+02AED
backcong; U+0224C
backepsilon; U+003F6
backprime; U+02035
backsim; U+0223D
backsimeq; U+022CD
barvee; U+022BD
barwed; U+02305
barwedge; U+02305
bbrk; U+023B5
bbrktbrk; U+023B6
bcong; U+0224C
bcy; U+00431
bdquo; U+0201E
becaus; U+02235

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 818 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 818 from 931

Name Character
because; U+02235
bemptyv; U+029B0
bepsi; U+003F6
bernou; U+0212C
beta; U+003B2
beth; U+02136
between; U+0226C
bfr; U+1D51F
bigcap; U+022C2
bigcirc; U+025EF
bigcup; U+022C3
bigodot; U+02A00
bigoplus; U+02A01
bigotimes; U+02A02
bigsqcup; U+02A06
bigstar; U+02605
bigtriangledown; U+025BD
bigtriangleup; U+025B3
biguplus; U+02A04
bigvee; U+022C1
bigwedge; U+022C0
bkarow; U+0290D
blacklozenge; U+029EB
blacksquare; U+025AA
blacktriangle; U+025B4
blacktriangledown; U+025BE
blacktriangleleft; U+025C2
blacktriangleright; U+025B8
blank; U+02423
blk12; U+02592
blk14; U+02591
blk34; U+02593
block; U+02588
bnot; U+02310
bopf; U+1D553
bot; U+022A5
bottom; U+022A5

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 819 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 819 from 931

Name Character
bowtie; U+022C8
boxDL; U+02557
boxDR; U+02554
boxDl; U+02556
boxDr; U+02553
boxH; U+02550
boxHD; U+02566
boxHU; U+02569
boxHd; U+02564
boxHu; U+02567
boxUL; U+0255D
boxUR; U+0255A
boxUl; U+0255C
boxUr; U+02559
boxV; U+02551
boxVH; U+0256C
boxVL; U+02563
boxVR; U+02560
boxVh; U+0256B
boxVl; U+02562
boxVr; U+0255F
boxbox; U+029C9
boxdL; U+02555
boxdR; U+02552
boxdl; U+02510
boxdr; U+0250C
boxh; U+02500
boxhD; U+02565
boxhU; U+02568
boxhd; U+0252C
boxhu; U+02534
boxminus; U+0229F
boxplus; U+0229E
boxtimes; U+022A0
boxuL; U+0255B
boxuR; U+02558
boxul; U+02518

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 820 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 820 from 931

Name Character
boxur; U+02514
boxv; U+02502
boxvH; U+0256A
boxvL; U+02561
boxvR; U+0255E
boxvh; U+0253C
boxvl; U+02524
boxvr; U+0251C
bprime; U+02035
breve; U+002D8
brvbar; U+000A6
brvbar U+000A6
bscr; U+1D4B7
bsemi; U+0204F
bsim; U+0223D
bsime; U+022CD
bsol; U+0005C
bsolb; U+029C5
bull; U+02022
bullet; U+02022
bump; U+0224E
bumpE; U+02AAE
bumpe; U+0224F
bumpeq; U+0224F
cacute; U+00107
cap; U+02229
capand; U+02A44
capbrcup; U+02A49
capcap; U+02A4B
capcup; U+02A47
capdot; U+02A40
caret; U+02041
caron; U+002C7
ccaps; U+02A4D
ccaron; U+0010D
ccedil; U+000E7
ccedil U+000E7

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 821 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 821 from 931

Name Character
ccirc; U+00109
ccups; U+02A4C
ccupssm; U+02A50
cdot; U+0010B
cedil; U+000B8
cedil U+000B8
cemptyv; U+029B2
cent; U+000A2
cent U+000A2
centerdot; U+000B7
cfr; U+1D520
chcy; U+00447
check; U+02713
checkmark; U+02713
chi; U+003C7
cir; U+025CB
cirE; U+029C3
circ; U+002C6
circeq; U+02257
circlearrowleft; U+021BA
circlearrowright; U+021BB
circledR; U+000AE
circledS; U+024C8
circledast; U+0229B
circledcirc; U+0229A
circleddash; U+0229D
cire; U+02257
cirfnint; U+02A10
cirmid; U+02AEF
cirscir; U+029C2
clubs; U+02663
clubsuit; U+02663
colon; U+0003A
colone; U+02254
coloneq; U+02254
comma; U+0002C
commat; U+00040

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 822 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 822 from 931

Name Character
comp; U+02201
compfn; U+02218
complement; U+02201
complexes; U+02102
cong; U+02245
congdot; U+02A6D
conint; U+0222E
copf; U+1D554
coprod; U+02210
copy; U+000A9
copy U+000A9
copysr; U+02117
crarr; U+021B5
cross; U+02717
cscr; U+1D4B8
csub; U+02ACF
csube; U+02AD1
csup; U+02AD0
csupe; U+02AD2
ctdot; U+022EF
cudarrl; U+02938
cudarrr; U+02935
cuepr; U+022DE
cuesc; U+022DF
cularr; U+021B6
cularrp; U+0293D
cup; U+0222A
cupbrcap; U+02A48
cupcap; U+02A46
cupcup; U+02A4A
cupdot; U+0228D
cupor; U+02A45
curarr; U+021B7
curarrm; U+0293C
curlyeqprec; U+022DE
curlyeqsucc; U+022DF
curlyvee; U+022CE

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 823 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 823 from 931

Name Character
curlywedge; U+022CF
curren; U+000A4
curren U+000A4
curvearrowleft; U+021B6
curvearrowright; U+021B7
cuvee; U+022CE
cuwed; U+022CF
cwconint; U+02232
cwint; U+02231
cylcty; U+0232D
dArr; U+021D3
dHar; U+02965
dagger; U+02020
daleth; U+02138
darr; U+02193
dash; U+02010
dashv; U+022A3
dbkarow; U+0290F
dblac; U+002DD
dcaron; U+0010F
dcy; U+00434
dd; U+02146
ddagger; U+02021
ddarr; U+021CA
ddotseq; U+02A77
deg; U+000B0
deg U+000B0
delta; U+003B4
demptyv; U+029B1
dfisht; U+0297F
dfr; U+1D521
dharl; U+021C3
dharr; U+021C2
diam; U+022C4
diamond; U+022C4
diamondsuit; U+02666
diams; U+02666

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 824 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 824 from 931

Name Character
die; U+000A8
digamma; U+003DD
disin; U+022F2
div; U+000F7
divide; U+000F7
divide U+000F7
divideontimes; U+022C7
divonx; U+022C7
djcy; U+00452
dlcorn; U+0231E
dlcrop; U+0230D
dollar; U+00024
dopf; U+1D555
dot; U+002D9
doteq; U+02250
doteqdot; U+02251
dotminus; U+02238
dotplus; U+02214
dotsquare; U+022A1
doublebarwedge; U+02306
downarrow; U+02193
downdownarrows; U+021CA
downharpoonleft; U+021C3
downharpoonright; U+021C2
drbkarow; U+02910
drcorn; U+0231F
drcrop; U+0230C
dscr; U+1D4B9
dscy; U+00455
dsol; U+029F6
dstrok; U+00111
dtdot; U+022F1
dtri; U+025BF
dtrif; U+025BE
duarr; U+021F5
duhar; U+0296F
dwangle; U+029A6

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 825 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 825 from 931

Name Character
dzcy; U+0045F
dzigrarr; U+027FF
eDDot; U+02A77
eDot; U+02251
eacute; U+000E9
eacute U+000E9
easter; U+02A6E
ecaron; U+0011B
ecir; U+02256
ecirc; U+000EA
ecirc U+000EA
ecolon; U+02255
ecy; U+0044D
edot; U+00117
ee; U+02147
efDot; U+02252
efr; U+1D522
eg; U+02A9A
egrave; U+000E8
egrave U+000E8
egs; U+02A96
egsdot; U+02A98
el; U+02A99
elinters; U+023E7
ell; U+02113
els; U+02A95
elsdot; U+02A97
emacr; U+00113
empty; U+02205
emptyset; U+02205
emptyv; U+02205
emsp13; U+02004
emsp14; U+02005
emsp; U+02003
eng; U+0014B
ensp; U+02002
eogon; U+00119

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 826 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 826 from 931

Name Character
eopf; U+1D556
epar; U+022D5
eparsl; U+029E3
eplus; U+02A71
epsi; U+003F5
epsilon; U+003B5
epsiv; U+003B5
eqcirc; U+02256
eqcolon; U+02255
eqsim; U+02242
eqslantgtr; U+02A96
eqslantless; U+02A95
equals; U+0003D
equest; U+0225F
equiv; U+02261
equivDD; U+02A78
eqvparsl; U+029E5
erDot; U+02253
erarr; U+02971
escr; U+0212F
esdot; U+02250
esim; U+02242
eta; U+003B7
eth; U+000F0
eth U+000F0
euml; U+000EB
euml U+000EB
euro; U+020AC
excl; U+00021
exist; U+02203
expectation; U+02130
exponentiale; U+02147
fallingdotseq; U+02252
fcy; U+00444
female; U+02640
ffilig; U+0FB03
fflig; U+0FB00

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 827 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 827 from 931

Name Character
ffllig; U+0FB04
ffr; U+1D523
filig; U+0FB01
flat; U+0266D
fllig; U+0FB02
fltns; U+025B1
fnof; U+00192
fopf; U+1D557
forall; U+02200
fork; U+022D4
forkv; U+02AD9
fpartint; U+02A0D
frac12; U+000BD
frac12 U+000BD
frac13; U+02153
frac14; U+000BC
frac14 U+000BC
frac15; U+02155
frac16; U+02159
frac18; U+0215B
frac23; U+02154
frac25; U+02156
frac34; U+000BE
frac34 U+000BE
frac35; U+02157
frac38; U+0215C
frac45; U+02158
frac56; U+0215A
frac58; U+0215D
frac78; U+0215E
frasl; U+02044
frown; U+02322
fscr; U+1D4BB
gE; U+02267
gEl; U+02A8C
gacute; U+001F5
gamma; U+003B3

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 828 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 828 from 931

Name Character
gammad; U+003DD
gap; U+02A86
gbreve; U+0011F
gcirc; U+0011D
gcy; U+00433
gdot; U+00121
ge; U+02265
gel; U+022DB
geq; U+02265
geqq; U+02267
geqslant; U+02A7E
ges; U+02A7E
gescc; U+02AA9
gesdot; U+02A80
gesdoto; U+02A82
gesdotol; U+02A84
gesles; U+02A94
gfr; U+1D524
gg; U+0226B
ggg; U+022D9
gimel; U+02137
gjcy; U+00453
gl; U+02277
glE; U+02A92
gla; U+02AA5
glj; U+02AA4
gnE; U+02269
gnap; U+02A8A
gnapprox; U+02A8A
gne; U+02A88
gneq; U+02A88
gneqq; U+02269
gnsim; U+022E7
gopf; U+1D558
grave; U+00060
gscr; U+0210A
gsim; U+02273

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 829 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 829 from 931

Name Character
gsime; U+02A8E
gsiml; U+02A90
gt; U+0003E
gt U+0003E
gtcc; U+02AA7
gtcir; U+02A7A
gtdot; U+022D7
gtlPar; U+02995
gtquest; U+02A7C
gtrapprox; U+02A86
gtrarr; U+02978
gtrdot; U+022D7
gtreqless; U+022DB
gtreqqless; U+02A8C
gtrless; U+02277
gtrsim; U+02273
hArr; U+021D4
hairsp; U+0200A
half; U+000BD
hamilt; U+0210B
hardcy; U+0044A
harr; U+02194
harrcir; U+02948
harrw; U+021AD
hbar; U+0210F
hcirc; U+00125
hearts; U+02665
heartsuit; U+02665
hellip; U+02026
hercon; U+022B9
hfr; U+1D525
hksearow; U+02925
hkswarow; U+02926
hoarr; U+021FF
homtht; U+0223B
hookleftarrow; U+021A9
hookrightarrow; U+021AA

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 830 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 830 from 931

Name Character
hopf; U+1D559
horbar; U+02015
hscr; U+1D4BD
hslash; U+0210F
hstrok; U+00127
hybull; U+02043
hyphen; U+02010
iacute; U+000ED
iacute U+000ED
ic; U+02063
icirc; U+000EE
icirc U+000EE
icy; U+00438
iecy; U+00435
iexcl; U+000A1
iexcl U+000A1
iff; U+021D4
ifr; U+1D526
igrave; U+000EC
igrave U+000EC
ii; U+02148
iiiint; U+02A0C
iiint; U+0222D
iinfin; U+029DC
iiota; U+02129
ijlig; U+00133
imacr; U+0012B
image; U+02111
imagline; U+02110
imagpart; U+02111
imath; U+00131
imof; U+022B7
imped; U+001B5
in; U+02208
incare; U+02105
infin; U+0221E
infintie; U+029DD

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 831 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 831 from 931

Name Character
inodot; U+00131
int; U+0222B
intcal; U+022BA
integers; U+02124
intercal; U+022BA
intlarhk; U+02A17
intprod; U+02A3C
iocy; U+00451
iogon; U+0012F
iopf; U+1D55A
iota; U+003B9
iprod; U+02A3C
iquest; U+000BF
iquest U+000BF
iscr; U+1D4BE
isin; U+02208
isinE; U+022F9
isindot; U+022F5
isins; U+022F4
isinsv; U+022F3
isinv; U+02208
it; U+02062
itilde; U+00129
iukcy; U+00456
iuml; U+000EF
iuml U+000EF
jcirc; U+00135
jcy; U+00439
jfr; U+1D527
jmath; U+00237
jopf; U+1D55B
jscr; U+1D4BF
jsercy; U+00458
jukcy; U+00454
kappa; U+003BA
kappav; U+003F0
kcedil; U+00137

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 832 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 832 from 931

Name Character
kcy; U+0043A
kfr; U+1D528
kgreen; U+00138
khcy; U+00445
kjcy; U+0045C
kopf; U+1D55C
kscr; U+1D4C0
lAarr; U+021DA
lArr; U+021D0
lAtail; U+0291B
lBarr; U+0290E
lE; U+02266
lEg; U+02A8B
lHar; U+02962
lacute; U+0013A
laemptyv; U+029B4
lagran; U+02112
lambda; U+003BB
lang; U+027E8
langd; U+02991
langle; U+027E8
lap; U+02A85
laquo; U+000AB
laquo U+000AB
larr; U+02190
larrb; U+021E4
larrbfs; U+0291F
larrfs; U+0291D
larrhk; U+021A9
larrlp; U+021AB
larrpl; U+02939
larrsim; U+02973
larrtl; U+021A2
lat; U+02AAB
latail; U+02919
late; U+02AAD
lbarr; U+0290C

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 833 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 833 from 931

Name Character
lbbrk; U+02772
lbrace; U+0007B
lbrack; U+0005B
lbrke; U+0298B
lbrksld; U+0298F
lbrkslu; U+0298D
lcaron; U+0013E
lcedil; U+0013C
lceil; U+02308
lcub; U+0007B
lcy; U+0043B
ldca; U+02936
ldquo; U+0201C
ldquor; U+0201E
ldrdhar; U+02967
ldrushar; U+0294B
ldsh; U+021B2
le; U+02264
leftarrow; U+02190
leftarrowtail; U+021A2
leftharpoondown; U+021BD
leftharpoonup; U+021BC
leftleftarrows; U+021C7
leftrightarrow; U+02194
leftrightarrows; U+021C6
leftrightharpoons; U+021CB
leftrightsquigarrow; U+021AD
leftthreetimes; U+022CB
leg; U+022DA
leq; U+02264
leqq; U+02266
leqslant; U+02A7D
les; U+02A7D
lescc; U+02AA8
lesdot; U+02A7F
lesdoto; U+02A81
lesdotor; U+02A83

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 834 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 834 from 931

Name Character
lesges; U+02A93
lessapprox; U+02A85
lessdot; U+022D6
lesseqgtr; U+022DA
lesseqqgtr; U+02A8B
lessgtr; U+02276
lesssim; U+02272
lfisht; U+0297C
lfloor; U+0230A
lfr; U+1D529
lg; U+02276
lgE; U+02A91
lhard; U+021BD
lharu; U+021BC
lharul; U+0296A
lhblk; U+02584
ljcy; U+00459
ll; U+0226A
llarr; U+021C7
llcorner; U+0231E
llhard; U+0296B
lltri; U+025FA
lmidot; U+00140
lmoust; U+023B0
lmoustache; U+023B0
lnE; U+02268
lnap; U+02A89
lnapprox; U+02A89
lne; U+02A87
lneq; U+02A87
lneqq; U+02268
lnsim; U+022E6
loang; U+027EC
loarr; U+021FD
lobrk; U+027E6
longleftarrow; U+027F5
longleftrightarrow; U+027F7

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 835 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 835 from 931

Name Character
longmapsto; U+027FC
longrightarrow; U+027F6
looparrowleft; U+021AB
looparrowright; U+021AC
lopar; U+02985
lopf; U+1D55D
loplus; U+02A2D
lotimes; U+02A34
lowast; U+02217
lowbar; U+0005F
loz; U+025CA
lozenge; U+025CA
lozf; U+029EB
lpar; U+00028
lparlt; U+02993
lrarr; U+021C6
lrcorner; U+0231F
lrhar; U+021CB
lrhard; U+0296D
lrm; U+0200E
lrtri; U+022BF
lsaquo; U+02039
lscr; U+1D4C1
lsh; U+021B0
lsim; U+02272
lsime; U+02A8D
lsimg; U+02A8F
lsqb; U+0005B
lsquo; U+02018
lsquor; U+0201A
lstrok; U+00142
lt; U+0003C
lt U+0003C
ltcc; U+02AA6
ltcir; U+02A79
ltdot; U+022D6
lthree; U+022CB

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 836 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 836 from 931

Name Character
ltimes; U+022C9
ltlarr; U+02976
ltquest; U+02A7B
ltrPar; U+02996
ltri; U+025C3
ltrie; U+022B4
ltrif; U+025C2
lurdshar; U+0294A
luruhar; U+02966
mDDot; U+0223A
macr; U+000AF
macr U+000AF
male; U+02642
malt; U+02720
maltese; U+02720
map; U+021A6
mapsto; U+021A6
mapstodown; U+021A7
mapstoleft; U+021A4
mapstoup; U+021A5
marker; U+025AE
mcomma; U+02A29
mcy; U+0043C
mdash; U+02014
measuredangle; U+02221
mfr; U+1D52A
mho; U+02127
micro; U+000B5
micro U+000B5
mid; U+02223
midast; U+0002A
midcir; U+02AF0
middot; U+000B7
middot U+000B7
minus; U+02212
minusb; U+0229F
minusd; U+02238

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 837 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 837 from 931

Name Character
minusdu; U+02A2A
mlcp; U+02ADB
mldr; U+02026
mnplus; U+02213
models; U+022A7
mopf; U+1D55E
mp; U+02213
mscr; U+1D4C2
mstpos; U+0223E
mu; U+003BC
multimap; U+022B8
mumap; U+022B8
nLeftarrow; U+021CD
nLeftrightarrow; U+021CE
nRightarrow; U+021CF
nVDash; U+022AF
nVdash; U+022AE
nabla; U+02207
nacute; U+00144
nap; U+02249
napos; U+00149
napprox; U+02249
natur; U+0266E
natural; U+0266E
naturals; U+02115
nbsp; U+000A0
nbsp U+000A0
ncap; U+02A43
ncaron; U+00148
ncedil; U+00146
ncong; U+02247
ncup; U+02A42
ncy; U+0043D
ndash; U+02013
ne; U+02260
neArr; U+021D7
nearhk; U+02924

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 838 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 838 from 931

Name Character
nearr; U+02197
nearrow; U+02197
nequiv; U+02262
nesear; U+02928
nexist; U+02204
nexists; U+02204
nfr; U+1D52B
nge; U+02271
ngeq; U+02271
ngsim; U+02275
ngt; U+0226F
ngtr; U+0226F
nhArr; U+021CE
nharr; U+021AE
nhpar; U+02AF2
ni; U+0220B
nis; U+022FC
nisd; U+022FA
niv; U+0220B
njcy; U+0045A
nlArr; U+021CD
nlarr; U+0219A
nldr; U+02025
nle; U+02270
nleftarrow; U+0219A
nleftrightarrow; U+021AE
nleq; U+02270
nless; U+0226E
nlsim; U+02274
nlt; U+0226E
nltri; U+022EA
nltrie; U+022EC
nmid; U+02224
nopf; U+1D55F
not; U+000AC
not U+000AC
notin; U+02209

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 839 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 839 from 931

Name Character
notinva; U+02209
notinvb; U+022F7
notinvc; U+022F6
notni; U+0220C
notniva; U+0220C
notnivb; U+022FE
notnivc; U+022FD
npar; U+02226
nparallel; U+02226
npolint; U+02A14
npr; U+02280
nprcue; U+022E0
nprec; U+02280
nrArr; U+021CF
nrarr; U+0219B
nrightarrow; U+0219B
nrtri; U+022EB
nrtrie; U+022ED
nsc; U+02281
nsccue; U+022E1
nscr; U+1D4C3
nshortmid; U+02224
nshortparallel; U+02226
nsim; U+02241
nsime; U+02244
nsimeq; U+02244
nsmid; U+02224
nspar; U+02226
nsqsube; U+022E2
nsqsupe; U+022E3
nsub; U+02284
nsube; U+02288
nsubseteq; U+02288
nsucc; U+02281
nsup; U+02285
nsupe; U+02289
nsupseteq; U+02289

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 840 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 840 from 931

Name Character
ntgl; U+02279
ntilde; U+000F1
ntilde U+000F1
ntlg; U+02278
ntriangleleft; U+022EA
ntrianglelefteq; U+022EC
ntriangleright; U+022EB
ntrianglerighteq; U+022ED
nu; U+003BD
num; U+00023
numero; U+02116
numsp; U+02007
nvDash; U+022AD
nvHarr; U+02904
nvdash; U+022AC
nvinfin; U+029DE
nvlArr; U+02902
nvrArr; U+02903
nwArr; U+021D6
nwarhk; U+02923
nwarr; U+02196
nwarrow; U+02196
nwnear; U+02927
oS; U+024C8
oacute; U+000F3
oacute U+000F3
oast; U+0229B
ocir; U+0229A
ocirc; U+000F4
ocirc U+000F4
ocy; U+0043E
odash; U+0229D
odblac; U+00151
odiv; U+02A38
odot; U+02299
odsold; U+029BC
oelig; U+00153

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 841 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 841 from 931

Name Character
ofcir; U+029BF
ofr; U+1D52C
ogon; U+002DB
ograve; U+000F2
ograve U+000F2
ogt; U+029C1
ohbar; U+029B5
ohm; U+02126
oint; U+0222E
olarr; U+021BA
olcir; U+029BE
olcross; U+029BB
oline; U+0203E
olt; U+029C0
omacr; U+0014D
omega; U+003C9
omicron; U+003BF
omid; U+029B6
ominus; U+02296
oopf; U+1D560
opar; U+029B7
operp; U+029B9
oplus; U+02295
or; U+02228
orarr; U+021BB
ord; U+02A5D
order; U+02134
orderof; U+02134
ordf; U+000AA
ordf U+000AA
ordm; U+000BA
ordm U+000BA
origof; U+022B6
oror; U+02A56
orslope; U+02A57
orv; U+02A5B
oscr; U+02134

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 842 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 842 from 931

Name Character
oslash; U+000F8
oslash U+000F8
osol; U+02298
otilde; U+000F5
otilde U+000F5
otimes; U+02297
otimesas; U+02A36
ouml; U+000F6
ouml U+000F6
ovbar; U+0233D
par; U+02225
para; U+000B6
para U+000B6
parallel; U+02225
parsim; U+02AF3
parsl; U+02AFD
part; U+02202
pcy; U+0043F
percnt; U+00025
period; U+0002E
permil; U+02030
perp; U+022A5
pertenk; U+02031
pfr; U+1D52D
phi; U+003C6
phiv; U+003C6
phmmat; U+02133
phone; U+0260E
pi; U+003C0
pitchfork; U+022D4
piv; U+003D6
planck; U+0210F
planckh; U+0210E
plankv; U+0210F
plus; U+0002B
plusacir; U+02A23
plusb; U+0229E

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 843 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 843 from 931

Name Character
pluscir; U+02A22
plusdo; U+02214
plusdu; U+02A25
pluse; U+02A72
plusmn; U+000B1
plusmn U+000B1
plussim; U+02A26
plustwo; U+02A27
pm; U+000B1
pointint; U+02A15
popf; U+1D561
pound; U+000A3
pound U+000A3
pr; U+0227A
prE; U+02AB3
prap; U+02AB7
prcue; U+0227C
pre; U+02AAF
prec; U+0227A
precapprox; U+02AB7
preccurlyeq; U+0227C
preceq; U+02AAF
precnapprox; U+02AB9
precneqq; U+02AB5
precnsim; U+022E8
precsim; U+0227E
prime; U+02032
primes; U+02119
prnE; U+02AB5
prnap; U+02AB9
prnsim; U+022E8
prod; U+0220F
profalar; U+0232E
profline; U+02312
profsurf; U+02313
prop; U+0221D
propto; U+0221D

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 844 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 844 from 931

Name Character
prsim; U+0227E
prurel; U+022B0
pscr; U+1D4C5
psi; U+003C8
puncsp; U+02008
qfr; U+1D52E
qint; U+02A0C
qopf; U+1D562
qprime; U+02057
qscr; U+1D4C6
quaternions; U+0210D
quatint; U+02A16
quest; U+0003F
questeq; U+0225F
quot; U+00022
quot U+00022
rAarr; U+021DB
rArr; U+021D2
rAtail; U+0291C
rBarr; U+0290F
rHar; U+02964
race; U+029DA
racute; U+00155
radic; U+0221A
raemptyv; U+029B3
rang; U+027E9
rangd; U+02992
range; U+029A5
rangle; U+027E9
raquo; U+000BB
raquo U+000BB
rarr; U+02192
rarrap; U+02975
rarrb; U+021E5
rarrbfs; U+02920
rarrc; U+02933
rarrfs; U+0291E

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 845 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 845 from 931

Name Character
rarrhk; U+021AA
rarrlp; U+021AC
rarrpl; U+02945
rarrsim; U+02974
rarrtl; U+021A3
rarrw; U+0219D
ratail; U+0291A
ratio; U+02236
rationals; U+0211A
rbarr; U+0290D
rbbrk; U+02773
rbrace; U+0007D
rbrack; U+0005D
rbrke; U+0298C
rbrksld; U+0298E
rbrkslu; U+02990
rcaron; U+00159
rcedil; U+00157
rceil; U+02309
rcub; U+0007D
rcy; U+00440
rdca; U+02937
rdldhar; U+02969
rdquo; U+0201D
rdquor; U+0201D
rdsh; U+021B3
real; U+0211C
realine; U+0211B
realpart; U+0211C
reals; U+0211D
rect; U+025AD
reg; U+000AE
reg U+000AE
rfisht; U+0297D
rfloor; U+0230B
rfr; U+1D52F
rhard; U+021C1

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 846 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 846 from 931

Name Character
rharu; U+021C0
rharul; U+0296C
rho; U+003C1
rhov; U+003F1
rightarrow; U+02192
rightarrowtail; U+021A3
rightharpoondown; U+021C1
rightharpoonup; U+021C0
rightleftarrows; U+021C4
rightleftharpoons; U+021CC
rightrightarrows; U+021C9
rightsquigarrow; U+0219D
rightthreetimes; U+022CC
ring; U+002DA
risingdotseq; U+02253
rlarr; U+021C4
rlhar; U+021CC
rlm; U+0200F
rmoust; U+023B1
rmoustache; U+023B1
rnmid; U+02AEE
roang; U+027ED
roarr; U+021FE
robrk; U+027E7
ropar; U+02986
ropf; U+1D563
roplus; U+02A2E
rotimes; U+02A35
rpar; U+00029
rpargt; U+02994
rppolint; U+02A12
rrarr; U+021C9
rsaquo; U+0203A
rscr; U+1D4C7
rsh; U+021B1
rsqb; U+0005D
rsquo; U+02019

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 847 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 847 from 931

Name Character
rsquor; U+02019
rthree; U+022CC
rtimes; U+022CA
rtri; U+025B9
rtrie; U+022B5
rtrif; U+025B8
rtriltri; U+029CE
ruluhar; U+02968
rx; U+0211E
sacute; U+0015B
sbquo; U+0201A
sc; U+0227B
scE; U+02AB4
scap; U+02AB8
scaron; U+00161
sccue; U+0227D
sce; U+02AB0
scedil; U+0015F
scirc; U+0015D
scnE; U+02AB6
scnap; U+02ABA
scnsim; U+022E9
scpolint; U+02A13
scsim; U+0227F
scy; U+00441
sdot; U+022C5
sdotb; U+022A1
sdote; U+02A66
seArr; U+021D8
searhk; U+02925
searr; U+02198
searrow; U+02198
sect; U+000A7
sect U+000A7
semi; U+0003B
seswar; U+02929
setminus; U+02216

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 848 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 848 from 931

Name Character
setmn; U+02216
sext; U+02736
sfr; U+1D530
sfrown; U+02322
sharp; U+0266F
shchcy; U+00449
shcy; U+00448
shortmid; U+02223
shortparallel; U+02225
shy; U+000AD
shy U+000AD
sigma; U+003C3
sigmaf; U+003C2
sigmav; U+003C2
sim; U+0223C
simdot; U+02A6A
sime; U+02243
simeq; U+02243
simg; U+02A9E
simgE; U+02AA0
siml; U+02A9D
simlE; U+02A9F
simne; U+02246
simplus; U+02A24
simrarr; U+02972
slarr; U+02190
smallsetminus; U+02216
smashp; U+02A33
smeparsl; U+029E4
smid; U+02223
smile; U+02323
smt; U+02AAA
smte; U+02AAC
softcy; U+0044C
sol; U+0002F
solb; U+029C4
solbar; U+0233F

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 849 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 849 from 931

Name Character
sopf; U+1D564
spades; U+02660
spadesuit; U+02660
spar; U+02225
sqcap; U+02293
sqcup; U+02294
sqsub; U+0228F
sqsube; U+02291
sqsubset; U+0228F
sqsubseteq; U+02291
sqsup; U+02290
sqsupe; U+02292
sqsupset; U+02290
sqsupseteq; U+02292
squ; U+025A1
square; U+025A1
squarf; U+025AA
squf; U+025AA
srarr; U+02192
sscr; U+1D4C8
ssetmn; U+02216
ssmile; U+02323
sstarf; U+022C6
star; U+02606
starf; U+02605
straightepsilon; U+003F5
straightphi; U+003D5
strns; U+000AF
sub; U+02282
subE; U+02AC5
subdot; U+02ABD
sube; U+02286
subedot; U+02AC3
submult; U+02AC1
subnE; U+02ACB
subne; U+0228A
subplus; U+02ABF

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 850 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 850 from 931

Name Character
subrarr; U+02979
subset; U+02282
subseteq; U+02286
subseteqq; U+02AC5
subsetneq; U+0228A
subsetneqq; U+02ACB
subsim; U+02AC7
subsub; U+02AD5
subsup; U+02AD3
succ; U+0227B
succapprox; U+02AB8
succcurlyeq; U+0227D
succeq; U+02AB0
succnapprox; U+02ABA
succneqq; U+02AB6
succnsim; U+022E9
succsim; U+0227F
sum; U+02211
sung; U+0266A
sup1; U+000B9
sup1 U+000B9
sup2; U+000B2
sup2 U+000B2
sup3; U+000B3
sup3 U+000B3
sup; U+02283
supE; U+02AC6
supdot; U+02ABE
supdsub; U+02AD8
supe; U+02287
supedot; U+02AC4
suphsub; U+02AD7
suplarr; U+0297B
supmult; U+02AC2
supnE; U+02ACC
supne; U+0228B
supplus; U+02AC0

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 851 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 851 from 931

Name Character
supset; U+02283
supseteq; U+02287
supseteqq; U+02AC6
supsetneq; U+0228B
supsetneqq; U+02ACC
supsim; U+02AC8
supsub; U+02AD4
supsup; U+02AD6
swArr; U+021D9
swarhk; U+02926
swarr; U+02199
swarrow; U+02199
swnwar; U+0292A
szlig; U+000DF
szlig U+000DF
target; U+02316
tau; U+003C4
tbrk; U+023B4
tcaron; U+00165
tcedil; U+00163
tcy; U+00442
tdot; U+020DB
telrec; U+02315
tfr; U+1D531
there4; U+02234
therefore; U+02234
theta; U+003B8
thetasym; U+003D1
thetav; U+003D1
thickapprox; U+02248
thicksim; U+0223C
thinsp; U+02009
thkap; U+02248
thksim; U+0223C
thorn; U+000FE
thorn U+000FE
tilde; U+002DC

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 852 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 852 from 931

Name Character
times; U+000D7
times U+000D7
timesb; U+022A0
timesbar; U+02A31
timesd; U+02A30
tint; U+0222D
toea; U+02928
top; U+022A4
topbot; U+02336
topcir; U+02AF1
topf; U+1D565
topfork; U+02ADA
tosa; U+02929
tprime; U+02034
trade; U+02122
triangle; U+025B5
triangledown; U+025BF
triangleleft; U+025C3
trianglelefteq; U+022B4
triangleq; U+0225C
triangleright; U+025B9
trianglerighteq; U+022B5
tridot; U+025EC
trie; U+0225C
triminus; U+02A3A
triplus; U+02A39
trisb; U+029CD
tritime; U+02A3B
trpezium; U+023E2
tscr; U+1D4C9
tscy; U+00446
tshcy; U+0045B
tstrok; U+00167
twixt; U+0226C
twoheadleftarrow; U+0219E
twoheadrightarrow; U+021A0
uArr; U+021D1

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 853 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 853 from 931

Name Character
uHar; U+02963
uacute; U+000FA
uacute U+000FA
uarr; U+02191
ubrcy; U+0045E
ubreve; U+0016D
ucirc; U+000FB
ucirc U+000FB
ucy; U+00443
udarr; U+021C5
udblac; U+00171
udhar; U+0296E
ufisht; U+0297E
ufr; U+1D532
ugrave; U+000F9
ugrave U+000F9
uharl; U+021BF
uharr; U+021BE
uhblk; U+02580
ulcorn; U+0231C
ulcorner; U+0231C
ulcrop; U+0230F
ultri; U+025F8
umacr; U+0016B
uml; U+000A8
uml U+000A8
uogon; U+00173
uopf; U+1D566
uparrow; U+02191
updownarrow; U+02195
upharpoonleft; U+021BF
upharpoonright; U+021BE
uplus; U+0228E
upsi; U+003C5
upsih; U+003D2
upsilon; U+003C5
upuparrows; U+021C8

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 854 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 854 from 931

Name Character
urcorn; U+0231D
urcorner; U+0231D
urcrop; U+0230E
uring; U+0016F
urtri; U+025F9
uscr; U+1D4CA
utdot; U+022F0
utilde; U+00169
utri; U+025B5
utrif; U+025B4
uuarr; U+021C8
uuml; U+000FC
uuml U+000FC
uwangle; U+029A7
vArr; U+021D5
vBar; U+02AE8
vBarv; U+02AE9
vDash; U+022A8
vangrt; U+0299C
varepsilon; U+003B5
varkappa; U+003F0
varnothing; U+02205
varphi; U+003C6
varpi; U+003D6
varpropto; U+0221D
varr; U+02195
varrho; U+003F1
varsigma; U+003C2
vartheta; U+003D1
vartriangleleft; U+022B2
vartriangleright; U+022B3
vcy; U+00432
vdash; U+022A2
vee; U+02228
veebar; U+022BB
veeeq; U+0225A
vellip; U+022EE

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 855 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 855 from 931

Name Character
verbar; U+0007C
vert; U+0007C
vfr; U+1D533
vltri; U+022B2
vopf; U+1D567
vprop; U+0221D
vrtri; U+022B3
vscr; U+1D4CB
vzigzag; U+0299A
wcirc; U+00175
wedbar; U+02A5F
wedge; U+02227
wedgeq; U+02259
weierp; U+02118
wfr; U+1D534
wopf; U+1D568
wp; U+02118
wr; U+02240
wreath; U+02240
wscr; U+1D4CC
xcap; U+022C2
xcirc; U+025EF
xcup; U+022C3
xdtri; U+025BD
xfr; U+1D535
xhArr; U+027FA
xharr; U+027F7
xi; U+003BE
xlArr; U+027F8
xlarr; U+027F5
xmap; U+027FC
xnis; U+022FB
xodot; U+02A00
xopf; U+1D569
xoplus; U+02A01
xotime; U+02A02
xrArr; U+027F9

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 856 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 856 from 931

Name Character
xrarr; U+027F6
xscr; U+1D4CD
xsqcup; U+02A06
xuplus; U+02A04
xutri; U+025B3
xvee; U+022C1
xwedge; U+022C0
yacute; U+000FD
yacute U+000FD
yacy; U+0044F
ycirc; U+00177
ycy; U+0044B
yen; U+000A5
yen U+000A5
yfr; U+1D536
yicy; U+00457
yopf; U+1D56A
yscr; U+1D4CE
yucy; U+0044E
yuml; U+000FF
yuml U+000FF
zacute; U+0017A
zcaron; U+0017E
zcy; U+00437
zdot; U+0017C
zeetrf; U+02128
zeta; U+003B6
zfr; U+1D537
zhcy; U+00436
zigrarr; U+021DD
zopf; U+1D56B
zscr; U+1D4CF
zwj; U+0200D
zwnj; U+0200C

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 857 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 857 from 931

10 The XHTML syntax

This section only describes the rules for XML resources. Rules for text/html
resources are discussed in the section above entitled "The HTML syntax".

10.1 Writing XHTML documents

The syntax for using HTML with XML, whether in XHTML documents or embedded in
other XML documents, is defined in the XML and Namespaces in XML specifications.
[XML] [XMLNS]

This specification does not define any syntax-level requirements beyond those defined for
XML proper.

XML documents may contain a DOCTYPE if desired, but this is not required to conform to
this specification. This specification does not define a public or system identifier, nor
provide a format DTD.

According to the XML specification, XML processors are not guaranteed to process
the external DTD subset referenced in the DOCTYPE. This means, for example, that
using entity references for characters in XHTML documents is unsafe if they are
defined in an external file (except for <, >, &, " and ').

10.2 Parsing XHTML documents

This section describes the relationship between XML and the DOM, with a particular
emphasis on how this interacts with HTML.

An XML parser, for the purposes of this specification, is a construct that follows the rules
given in the XML specification to map a string of bytes or characters into a Document
object.

An XML parser is either associated with a Document object when it is created, or creates
one implicitly.

This Document must then be populated with DOM nodes that represent the tree structure of
the input passed to the parser, as defined by the XML specification, the Namespaces in
XML specification, and the DOM Core specification. DOM mutation events must not fire for
the operations that the XML parser performs on the Document's tree, but the user agent
must act as if elements and attributes were individually appended and set respectively so
as to trigger rules in this specification regarding what happens when an element in
inserted into a document or has its attributes set. [XML] [XMLNS] [DOMCORE]
[DOMEVENTS]

Certain algorithms in this specification spoon-feed the parser characters one string at a
time. In such cases, the XML parser must act as it would have if faced with a single string
consisting of the concatenation of all those characters.

When an XML parser creates a script element, it must be marked as being "parser-
inserted". If the parser was originally created for the XML fragment parsing algorithm, then
the element must be marked as "already executed" also. When the element's end tag is
parsed, the user agent must run the script element. If this causes there to be a pending

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 858 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 858 from 931

external script, then the user agent must pause until that script has completed loading,
and then execute it.

Since the document.write() API is not available for XML documents, much of the
complexity in the HTML parser is not needed in the XML parser.

When an XML parser reaches the end of its input, it must stop parsing, following the same
rules as the HTML parser.

For the purposes of conformance checkers, if a resource is determined to be in the
XHTML syntax, then it is an XML document.

10.3 Serializing XHTML fragments

The XML fragment serialization algorithm for a Document or Element node either returns
a fragment of XML that represents that node or raises an exception.

For Documents, the algorithm must return a string in the form of a document entity, if none
of the error cases below apply.

For Elements, the algorithm must return a string in the form of an internal general parsed
entity, if none of the error cases below apply.

In both cases, the string returned must be XML namespace-well-formed and must be an
isomorphic serialization of all of that node's child nodes, in tree order. User agents may
adjust prefixes and namespace declarations in the serialization (and indeed might be
forced to do so in some cases to obtain namespace-well-formed XML). User agents may
use a combination of regular text, character references, and CDATA sections to represent
text nodes in the DOM (and indeed might be forced to use representations that don't
match the DOM's, e.g. if a CDATASection node contains the string "]]>").

For Elements, if any of the elements in the serialization are in no namespace, the default
namespace in scope for those elements must be explicitly declared as the empty string.
(This doesn't apply in the Document case.) [XML] [XMLNS]

If any of the following error cases are found in the DOM subtree being serialized, then the
algorithm raises an INVALID_STATE_ERR exception instead of returning a string:

• A Document node with no child element nodes.
• A DocumentType node that has an external subset public identifier that contains

characters that are not matched by the XML PubidChar production. [XML]
• A DocumentType node that has an external subset system identifier that contains

both a U+0022 QUOTATION MARK ('"') and a U+0027 APOSTROPHE ("'").
• A node with a local name containing a U+003A COLON (":").
• An Attr node, Text node, CDATASection node, Comment node, or

ProcessingInstruction node whose data contains characters that are not matched
by the XML Char production. [XML]

• A Comment node whose data contains two adjacent U+002D HYPHEN-MINUS (-)
characters or ends with such a character.

• A ProcessingInstruction node whose target name is an ASCII case-insensitive
match for the string "xml".

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 859 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 859 from 931

• A ProcessingInstruction node whose target name contains a U+003A COLON
(":").

• A ProcessingInstruction node whose data contains the string "?>".

These are the only ways to make a DOM unserializable. The DOM enforces all the
other XML constraints; for example, trying to set an attribute with a name that
contains an equals sign (=) will raised an INVALID_CHARACTER_ERR exception.

10.4 Parsing XHTML fragments

The XML fragment parsing algorithm for either returns a Document or raises a
SYNTAX_ERR exception. Given a string input and an optional context element context, the
algorithm is as follows:

1. Create a new XML parser.

2. If there is a context element, feed the parser just created the string corresponding
to the start tag of that element, declaring all the namespace prefixes that are in
scope on that element in the DOM, as well as declaring the default namespace (if
any) that is in scope on that element in the DOM.

A namespace prefix is in scope if the DOM Core lookupNamespaceURI() method on
the element would return a non-null value for that prefix.

The default namespace is the namespace for which the DOM Core
isDefaultNamespace() method on the element would return true.

3. Feed the parser just created the string input.

4. If there is a context element, feed the parser just created the string corresponding
to the end tag of that element.

5. If there is an XML well-formedness or XML namespace well-formedness error, then
raise a SYNTAX_ERR exception and abort these steps.

6. If there is a context element, then return the child nodes of the root element of the
resulting Document, in tree order.

Otherwise, return the children of the Document object, in tree order.

11 Rendering

Status: First draft

User agents are not required to present HTML documents in any particular way. However,
this section provides a set of suggestions for rendering HTML documents that, if followed,
are likely to lead to a user experience that closely resembles the experience intended by
the documents' authors. So as to avoid confusion regarding the normativity of this section,
RFC2119 terms have not been used. Instead, the term "expected" is used to indicate
behavior that will lead to this experience.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 860 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 860 from 931

11.1 Introduction

In general, user agents are expected to support CSS, and many of the suggestions in this
section are expressed in CSS terms. User agents that use other presentation mechanisms
can derive their expected behavior by translating from the CSS rules given in this section.

In the absence of style-layer rules to the contrary (e.g. author style sheets), user agents
are expected to render an element so that it conveys to the user the meaning that the
element represents, as described by this specification.

The suggestions in this section generally assume a visual output medium with a resolution
of 96dpi or greater, but HTML is intended to apply to multiple media (it is a media-
independent language). User agents are encouraged to adapt the suggestions in this
section to their target media.

11.2 The CSS user agent style sheet and presentational hints

11.2.1 Introduction

The CSS rules given in these subsections are, unless otherwise specified, expected to be
used as part of the user-agent level style sheet defaults for all documents that contain
HTML elements.

Some rules are intended for the author-level zero-specificity presentational hints part of
the CSS cascade; these are explicitly called out as presentational hints.

Some of the rules regarding left and right margins are given here as appropriate for
elements whose 'direction' property is 'ltr', and are expected to be flipped around on
elements whose 'direction' property is 'rtl'. These are marked "LTR-specific".

When the text below says that an attribute attribute on an element element maps to the
pixel length property (or properties) properties, it means that if element has an attribute
attribute set, and parsing that attribute's value using the rules for parsing non-negative
integers doesn't generate an error, then the user agent is expected to use the parsed
value as a pixel length for a presentational hint for properties.

When the text below says that an attribute attribute on an element element maps to the
dimension property (or properties) properties, it means that if element has an attribute
attribute set, and parsing that attribute's value using the rules for parsing dimension values
doesn't generate an error, then the user agent is expected to use the parsed dimension as
the value for a presentational hint for properties, with the value given as a pixel length if
the dimension was an integer, and with the value given as a percentage if the dimension
was a percentage.

11.2.2 Display types

@namespace url(http://www.w3.org/1999/xhtml);

[hidden], area, audio:not([controls]), base, basefont, command,
datalist, head, input[type=hidden], link, menu[type=context], meta,
noembed, noframes, param, rp, script, source, style, title {
 display: none;
}

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 861 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 861 from 931

address, article, aside, blockquote, body, center, dd, dialog, dir,
div, dl, dt, figure, footer, form, h1, h2, h3, h4, h5, h6, header,
hgroup, hr, html, legend, listing, menu, nav, ol, p, plaintext, pre,
section, ul, xmp { display: block; }

table { display: table; }
caption { display: table-caption; }
colgroup { display: table-column-group; }
col { display: table-column; }
thead { display: table-header-group; }
tbody { display: table-row-group; }
tfoot { display: table-footer-group; }
tr { display: table-row; }
td, th { display: table-cell; }

li { display: list-item; }

ruby { display: ruby; }
rt { display: ruby-text; }

For the purposes of the CSS table model, the col element is to be treated as if it was
present as many times as its span attribute specifies.

For the purposes of the CSS table model, the colgroup element, if it contains no col
element, is to be treated as if it had as many such children as its span attribute specifies.

For the purposes of the CSS table model, the colspan and rowspan attributes on td and th
elements are expected to provide the special knowledge regarding cells spanning rows
and columns.

For the purposes of the CSS ruby model, runs of descendants of ruby elements that are
not rt or rp elements are expected to be wrapped in anonymous boxes whose 'display'
property has the value 'ruby-base'.

User agents that do not support correct ruby rendering are expected to render
parentheses around the text of rt elements in the absence of rp elements.

The br element is expected to render as if its contents were a single U+000A LINE FEED
(LF) character and its 'white-space' property was 'pre'. User agents are expected to
support the 'clear' property on inline elements (in order to render br elements with clear
attributes) in the manner described in the non-normative note to this effect in CSS2.1.

The user agent is expected to hide noscript elements for whom scripting is enabled,
irrespective of CSS rules.

11.2.3 Margins and padding

@namespace url(http://www.w3.org/1999/xhtml);

blockquote, dialog, dir, dl, figure, listing, menu, ol, p, plaintext,
pre, ul, xmp {
 margin-top: 1em; margin-bottom: 1em;
}

dir dir, dir dl, dir menu, dir ol, dir ul,
dl dir, dl dl, dl menu, dl ol, dl ul,

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 862 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 862 from 931

menu dir, menu dl, menu menu, menu ol, menu ul,
ol dir, ol dl, ol menu, ol ol, ol ul,
ul dir, ul dl, ul menu, ul ol, ul ul {
 margin-top: 0; margin-bottom: 0;
}

h1 { margin-top: 0.67em; margin-bottom; 0.67em; }
h2 { margin-top: 0.83em; margin-bottom; 0.83em; }
h3 { margin-top: 1.00em; margin-bottom; 1.00em; }
h4 { margin-top: 1.33em; margin-bottom; 1.33em; }
h5 { margin-top: 1.67em; margin-bottom; 1.67em; }
h6 { margin-top: 2.33em; margin-bottom; 2.33em; }

dd { margin-left: 40px; } /* LTR-specific: use 'margin-right' for rtl
elements */
dir, menu, ol, ul { padding-left: 40px; } /* LTR-specific: use 'padding-
right' for rtl elements */
blockquote, figure { margin-left: 40px; margin-right: 40px; }

table { border-spacing: 2px; border-collapse: separate; }
td, th { padding: 1px; }

The article, aside, nav, and section elements are expected to affect the margins of h1
elements, based on the nesting depth. If x is a selector that matches elements that are
either article, aside, nav, or section elements, then the following rules capture what is
expected:

@namespace url(http://www.w3.org/1999/xhtml);

x h1 { margin-top: 0.83em; margin-bottom: 0.83em; }
x x h1 { margin-top: 1.00em; margin-bottom: 1.00em; }
x x x h1 { margin-top: 1.33em; margin-bottom: 1.33em; }
x x x x h1 { margin-top: 1.67em; margin-bottom: 1.67em; }
x x x x x h1 { margin-top: 2.33em; margin-bottom: 2.33em; }

For each property in the table below, given a body element, the first attribute that exists
maps to the pixel length property on the body element. If none of the attributes for a
property are found, or if the value of the attribute that was found cannot be parsed
successfully, then a default value of 8px is expected to be used for that property instead.

Property Source
body element's marginheight attribute
The body element's container frame element's marginheight attribute

'margin-top'

body element's topmargin attribute
body element's marginwidth attribute
The body element's container frame element's marginwidth attribute

'margin-right'

body element's rightmargin attribute
body element's marginheight attribute
The body element's container frame element's marginheight attribute

'margin-bottom'

body element's topmargin attribute

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 863 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 863 from 931

Property Source
body element's marginwidth attribute
The body element's container frame element's marginwidth attribute

'margin-left'

body element's rightmargin attribute

If the body element's Document's browsing context is a nested browsing context, and the
browsing context container of that nested browsing context is a frame or iframe element,
then the container frame element of the body element is that frame or iframe element.
Otherwise, there is no container frame element.

If the Document has a root element, and the Document's browsing context is a nested
browsing context, and the browsing context container of that nested browsing context is a
frame or iframe element, and that element has a scrolling attribute, then the user agent
is expected to compare the value of the attribute in an ASCII case-insensitive manner to
the values in the first column of the following table, and if one of them matches, then the
user agent is expected to treat that attribute as a presentational hint for the
aforementioned root element's 'overflow' property, setting it to the value given in the
corresponding cell on the same row in the second column:

Attribute value 'overflow' value
on 'scroll'
scroll 'scroll'
yes 'scroll'
off 'hidden'
noscroll 'hidden'
no 'hidden'
auto 'auto'

The table element's cellspacing attribute maps to the pixel length property 'border-
spacing' on the element.

The table element's cellpadding attribute maps to the pixel length properties 'padding-
top', 'padding-right', 'padding-bottom', and 'padding-left' of any td and th elements that
have corresponding cells in the table corresponding to the table element.

The table element's hspace attribute maps to the dimension properties 'margin-left' and
'margin-right' on the table element.

The table element's vspace attribute maps to the dimension properties 'margin-top' and
'margin-bottom' on the table element.

The table element's height attribute maps to the dimension property 'height' on the table
element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 864 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 864 from 931

The table element's width attribute maps to the dimension property 'width' on the table
element.

The col element's width attribute maps to the dimension property 'width' on the col
element.

The tr element's height attribute maps to the dimension property 'height' on the tr
element.

The td and th elements' height attributes map to the dimension property 'height' on the
element.

The td and th elements' width attributes map to the dimension property 'width' on the
element.

In quirks mode, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

form { margin-bottom: 1em; }

When a Document is in quirks mode, margins on HTML elements at the top or bottom of
body, td, or th elements are expected to be collapsed to zero.

11.2.4 Alignment

@namespace url(http://www.w3.org/1999/xhtml);

thead, tbody, tfoot, table > tr { vertical-align: middle; }
tr, td, th { vertical-align: inherit; }
sub { vertical-align: sub; }
sup { vertical-align: super; }
th { text-align: center; }

The following rules are also expected to apply, as presentational hints:

@namespace url(http://www.w3.org/1999/xhtml);

table[align=left] { float: left; }
table[align=right] { float: right; }
table[align=center], table[align=abscenter],
table[align=absmiddle], table[align=middle] {
 margin-left: auto; margin-right: auto;
}

caption[align=bottom] { caption-side: bottom; }
p[align=left], h1[align=left], h2[align=left], h3[align=left],
h4[align=left], h5[align=left], h6[align=left] {
 text-align: left;
}
p[align=right], h1[align=right], h2[align=right], h3[align=right],
h4[align=right], h5[align=right], h6[align=right] {
 text-align: right;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 865 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 865 from 931

}
p[align=center], h1[align=center], h2[align=center], h3[align=center],
h4[align=center], h5[align=center], h6[align=center] {
 text-align: center;
}
p[align=justify], h1[align=justify], h2[align=justify], h3[align=justify],
h4[align=justify], h5[align=justify], h6[align=justify] {
 text-align: justify;
}
col[valign=top], thead[valign=top], tbody[valign=top],
tfoot[valign=top], tr[valign=top], td[valign=top], th[valign=top] {
 vertical-align: top;
}
col[valign=middle], thead[valign=middle], tbody[valign=middle],
tfoot[valign=middle], tr[valign=middle], td[valign=middle],
th[valign=middle] {
 vertical-align: middle;
}
col[valign=bottom], thead[valign=bottom], tbody[valign=bottom],
tfoot[valign=bottom], tr[valign=bottom], td[valign=bottom],
th[valign=bottom] {
 vertical-align: bottom;
}
col[valign=baseline], thead[valign=baseline], tbody[valign=baseline],
tfoot[valign=baseline], tr[valign=baseline], td[valign=baseline],
th[valign=baseline] {
 vertical-align: baseline;
}

The center element, the caption element unless specified otherwise below, and the div
element when its align attribute's value is an ASCII case-insensitive match for the string
"center", are expected to center text within themselves, as if they had their 'text-align'
property set to 'center' in a presentational hint, and to align descendants to the center.

The div, caption, thead, tbody, tfoot, tr, td, and th elements, when they have an align
attribute whose value is an ASCII case-insensitive match for the string "left", are
expected to left-align text within themselves, as if they had their 'text-align' property set to
'left' in a presentational hint, and to align descendants to the left.

The div, caption, thead, tbody, tfoot, tr, td, and th elements, when they have an align
attribute whose value is an ASCII case-insensitive match for the string "right", are
expected to right-align text within themselves, as if they had their 'text-align' property set to
'right' in a presentational hint, and to align descendants to the right.

The div, caption, thead, tbody, tfoot, tr, td, and th elements, when they have an align
attribute whose value is an ASCII case-insensitive match for the string "justify", are
expected to full-justify text within themselves, as if they had their 'text-align' property set to
'justify' in a presentational hint, and to align descendants to the left.

When a user agent is to align descendants of a node, the user agent is expected to align
only those descendants that have both their 'margin-left' and 'margin-right' properties
computing to a value other than 'auto', that are over-constrained and that have one of
those two margins with a used value forced to a greater value, and that do not themselves
have an applicable align attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 866 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 866 from 931

11.2.5 Fonts and colors

@namespace url(http://www.w3.org/1999/xhtml);

address, cite, dfn, em, i, var { font-style: italic; }
b, strong, th { font-weight: bold; }
code, kbd, listing, plaintext, pre, samp, tt, xmp { font-family: monospace;
}
h1 { font-size: 2.00em; font-weight: bold; }
h2 { font-size: 1.50em; font-weight: bold; }
h3 { font-size: 1.17em; font-weight: bold; }
h4 { font-size: 1.00em; font-weight: bold; }
h5 { font-size: 0.83em; font-weight: bold; }
h6 { font-size: 0.67em; font-weight: bold; }
big { font-size: larger; }
small, sub, sup { font-size: smaller; }
sub, sup { line-height: normal; }

:link { color: blue; }
:visited { color: purple; }
mark { background: yellow; color: black; }

table, td, th { border-color: gray; }
thead, tbody, tfoot, tr { border-color: inherit; }
table[rules=none], table[rules=groups], table[rules=rows],
table[rules=cols], table[rules=all], table[frame=void],
table[frame=above], table[frame=below], table[frame=hsides],
table[frame=lhs], table[frame=rhs], table[frame=vsides],
table[frame=box], table[frame=border],
table[rules=none] > tr > td, table[rules=none] > tr > th,
table[rules=groups] > tr > td, table[rules=groups] > tr > th,
table[rules=rows] > tr > td, table[rules=rows] > tr > th,
table[rules=cols] > tr > td, table[rules=cols] > tr > th,
table[rules=all] > tr > td, table[rules=all] > tr > th,
table[rules=none] > thead > tr > td, table[rules=none] > thead > tr > th,
table[rules=groups] > thead > tr > td, table[rules=groups] > thead > tr >
th,
table[rules=rows] > thead > tr > td, table[rules=rows] > thead > tr > th,
table[rules=cols] > thead > tr > td, table[rules=cols] > thead > tr > th,
table[rules=all] > thead > tr > td, table[rules=all] > thead > tr > th,
table[rules=none] > tbody > tr > td, table[rules=none] > tbody > tr > th,
table[rules=groups] > tbody > tr > td, table[rules=groups] > tbody > tr >
th,
table[rules=rows] > tbody > tr > td, table[rules=rows] > tbody > tr > th,
table[rules=cols] > tbody > tr > td, table[rules=cols] > tbody > tr > th,
table[rules=all] > tbody > tr > td, table[rules=all] > tbody > tr > th,
table[rules=none] > tfoot > tr > td, table[rules=none] > tfoot > tr > th,
table[rules=groups] > tfoot > tr > td, table[rules=groups] > tfoot > tr >
th,
table[rules=rows] > tfoot > tr > td, table[rules=rows] > tfoot > tr > th,
table[rules=cols] > tfoot > tr > td, table[rules=cols] > tfoot > tr > th,
table[rules=all] > tfoot > tr > td, table[rules=all] > tfoot > tr > th {
 border-color: black;
}

The initial value for the 'color' property is expected to be black. The initial value for the
'background-color' property is expected to be 'transparent'. The canvas's background is
expected to be white.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 867 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 867 from 931

The article, aside, nav, and section elements are expected to affect the font size of h1
elements, based on the nesting depth. If x is a selector that matches elements that are
either article, aside, nav, or section elements, then the following rules capture what is
expected:

@namespace url(http://www.w3.org/1999/xhtml);

x h1 { font-size: 1.50em; }
x x h1 { font-size: 1.17em; }
x x x h1 { font-size: 1.00em; }
x x x x h1 { font-size: 0.83em; }
x x x x x h1 { font-size: 0.67em; }

When a body, table, thead, tbody, tfoot, tr, td, or th element has a background attribute
set to a non-empty value, the new value is expected to be resolved relative to the element,
and if this is successful, the user agent is expected to treat the attribute as a
presentational hint setting the element's 'background-image' property to the resulting
absolute URL.

When a body, table, thead, tbody, tfoot, tr, td, or th element has a bgcolor attribute set,
the new value is expected to be parsed using the rules for parsing a legacy color value,
and if that does not return an error, the user agent is expected to treat the attribute as a
presentational hint setting the element's 'background-color' property to the resulting color.

When a body element has a text attribute, its value is expected to be parsed using the
rules for parsing a legacy color value, and if that does not return an error, the user agent is
expected to treat the attribute as a presentational hint setting the element's 'color' property
to the resulting color.

When a body element has a link attribute, its value is expected to be parsed using the
rules for parsing a legacy color value, and if that does not return an error, the user agent is
expected to treat the attribute as a presentational hint setting the 'color' property of any
element in the Document matching the ':link' pseudo-class to the resulting color.

When a body element has a vlink attribute, its value is expected to be parsed using the
rules for parsing a legacy color value, and if that does not return an error, the user agent is
expected to treat the attribute as a presentational hint setting the 'color' property of any
element in the Document matching the ':visited' pseudo-class to the resulting color.

When a body element has a alink attribute, its value is expected to be parsed using the
rules for parsing a legacy color value, and if that does not return an error, the user agent is
expected to treat the attribute as a presentational hint setting the 'color' property of any
element in the Document matching the ':active' pseudo-class and either the ':link' pseudo-
class or the ':visited' pseudo-class to the resulting color.

When a table element has a bordercolor attribute, its value is expected to be parsed
using the rules for parsing a legacy color value, and if that does not return an error, the
user agent is expected to treat the attribute as a presentational hint setting the element's

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 868 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 868 from 931

'border-top-color', 'border-right-color', 'border-bottom-color', and 'border-right-color'
properties to the resulting color.

When a font element has a color attribute, its value is expected to be parsed using the
rules for parsing a legacy color value, and if that does not return an error, the user agent is
expected to treat the attribute as a presentational hint setting the element's 'color' property
to the resulting color.

When a font element has a face attribute, the user agent is expected to treat the attribute
as a presentational hint setting the element's 'font-family' property to the attribute's value.

When a font element has a pointsize attribute, the user agent is expected to parse that
attribute's value using the rules for parsing non-negative integers, and if this doesn't
generate an error, then the user agent is expected to use the parsed value as a point
length for a presentational hint for the 'font-size' property on the element.

When a font element has a size attribute, the user agent is expected to use the following
steps to treat the attribute as a presentational hint setting the element's 'font-size'
property:

1. Let input be the attribute's value.

2. Let position be a pointer into input, initially pointing at the start of the string.

3. Skip whitespace.

4. If position is past the end of input, there is no presentational hint. Abort these steps.

5. If the character at position is a U+002B PLUS SIGN character (+), then let mode be
relative-plus, and advance position to the next character. Otherwise, if the
character at position is a U+002D HYPHEN-MINUS character (-), then let mode be
relative-minus, and advance position to the next character. Otherwise, let mode be
absolute.

6. Collect a sequence of characters in the range U+0030 DIGIT ZERO (0) to U+0039
DIGIT NINE (9), and let the resulting sequence be digits.

7. If digits is the empty string, there is no presentational hint. Abort these steps.

8. Interpret digits as a base-ten integer. Let value be the resulting number.

9. If mode is relative-plus, then increment value by 3. If mode is relative-minus, then
let value be the result of subtracting value from 3.

10. If value is greater than 7, let it be 7.

11. If value is less than 1, let it be 1.

12. Set 'font-size' to the keyword corresponding to the value of value according to the
following table:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 869 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 869 from 931

value 'font-size' keyword Notes
1 xx-small
2 small
3 medium
4 large
5 x-large
6 xx-large
7 xxx-large see below

13. The 'xxx-large' value is a non-CSS value used here to indicate a font size one
"step" larger than 'xx-large'.

11.2.6 Punctuation and decorations

@namespace url(http://www.w3.org/1999/xhtml);

:link, :visited, ins, u { text-decoration: underline; }
abbr[title], acronym[title] { text-decoration: dotted underline; }
del, s, strike { text-decoration: line-through; }
blink { text-decoration: blink; }

q:before { content: open-quote; }
q:after { content: close-quote; }

nobr { white-space: nowrap; }
listing, plaintext, pre, xmp { white-space: pre; }

ol { list-style-type: decimal; }

dir, menu, ul {
 list-style-type: disc;
}

dir dl, dir menu, dir ul,
menu dl, menu menu, menu ul,
ol dl, ol menu, ol ul,
ul dl, ul menu, ul ul {
 list-style-type: circle;
}

dir dir dl, dir dir menu, dir dir ul,
dir menu dl, dir menu menu, dir menu ul,
dir ol dl, dir ol menu, dir ol ul,
dir ul dl, dir ul menu, dir ul ul,
menu dir dl, menu dir menu, menu dir ul,
menu menu dl, menu menu menu, menu menu ul,
menu ol dl, menu ol menu, menu ol ul,
menu ul dl, menu ul menu, menu ul ul,
ol dir dl, ol dir menu, ol dir ul,
ol menu dl, ol menu menu, ol menu ul,
ol ol dl, ol ol menu, ol ol ul,
ol ul dl, ol ul menu, ol ul ul,
ul dir dl, ul dir menu, ul dir ul,
ul menu dl, ul menu menu, ul menu ul,
ul ol dl, ul ol menu, ul ol ul,
ul ul dl, ul ul menu, ul ul ul {
 list-style-type: square;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 870 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 870 from 931

}

table { border-style: outset; }
td, th { border-style: inset; }

[dir=ltr] { direction: ltr; unicode-bidi: embed; }
[dir=rtl] { direction: rtl; unicode-bidi: embed; }
bdo[dir=ltr], bdo[dir=rtl] { unicode-bidi: bidi-override; }

In addition, rules setting the 'quotes' property appropriately for the locales and languages
understood by the user are expected to be present.

The following rules are also expected to apply, as presentational hints:

@namespace url(http://www.w3.org/1999/xhtml);

td[nowrap], th[nowrap] { white-space: nowrap; }
pre[wrap] { white-space: pre-wrap; }

br[clear=left] { clear: left; }
br[clear=right] { clear: right; }
br[clear=all], br[clear=both] { clear: both; }

ol[type=1], li[type=1] { list-style-type: decimal; }
ol[type=a], li[type=a] { list-style-type: lower-alpha; }
ol[type=A], li[type=A] { list-style-type: upper-alpha; }
ol[type=i], li[type=i] { list-style-type: lower-roman; }
ol[type=I], li[type=I] { list-style-type: upper-roman; }
ul[type=disc], li[type=disc] { list-style-type: disc; }
ul[type=circle], li[type=circle] { list-style-type: circle; }
ul[type=square], li[type=square] { list-style-type: square; }

table[rules=none], table[rules=groups], table[rules=rows],
table[rules=cols], table[rules=all] {
 border-style: none;
 border-collapse: collapse;
}

table[frame=void] { border-style: hidden hidden hidden hidden; }
table[frame=above] { border-style: solid hidden hidden hidden; }
table[frame=below] { border-style: hidden hidden solid hidden; }
table[frame=hsides] { border-style: solid hidden solid hidden; }
table[frame=lhs] { border-style: hidden hidden hidden solid; }
table[frame=rhs] { border-style: hidden solid hidden hidden; }
table[frame=vsides] { border-style: hidden solid hidden solid; }
table[frame=box],
table[frame=border] { border-style: solid solid solid solid; }

table[rules=none] > tr > td, table[rules=none] > tr > th,
table[rules=none] > thead > tr > td, table[rules=none] > thead > tr > th,
table[rules=none] > tbody > tr > td, table[rules=none] > tbody > tr > th,
table[rules=none] > tfoot > tr > td, table[rules=none] > tfoot > tr > th,
table[rules=groups] > tr > td, table[rules=groups] > tr > th,
table[rules=groups] > thead > tr > td, table[rules=groups] > thead > tr >
th,
table[rules=groups] > tbody > tr > td, table[rules=groups] > tbody > tr >
th,

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 871 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 871 from 931

table[rules=groups] > tfoot > tr > td, table[rules=groups] > tfoot > tr >
th,
table[rules=rows] > tr > td, table[rules=rows] > tr > th,
table[rules=rows] > thead > tr > td, table[rules=rows] > thead > tr > th,
table[rules=rows] > tbody > tr > td, table[rules=rows] > tbody > tr > th,
table[rules=rows] > tfoot > tr > td, table[rules=rows] > tfoot > tr > th {
 border-style: none;
}

table[rules=groups] > colgroup, table[rules=groups] > thead,
table[rules=groups] > tbody, table[rules=groups] > tfoot {
 border-style: solid;
}

table[rules=rows] > tr, table[rules=rows] > thead > tr,
table[rules=rows] > tbody > tr, table[rules=rows] > tfoot > tr {
 border-style: solid;
}

table[rules=cols] > tr > td, table[rules=cols] > tr > th,
table[rules=cols] > thead > tr > td, table[rules=cols] > thead > tr > th,
table[rules=cols] > tbody > tr > td, table[rules=cols] > tbody > tr > th,
table[rules=cols] > tfoot > tr > td, table[rules=cols] > tfoot > tr > th {
 border-style: none solid none solid;
}

table[rules=all] > tr > td, table[rules=all] > tr > th,
table[rules=all] > thead > tr > td, table[rules=all] > thead > tr > th,
table[rules=all] > tbody > tr > td, table[rules=all] > tbody > tr > th,
table[rules=all] > tfoot > tr > td, table[rules=all] > tfoot > tr > th {
 border-style: solid;
}

When rendering li elements, user agents are expected to use the ordinal value of the li
element to render the counter in the list item marker.

The table element's border attribute maps to the pixel length properties 'border-top-width',
'border-right-width', 'border-bottom-width', 'border-left-width' on the element. If the attribute
is present but its value is the empty string, a default value of 1px is expected to be used
for that property instead.

11.2.7 Resetting rules for inherited properties

The following rules are also expected to be in play, resetting certain properties to block
inheritance by default.

@namespace url(http://www.w3.org/1999/xhtml);

table, input, select, option, optgroup, button, textarea, keygen {
 text-indent: initial;
}

In quirks mode, the following rules are also expected to apply:

@namespace url(http://www.w3.org/1999/xhtml);

table {

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 872 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 872 from 931

 font-weight: initial;
 font-style: initial;
 font-variant: initial;
 font-size: initial;
 line-height: initial;
 white-space: initial;
 text-align: initial;
}

input { box-sizing: border-box; }

11.2.8 The hr element

@namespace url(http://www.w3.org/1999/xhtml);

hr { color: gray; border-style: inset; border-width: 1px; }

The following rules are also expected to apply, as presentational hints:

@namespace url(http://www.w3.org/1999/xhtml);

hr[align=left] { margin-left: 0; margin-right: auto; }
hr[align=right] { margin-left: auto; margin-right: 0; }
hr[align=center] { margin-left: auto; margin-right: auto; }
hr[color], hr[noshade] { border-style: solid; }

If an hr element has either a color attribute or a noshade attribute, and furthermore also
has a size attribute, and parsing that attribute's value using the rules for parsing non-
negative integers doesn't generate an error, then the user agent is expected to use the
parsed value divided by two as a pixel length for presentational hints for the properties
'border-top-width', 'border-right-width', 'border-bottom-width', and 'border-left-width' on the
element.

Otherwise, if an hr element has neither a color attribute nor a noshade attribute, but does
have a size attribute, and parsing that attribute's value using the rules for parsing non-
negative integers doesn't generate an error, then: if the parsed value is one, then the user
agent is expected to use the attribute as a presentational hint setting the element's
'border-bottom-width' to 0; otherwise, if the parsed value is greater than one, then the user
agent is expected to use the parsed value minus two as a pixel length for presentational
hints for the 'height' property on the element.

The width attribute on an hr element maps to the dimension property 'width' on the
element.

When an hr element has a color attribute, its value is expected to be parsed using the
rules for parsing a legacy color value, and if that does not return an error, the user agent is
expected to treat the attribute as a presentational hint setting the element's 'color' property
to the resulting color.

11.2.9 The fieldset element

@namespace url(http://www.w3.org/1999/xhtml);

fieldset {
 margin-left: 2px; margin-right: 2px;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 873 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 873 from 931

 border: groove 2px ThreeDFace;
 padding: 0.35em 0.625em 0.75em;
}

The fieldset element is expected to establish a new block formatting context.

The first legend element child of a fieldset element, if any, is expected to be rendered
over the top border edge of the fieldset element. If the legend element in question has
an align attribute, and its value is an ASCII case-insensitive match for one of the strings
in the first column of the following table, then the legend is expected to be rendered
horizontally aligned over the border edge in the position given in the corresponding cell on
the same row in the second column. If the attribute is absent or has a value that doesn't
match any of the cases in the table, then the position is expected to be on the right if the
'direction' property on this element has a computed value of 'rtl', and on the left otherwise.

Attribute value Alignment position
left On the left
right On the right
center In the middle

11.3 Replaced elements

11.3.1 Embedded content

The applet, canvas, embed, iframe, and video elements are expected to be treated as
replaced elements.

An object element that represents an image, plugin, or nested browsing context is
expected to be treated as a replaced element. Other object elements are expected to be
treated as ordinary elements in the rendering model.

The audio element, when it has a controls attribute, is expected to be treated as a
replaced element about one line high, as wide as is necessary to expose the user agent's
user interface features.

The video element's controls attribute is not expected to affect the size of the rendering;
controls are expected to be overlaid with the page content without causing any layout
changes, and are expected to disappear when the user does not need them.

When a video element represents its poster frame, the poster frame is expected to be
rendered at the largest size that maintains the poster frame's aspect ratio without being
taller or wider than the video element itself, and is expected to be centered in the video
element.

Resizing video and canvas elements does not interrupt video playback or clear the
canvas.

The following CSS rules are expected to apply:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 874 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 874 from 931

@namespace url(http://www.w3.org/1999/xhtml);

iframe { border: 2px inset; }

11.3.2 Images

When an img element or an input element when its type attribute is in the Image Button
state represents an image, it is expected to be treated as a replaced element.

When an img element or an input element when its type attribute is in the Image Button
state does not represent an image, but the element already has intrinsic dimensions (e.g.
from the dimension attributes or CSS rules), and either the user agent has reason to
believe that the image will become available and be rendered in due course or the
Document is in quirks mode, the element is expected to be treated as a replaced element
whose content is the text that the element represents, if any, optionally alongside an icon
indicating that the image is being obtained. For input elements, the text is expected to
appear button-like to indicate that the element is a button.

When an img element represents some text and the user agent does not expect this to
change, the element is expected to be treated as an inline element whose content is the
text, optionally with an icon indicating that an image is missing.

When an img element represents nothing and the user agent does not expect this to
change, the element is expected to not be rendered at all.

When an img element might be a key part of the content, but neither the image nor any
kind of alternative text is available, and the user agent does not expect this to change, the
element is expected to be treated as an inline element whose content is an icon indicating
that an image is missing.

When an input element whose type attribute is in the Image Button state does not
represent an image and the user agent does not expect this to change, the element is
expected to be treated as a replaced element consisting of a button whose content is the
element's alternative text. The intrinsic dimensions of the button are expected to be about
one line in height and whatever width is necessary to render the text on one line.

The icons mentioned above are expected to be relatively small so as not to disrupt most
text but be easily clickable. In a visual environment, for instance, icons could be 16 pixels
by 16 pixels square, or 1em by 1em if the images are scalable. In an audio environment,
the icon could be a short bleep. The icons are intended to indicate to the user that they
can be used to get to whatever options the UA provides for images, and, where
appropriate, are expected to provide access to the context menu that would have come up
if the user interacted with the actual image.

The following CSS rules are expected to apply when the Document is in quirks mode:

@namespace url(http://www.w3.org/1999/xhtml);

img[align=left] { margin-right: 3px; }
img[align=right] { margin-left: 3px; }

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 875 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 875 from 931

11.3.3 Attributes for embedded content and images

The following CSS rules are expected to apply as presentational hints:

@namespace url(http://www.w3.org/1999/xhtml);

iframe[frameborder=0], iframe[frameborder=no] { border: none; }

applet[align=left], embed[align=left], iframe[align=left],
img[align=left], input[type=image][align=left], object[align=left] {
 float: left;
}

applet[align=right], embed[align=right], iframe[align=right],
img[align=right], input[type=image][align=right], object[align=right] {
 float: right;
}

applet[align=top], embed[align=top], iframe[align=top],
img[align=top], input[type=image][align=top], object[align=top] {
 vertical-align: top;
}

applet[align=bottom], embed[align=bottom], iframe[align=bottom],
img[align=bottom], input[type=image][align=bottom], object[align=bottom],
applet[align=baseline], embed[align=baseline], iframe[align=baseline],
img[align=baseline], input[type=image][align=baseline],
object[align=baseline] {
 vertical-align: baseline;
}

applet[align=texttop], embed[align=texttop], iframe[align=texttop],
img[align=texttop], input[type=image][align=texttop], object[align=texttop]
{
 vertical-align: text-top;
}

applet[align=absmiddle], embed[align=absmiddle], iframe[align=absmiddle],
img[align=absmiddle], input[type=image][align=absmiddle],
object[align=absmiddle],
applet[align=abscenter], embed[align=abscenter], iframe[align=abscenter],
img[align=abscenter], input[type=image][align=abscenter],
object[align=abscenter] {
 vertical-align: middle;
}

applet[align=bottom], embed[align=bottom], iframe[align=bottom],
img[align=bottom], input[type=image][align=bottom],
object[align=bottom] {
 vertical-align: bottom;
}

When an applet, embed, iframe, img, or object element, or an input element whose type
attribute is in the Image Button state, has an align attribute whose value is an ASCII
case-insensitive match for the string "center" or the string "middle", the user agent is
expected to act as if the element's 'vertical-align' property was set to a value that aligns
the vertical middle of the element with the parent element's baseline.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 876 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 876 from 931

The hspace attribute of applet, embed, iframe, img, or object elements, and input
elements with a type attribute in the Image Button state, maps to the dimension properties
'margin-left' and 'margin-right' on the element.

The vspace attribute of applet, embed, iframe, img, or object elements, and input
elements with a type attribute in the Image Button state, maps to the dimension properties
'margin-top' and 'margin-bottom' on the element.

When an img element, object element, or input element with a type attribute in the Image
Button state is contained within a hyperlink and has a border attribute whose value, when
parsed using the rules for parsing non-negative integers, is found to be a number greater
than zero, the user agent is expected to use the parsed value for eight presentational
hints: four setting the parsed value as a pixel length for the element's 'border-top-width',
'border-right-width', 'border-bottom-width', and 'border-left-width' properties, and four
setting the element's 'border-top-style', 'border-right-style', 'border-bottom-style', and
'border-left-style' properties to the value 'solid'.

The width and height attributes on applet, embed, iframe, img, object or video elements,
and input elements with a type attribute in the Image Button state, map to the dimension
properties 'width' and 'height' on the element respectively.

11.3.4 Image maps

Shapes on an image map are expected to act, for the purpose of the CSS cascade, as
elements independent of the original area element that happen to match the same style
rules but inherit from the img or object element.

For the purposes of the rendering, only the 'cursor' property is expected to have any effect
on the shape.

Thus, for example, if an area element has a style attribute that sets the 'cursor'
property to 'help', then when the user designates that shape, the cursor would change
to a Help cursor.

Similarly, if an area element had a CSS rule that set its 'cursor' property to 'inherit' (or
if no rule setting the 'cursor' property matched the element at all), the shape's cursor
would be inherited from the img or object element of the image map, not from the
parent of the area element.

11.3.5 Tool bars

When a menu element's type attribute is in the tool bar state, the element is expected to be
treated as a replaced element with a height about two lines high and a width derived from
the contents of the element.

The element is expected to have, by default, the appearance of a tool bar on the user
agent's platform. It is expected to contain the menu that is built from the element.

...example with screenshot...

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 877 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 877 from 931

11.4 Bindings

11.4.1 Introduction

A number of elements have their rendering defined in terms of the 'binding' property.
[BECSS]

The CSS snippets below set the 'binding' property to a user-agent-defined value,
represented below by keywords like button. The rules then described for these bindings
are only expected to apply if the element's 'binding' property has not been overridden (e.g.
by the author) to have another value.

Exactly how the bindings are implemented is not specified by this specification. User
agents are encouraged to make their bindings set the 'appearance' CSS property
appropriately to achieve platform-native appearances for widgets, and are expected to
implement any relevant animations, etc, that are appropriate for the platform. [CSSUI]

11.4.2 The button element

@namespace url(http://www.w3.org/1999/xhtml);

button { binding: button; }

When the button binding applies to a button element, the element is expected to render
as an 'inline-block' box rendered as a button whose contents are the contents of the
element.

11.4.3 The details element

@namespace url(http://www.w3.org/1999/xhtml);

details { binding: details; }

When the details binding applies to a details element, the element is expected to render
as a 'block' box with its 'padding-left' property set to '40px'. The element's shadow tree is
expected to take a child element that matches the selector :bound-
element > legend:first-child and place it in a first 'block' box container, and then take
the remaining child nodes and place them in a later 'block' box container.

The first container is expected to contain at least one line box, and that line box is
expected to contain a triangle widget, horizontally positioned within the left padding of the
details element. That widget is expected to allow the user to request that the details be
shown or hidden.

The later container is expected to have its 'overflow' property set to 'hidden'. When the
details element has an open attribute, the later container is expected to have its 'height'
set to 'auto'; when it does not, the later container is expected to have its 'height' set to 0.

11.4.4 The input element as a text entry widget

@namespace url(http://www.w3.org/1999/xhtml);

input { binding: input-textfield; }
input[type=password] { binding: input-password; }

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 878 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 878 from 931

/* later rules override this for other values of type="" */

When the input-textfield binding applies to an input element whose type attribute is in the
Text, Search, Telephone, URL, or E-mail state, the element is expected to render as an
'inline-block' box rendered as a text field.

When the input-password binding applies, to an input element whose type attribute is in
the Password state, the element is expected to render as an 'inline-block' box rendered as
a text field whose contents are obscured.

If an input element whose type attribute is in one of the above states has a size attribute,
and parsing that attribute's value using the rules for parsing non-negative integers doesn't
generate an error, then the user agent is expected to use the attribute as a presentational
hint for the 'width' property on the element, with the value obtained from applying the
converting a character width to pixels algorithm to the value of the attribute.

If an input element whose type attribute is in one of the above states does not have a
size attribute, then the user agent is expected to act as if it had a user-agent-level style
sheet rule setting the 'width' property on the element to the value obtained from applying
the converting a character width to pixels algorithm to the number 20.

The converting a character width to pixels algorithm returns (size-1)×avg + max, where
size is the character width to convert, avg is the average character width of the primary
font for the element for which the algorithm is being run, in pixels, and max is the
maximum character width of that same font, also in pixels. (The element's 'letter-spacing'
property does not affect the result.)

11.4.5 The input element as domain-specific widgets

@namespace url(http://www.w3.org/1999/xhtml);

input[type=datetime] { binding: input-datetime; }
input[type=date] { binding: input-date; }
input[type=month] { binding: input-month; }
input[type=week] { binding: input-week; }
input[type=time] { binding: input-time; }
input[type=datetime-local] { binding: input-datetime-local; }
input[type=number] { binding: input-number; }

When the input-datetime binding applies to an input element whose type attribute is in
the Date and Time state, the element is expected to render as an 'inline-block' box
depicting a Date and Time control.

When the input-date binding applies to an input element whose type attribute is in the
Date state, the element is expected to render as an 'inline-block' box depicting a Date
control.

When the input-month binding applies to an input element whose type attribute is in the
Month state, the element is expected to render as an 'inline-block' box depicting a Month
control.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 879 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 879 from 931

When the input-week binding applies to an input element whose type attribute is in the
Week state, the element is expected to render as an 'inline-block' box depicting a Week
control.

When the input-time binding applies to an input element whose type attribute is in the
Time state, the element is expected to render as an 'inline-block' box depicting a Time
control.

When the input-datetime-local binding applies to an input element whose type attribute is
in the Local Date and Time state, the element is expected to render as an 'inline-block'
box depicting a Local Date and Time control.

When the input-number binding applies to an input element whose type attribute is in the
Number state, the element is expected to render as an 'inline-block' box depicting a
Number control.

These controls are all expected to be about one line high, and about as wide as necessary
to show the widest possible value.

11.4.6 The input element as a range control

@namespace url(http://www.w3.org/1999/xhtml);

input[type=range] { binding: input-range; }

When the input-range binding applies to an input element whose type attribute is in the
Range state, the element is expected to render as an 'inline-block' box depicting a slider
control.

When the control is wider than it is tall (or square), the control is expected to be a
horizontal slider, with the lowest value on the right if the 'direction' property on this element
has a computed value of 'rtl', and on the left otherwise. When the control is taller than it is
wide, it is expected to be a vertical slider, with the lowest value on the bottom.

Predefined suggested values (provided by the list attribute) are expected to be shown as
tick marks on the slider, which the slider can snap to.

11.4.7 The input element as a color well

@namespace url(http://www.w3.org/1999/xhtml);

input[type=color] { binding: input-color; }

When the input-color binding applies to an input element whose type attribute is in the
Color state, the element is expected to render as an 'inline-block' box depicting a color
well, which, when activated, provides the user with a color picker (e.g. a color wheel or
color palette) from which the color can be changed.

Predefined suggested values (provided by the list attribute) are expected to be shown in
the color picker interface, not on the color well itself.

11.4.8 The input element as a check box and radio button widgets

@namespace url(http://www.w3.org/1999/xhtml);

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 880 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 880 from 931

input[type=checkbox] { binding: input-checkbox; }
input[type=radio] { binding: input-radio; }

When the input-checkbox binding applies to an input element whose type attribute is in
the Checkbox state, the element is expected to render as an 'inline-block' box containing a
single check box control, with no label.

When the input-radio binding applies to an input element whose type attribute is in the
Radio Button state, the element is expected to render as an 'inline-block' box containing a
single radio button control, with no label.

11.4.9 The input element as a file upload control

@namespace url(http://www.w3.org/1999/xhtml);

input[type=file] { binding: input-file; }

When the input-file binding applies to an input element whose type attribute is in the File
Upload state, the element is expected to render as an 'inline-block' box containing a span
of text giving the filename(s) of the selected files, if any, followed by a button that, when
activated, provides the user with a file picker from which the selection can be changed.

11.4.10 The input element as a button

@namespace url(http://www.w3.org/1999/xhtml);

input[type=submit], input[type=reset], input[type=button] {
 binding: input-button;
}

When the input-button binding applies to an input element whose type attribute is in the
Submit Button, Reset Button, or Button state, the element is expected to render as an
'inline-block' box rendered as a button, about one line high, containing the contents of the
element's value attribute, if any, or text derived from the element's type attribute in a user-
agent-defined (and probably locale-specific) fashion, if not.

11.4.11 The marquee element

Status: First draft

@namespace url(http://www.w3.org/1999/xhtml);

marquee {
 binding: marquee;
}

When the marquee binding applies to a marquee element, while the element is turned on,
the element is expected to render in an animated fashion according to its attributes as
follows:

If the element's behavior attribute is in the scroll state

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 881 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 881 from 931

Slide the contents of the element in the direction described by the direction
attribute as defined below, such that it begins off the start side of the marquee, and
ends flush with the inner end side.

For example, if the direction attribute is left (the default), then the contents
would start such that their left edge are off the side of the right edge of the
marquee's content area, and the contents would then slide up to the point
where the left edge of the contents are flush with the left inner edge of the
marquee's content area.

Once the animation has ended, the user agent is expected to increment the
marquee current loop index. If the element is still turned on after this, then the user
agent is expected to restart the animation.

If the element's behavior attribute is in the slide state
Slide the contents of the element in the direction described by the direction
attribute as defined below, such that it begins off the start side of the marquee, and
ends off the end side of the marquee.

For example, if the direction attribute is left (the default), then the contents
would start such that their left edge are off the side of the right edge of the
marquee's content area, and the contents would then slide up to the point
where the right edge of the contents are flush with the left inner edge of the
marquee's content area.

Once the animation has ended, the user agent is expected to increment the
marquee current loop index. If the element is still turned on after this, then the user
agent is expected to restart the animation.

If the element's behavior attribute is in the alternate state
When the marquee current loop index is even (or zero), slide the contents of the
element in the direction described by the direction attribute as defined below,
such that it begins flush with the start side of the marquee, and ends flush with the
end side of the marquee.

When the marquee current loop index is odd, slide the contents of the element in
the opposite direction than that described by the direction attribute as defined
below, such that it begins flush with the end side of the marquee, and ends flush
with the start side of the marquee.

For example, if the direction attribute is left (the default), then the contents
would with their right edge flush with the right inner edge of the marquee's
content area, and the contents would then slide up to the point where the left
edge of the contents are flush with the left inner edge of the marquee's content
area.

Once the animation has ended, the user agent is expected to increment the
marquee current loop index. If the element is still turned on after this, then the user
agent is expected to continue the animation.

The direction attribute has the meanings described in the following table:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 882 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 882 from 931

direction attribute
state

Direction of
animation

Start
edge

End
edge

Opposite direction

left ← Right to left Right Left → Left to Right
right → Left to Right Left Right ← Right to left
up ↑ Up (Bottom to Top) Bottom Top ↓ Down (Top to

Bottom)
down ↓ Down (Top to

Bottom)
Top Bottom ↑ Up (Bottom to Top)

In any case, the animation should proceed such that there is a delay given by the
marquee scroll interval between each frame, and such that the content moves at most the
distance given by the marquee scroll distance with each frame.

When a marquee element has a bgcolor attribute set, the value is expected to be parsed
using the rules for parsing a legacy color value, and if that does not return an error, the
user agent is expected to treat the attribute as a presentational hint setting the element's
'background-color' property to the resulting color.

The width and height attributes on a marquee element map to the dimension properties
'width' and 'height' on the element respectively.

The intrinsic height of a marquee element with its direction attribute in the up or down
states is 200 CSS pixels.

The vspace attribute of a marquee element maps to the dimension properties 'margin-top'
and 'margin-bottom' on the element. The hspace attribute of a marquee element maps to
the dimension properties 'margin-left' and 'margin-right' on the element.

The 'overflow' property on the marquee element is expected to be ignored; overflow is
expected to always be hidden.

11.4.12 The meter element

@namespace url(http://www.w3.org/1999/xhtml);

meter {
 binding: meter;
}

When the meter binding applies to a meter element, the element is expected to render as
an 'inline-block' box with a 'height' of '1em' and a 'width' of '5em', a 'vertical-align' of '-
0.2em', and with its contents depicting a gauge.

When the element is wider than it is tall (or square), the depiction is expected to be of a
horizontal gauge, with the minimum value on the right if the 'direction' property on this
element has a computed value of 'rtl', and on the left otherwise. When the element is taller
than it is wide, it is expected to depict a vertical gauge, with the minimum value on the
bottom.

User agents are expected to use a presentation consistent with platform conventions for
gauges, if any.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 883 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 883 from 931

Requirements for what must be depicted in the gauge are included in the definition
of the meter element.

11.4.13 The progress element

@namespace url(http://www.w3.org/1999/xhtml);

progress {
 binding: progress;
}

When the progress binding applies to a progress element, the element is expected to
render as an 'inline-block' box with a 'height' of '1em' and a 'width' of '10em', a 'vertical-
align' of '-0.2em', and with its contents depicting a horizontal progress bar, with the start
on the right and the end on the left if the 'direction' property on this element has a
computed value of 'rtl', and with the start on the left and the end on the right otherwise.

User agents are expected to use a presentation consistent with platform conventions for
progress bars. In particular, user agents are expected to use different presentations for
determinate and indeterminate progress bars. User agents are also expected to vary the
presentation based on the dimensions of the element.

For example, on some platforms for showing indeterminate progress there is an
asynchronous progress indicator with square dimensions, which could be used when
the element is square, and an indeterminate progress bar, which could be used when
the element is wide.

Requirements for how to determine if the progress bar is determinate or
indeterminate, and what progress a determinate progress bar is to show, are
included in the definition of the progress element.

11.4.14 The select element

@namespace url(http://www.w3.org/1999/xhtml);

select {
 binding: select;
}

When the select binding applies to a select element whose multiple attribute is present,
the element is expected to render as a multi-select list box.

When the select binding applies to a select element whose multiple attribute is absent,
and the element's size attribute specifies a value greater than 1, the element is expected
to render as a single-select list box.

When the element renders as a list box, it is expected to render as an 'inline-block' box
whose 'height' is the height necessary to contain as many rows for items as specified by
the element's size attribute, or four rows if the attribute is absent, and whose 'width' is the
width of the select's labels plus the width of a scrollbar.

When the select binding applies to a select element whose multiple attribute is absent,
and the element's size attribute is either absent or specifies either no value (an error), or a

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 884 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 884 from 931

value less than or equal to 1, the element is expected to render as a one-line drop down
box whose width is the width of the select's labels.

In either case (list box or drop-down box), the element's items are expected to be the
element's list of options, with the element's optgroup element children providing headers
for groups of options where applicable.

The width of the select's labels is the wider of the width necessary to render the widest
optgroup, and the width necessary to render the widest option element in the element's
list of options (including its indent, if any).

An optgroup element is expected to be rendered by displaying the element's label
attribute.

An option element is expected to be rendered by displaying the element's label, indented
under its optgroup element if it has one.

11.4.15 The textarea element

@namespace url(http://www.w3.org/1999/xhtml);

textarea { binding: textarea; }

When the textarea binding applies to a textarea element, the element is expected to
render as an 'inline-block' box rendered as a multiline text field.

If the element has a cols attribute, and parsing that attribute's value using the rules for
parsing non-negative integers doesn't generate an error, then the user agent is expected
to use the attribute as a presentational hint for the 'width' property on the element, with the
value being the textarea effective width (as defined below). Otherwise, the user agent is
expected to act as if it had a user-agent-level style sheet rule setting the 'width' property
on the element to the textarea effective width.

The textarea effective width of a textarea element is size×avg + sbw, where size is the
element's character width, avg is the average character width of the primary font of the
element, in CSS pixels, and sbw is the width of a scroll bar, in CSS pixels. (The element's
'letter-spacing' property does not affect the result.)

If the element has a rows attribute, and parsing that attribute's value using the rules for
parsing non-negative integers doesn't generate an error, then the user agent is expected
to use the attribute as a presentational hint for the 'height' property on the element, with
the value being the textarea effective height (as defined below). Otherwise, the user agent
is expected to act as if it had a user-agent-level style sheet rule setting the 'height'
property on the element to the textarea effective height.

The textarea effective height of a textarea element is the height in CSS pixels of the
number of lines specified the element's character height, plus the height of a scrollbar in
CSS pixels.

For historical reasons, if the element has a wrap attribute whose value is an ASCII case-
insensitive match for the string "off", then the user agent is expected to not wrap the
rendered value; otherwise, the value of the control is expected to be wrapped to the width
of the control.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 885 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 885 from 931

11.4.16 The keygen element

@namespace url(http://www.w3.org/1999/xhtml);

keygen { binding: keygen; }

When the keygen binding applies to a keygen element, the element is expected to render
as an 'inline-block' box containing a user interface to configure the key pair to be
generated.

11.4.17 The time element

@namespace url(http://www.w3.org/1999/xhtml);

time:empty { binding: time; }

When the time binding applies to a time element, the element is expected to render as if it
contained text conveying the date (if known), time (if known), and time zone (if known)
represented by the element, in the fashion most convenient for the user.

11.5 Frames and framesets

When an html element's second child element is a frameset element, the user agent is
expected to render the frameset element as described below across the surface of the
view, instead of applying the usual CSS rendering rules.

When rendering a frameset on a surface, the user agent is expected to use the following
layout algorithm:

1. The cols and rows variables are lists of zero or more pairs consisting of a number
and a unit, the unit being one of percentage, relative, and absolute.

Use the rules for parsing a list of dimensions to parse the value of the element's
cols attribute, if there is one. Let cols be the result, or an empty list if there is no
such attribute.

Use the rules for parsing a list of dimensions to parse the value of the element's
rows attribute, if there is one. Let rows be the result, or an empty list if there is no
such attribute.

2. For any of the entries in cols or rows that have the number zero and the unit
relative, change the entry's number to one.

3. If cols has no entries, then add a single entry consisting of the value 1 and the unit
relative to cols.

If rows has no entries, then add a single entry consisting of the value 1 and the unit
relative to rows.

4. Invoke the algorithm defined below to convert a list of dimensions to a list of pixel
values using cols as the input list, and the width of the surface that the frameset is
being rendered into, in CSS pixels, as the input dimension. Let sized cols be the
resulting list.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 886 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 886 from 931

Invoke the algorithm defined below to convert a list of dimensions to a list of pixel
values using rows as the input list, and the height of the surface that the frameset
is being rendered into, in CSS pixels, as the input dimension. Let sized rows be the
resulting list.

5. Split the surface into a grid of w×h rectangles, where w is the number of entries in
sized cols and h is the number of entries in sized rows.

Size the columns so that each column in the grid is as many CSS pixels wide as
the corresponding entry in the sized cols list.

Size the rows so that each row in the grid is as many CSS pixels high as the
corresponding entry in the sized rows list.

6. Let children be the list of frame and frameset elements that are children of the
frameset element for which the algorithm was invoked.

7. For each row of the grid of rectangles created in the previous step, from top to
bottom, run these substeps:

1. For each rectangle in the row, from left to right, run these substeps:

1. If there are any elements left in children, take the first element in the
list, and assign it to the rectangle.

If this is a frameset element, then recurse the entire frameset layout
algorithm for that frameset element, with the rectangle as the surface.

Otherwise, it is a frame element; create a nested browsing context
sized to fit the rectangle.

2. If there are any elements left in children, remove the first element
from children.

8. If the frameset element has a border, draw an outer set of borders around the
rectangles, using the element's frame border color.

For each rectangle, if there is an element assigned to that rectangle, and that
element has a border, draw an inner set of borders around that rectangle, using the
element's frame border color.

For each (visible) border that does not abut a rectangle that is assigned a frame
element with a noresize attribute (including rectangles in further nested frameset
elements), the user agent is expected to allow the user to move the border, resizing
the rectangles within, keeping the proportions of any nested frameset grids.

A frameset or frame element has a border if the following algorithm returns true:

1. If the element has a frameborder attribute whose value is not the empty
string and whose first character is either a U+0031 DIGIT ONE (1), a
U+0079 LATIN SMALL LETTER Y, or a U+0059 LATIN CAPITAL LETTER
Y, then return true.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 887 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 887 from 931

2. Otherwise, if the element has a frameborder attribute, return false.

3. Otherwise, if the element has a parent element that is a frameset element,
then return true if that element has a border, and false if it does not.

4. Otherwise, return true.

The frame border color of a frameset or frame element is the color obtained from
the following algorithm:

5. If the element has a bordercolor attribute, and applying the rules for parsing
a legacy color value to that attribute's value does not result in an error, then
return the color so obtained.

6. Otherwise, if the element has a parent element that is a frameset element,
then the frame border color of that element.

7. Otherwise, return gray.

The algorithm to convert a list of dimensions to a list of pixel values consists of the
following steps:

1. Let input list be the list of numbers and units passed to the algorithm.

Let output list be a list of numbers the same length as input list, all zero.

Entries in output list correspond to the entries in input list that have the same
position.

2. Let input dimension be the size passed to the algorithm.

3. Let count percentage be the number of entries in input list whose unit is
percentage.

Let total percentage be the sum of all the numbers in input list whose unit is
percentage.

Let count relative be the number of entries in input list whose unit is relative.

Let total relative be the sum of all the numbers in input list whose unit is relative.

Let count absolute be the number of entries in input list whose unit is absolute.

Let total absolute be the sum of all the numbers in input list whose unit is absolute.

Let remaining space be the value of input dimension.

4. If total absolute is greater than remaining space, then for each entry in input list
whose unit is absolute, set the corresponding value in output list to the number of
the entry in input list multiplied by remaining space and divided by total absolute.
Then, set remaining space to zero.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 888 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 888 from 931

Otherwise, for each entry in input list whose unit is absolute, set the corresponding
value in output list to the number of the entry in input list. Then, decrement
remaining space by total absolute.

5. If total percentage multiplied by the input dimension and divided by 100 is greater
than remaining space, then for each entry in input list whose unit is percentage, set
the corresponding value in output list to the number of the entry in input list
multiplied by remaining space and divided by total percentage. Then, set remaining
space to zero.

Otherwise, for each entry in input list whose unit is percentage, set the
corresponding value in output list to the number of the entry in input list multiplied
by the input dimension and divided by 100. Then, decrement remaining space by
total percentage multiplied by the input dimension and divided by 100.

6. For each entry in input list whose unit is relative, set the corresponding value in
output list to the number of the entry in input list multiplied by remaining space and
divided by total relative.

7. Return output list.

User agents working with integer values for frame widths (as opposed to user agents that
can lay frames out with subpixel accuracy) are expected to distribute the remainder first
the last entry whose unit is relative, then equally (not proportionally) to each entry whose
unit is percentage, then equally (not proportionally) to each entry whose unit is absolute,
and finally, failing all else, to the last entry.

11.6 Interactive media

11.6.1 Links, forms, and navigation

User agents are expected to allow the user to control aspects of hyperlink activation and
form submission, such as which browsing context is to be used for the subsequent
navigation.

User agents are expected to allow users to discover the destination of hyperlinks and of
forms before triggering their navigation.

User agents are expected to inform the user of whether a hyperlink includes hyperlink
auditing, and to let them know at a minimum which domains will be contacted as part of
such auditing.

User agents are expected to allow users to navigate browsing contexts to the resources
indicated by the cite attributes on q, blockquote, section, article, ins, and del
elements.

User agents are expected to surface hyperlinks created by link elements in their user
interface.

While link elements that create hyperlinks will match the ':link' or ':visited' pseudo-
classes, will react to clicks if visible, and so forth, this does not extend to any
browser interface constructs that expose those same links. Activating a link

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 889 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 889 from 931

through the browser's interface, rather than in the page itself, does not trigger click
events and the like.

11.6.2 The mark element

User agents are expected to allow the user to cycle through all the mark elements in a
Document. User agents are also expected to bring their existence to the user's attention,
even when they are off-screen, e.g. by highlighting portions of the scroll bar that represent
portions of the document that contain mark elements.

11.6.3 The title attribute

Given an element (e.g. the element designated by the mouse cursor), if the element, or
one of its ancestors, has a title attribute, and the nearest such attribute has a value that
is not the empty string, it is expected that the user agent will expose the contents of that
attribute as a tooltip.

U+000A LINE FEED (LF) characters are expected to cause line breaks in the tooltip.

11.6.4 Editing hosts

The current text editing caret (the one at the caret position in a focused editing host) is
expected to act like an inline replaced element with the vertical dimensions of the caret
and with zero width for the purposes of the CSS rendering model.

This means that even an empty block can have the caret inside it, and that when the
caret is in such an element, it prevents margins from collapsing through the
element.

11.7 Print media

User agents are expected to allow the user to request the opportunity to obtain a
physical form (or a representation of a physical form) of a Document. For example,
selecting the option to print a page or convert it to PDF format.

When the user actually obtains a physical form (or a representation of a physical form) of
a Document, the user agent is expected to create a new view with the print media, render
the result, and the discard the view.

11.8 Interaction with CSS

11.8.1 Selectors

Attribute and element names of HTML elements in HTML documents must be treated as
ASCII case-insensitive.

Classes from the class attribute of HTML elements in documents that are in quirks mode
must be treated as ASCII case-insensitive.

Attribute selectors on an HTML element in an HTML document must treat the values of
attributes with the following names as ASCII case-insensitive:

• accept
• accept-charset

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 890 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 890 from 931

• align
• alink
• axis
• bgcolor
• charset
• checked
• clear
• codetype
• color
• compact
• declare
• defer
• dir
• direction
• disabled
• enctype
• face
• frame
• hreflang
• http-equiv
• lang
• language
• link
• media
• method
• multiple
• nohref
• noresize
• noshade
• nowrap
• readonly
• rel
• rev
• rules
• scope
• scrolling
• selected
• shape
• target
• text
• type
• valign
• valuetype
• vlink

All other HTML elements and all attribute names and values on HTML elements must be
treated as case-sensitive.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 891 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 891 from 931

12 Obsolete features

12.1 Obsolete but conforming features

Features listed in this section will trigger warnings in conformance checkers.

In the HTML syntax, authors should not specify DOCTYPEs that get parsed as obsolete
permitted DOCTYPEs.

Authors should not specify an http-equiv attribute in the Content Language state on a
meta element. The lang attribute should be used instead.

Authors should not specify a border attribute on an img element. If the attribute is present,
its value must be the string "0". CSS should be used instead.

Authors should not specify a language attribute on a script element. If the attribute is
present, its value must be an ASCII case-insensitive match for the string "JavaScript" and
either the type attribute must be omitted or its value must be an ASCII case-insensitive
match for the string "text/javascript". The attribute should be entirely omitted instead
(with the value "JavaScript", it has no effect), or replaced with use of the type attribute.

Authors should not specify the name attribute on a elements. If the attribute is present, its
value must not be the empty string. In earlier versions of the language, this attribute
served a similar role as the id attribute. The id attribute should be used instead.

The summary attribute, defined in the table section, will also trigger a warning.

12.1.1 Warnings for obsolete but conforming features

To ease the transition from HTML 4 Transitional documents to the language defined in this
specification, and to discourage certain features that are only allowed in very few
circumstances, conformance checkers are required to warn the user when the following
features are used in a document. These are generally old obsolete features that have no
effect, and are allowed only to distinguish between likely mistakes (regular conformance
errors) and mere vestigial markup or unusual and discouraged practices (these warnings).

The following features must be categorized as described above:

• The presence of an obsolete permitted DOCTYPE.

• The presence of a meta element with an http-equiv attribute in the Content
Language state.

• The presence of a border attribute on an img element if its value is the string "0".

• The presence of a language attribute on a script element if its value is an ASCII
case-insensitive match for the string "JavaScript" and if there is no type attribute or
there is and its value is an ASCII case-insensitive match for the string
"text/javascript".

• The presence of a name attribute on an a element, if its value is not the empty string.

• The presence of a summary attribute on a table element.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 892 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 892 from 931

Conformance checkers must distinguish between pages that have no conformance errors
and have none of these obsolete features, and pages that have no conformance errors
but do have some of these obsolete features.

For example, a validator could report some pages as "Valid HTML5" and others as
"Valid HTML5 with warnings".

12.2 Non-conforming features

Elements in the following list are entirely obsolete, and must not be used by authors:

applet
Use embed or object instead.

acronym
Use abbr instead.

dir
Use ul instead.

frame
frameset
noframes

Either use iframe and CSS instead, or use server-side includes to generate
complete pages with the various invariant parts merged in.

isindex
Use an explicit form and text field combination instead.

listing
xmp

Use pre and code instead.

noembed
Use object instead of embed when fallback is necessary.

plaintext
Use the "text/plain" MIME type instead.

basefont
big
blink
center
font
marquee
s
spacer
strike
tt
u

Use CSS instead.

The following attributes are obsolete (though the elements are still part of the language),
and must not be used by authors:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 893 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 893 from 931

charset on a elements
charset on link elements

Use an HTTP Content-Type header on the linked resource instead.

coords on a elements
shape on a elements

Use area instead of a for image maps.

rev on a elements
rev on link elements

Use the rel attribute instead, with an opposite term. (For example, instead of
rev="made", use rel="author".)

name on a elements (except as noted in the previous section)
name on img elements

Use the id attribute instead.

nohref on area elements
Omitting the href attribute is sufficient; the nohref attribute is unnecessary. Omit it
altogether.

profile on head elements
When used for declaring which meta terms are used in the document, unnecessary;
omit it altogether, and register the names.

When used for triggering specific user agent behaviors: use a link element
instead.

version on html elements
Unnecessary. Omit it altogether.

usemap on input elements
Use img instead of input for image maps.

longdesc on iframe elements
longdesc on img elements

Use a regular a element to link to the description.

target on link elements
Unnecessary. Omit it altogether.

scheme on meta elements
Use only one scheme per field, or make the scheme declaration part of the value.

archive on object elements
code on object elements
codebase on object elements
codetype on object elements

Use the data and type attributes to invoke plugins.

declare on object elements
Repeat the object element completely each time the resource is to be reused.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 894 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 894 from 931

standby on object elements
Optimise the linked resource so that it loads quickly or, at least, incrementally.

type on param elements
valuetype on param elements

Use the name and value attributes without declaring value types.

language on script elements (except as noted in the previous section)
Use the type attribute instead.

abbr on td and th elements
Use text that begins in an unambiguous and terse manner, and include any more
elaborate text after that.

axis on td and th elements
Use the scope attribute.

alink on body elements
background on body elements
bgcolor on body elements
link on body elements
text on body elements
vlink on body elements
clear on br elements
align on caption elements
align on col elements
char on col elements
charoff on col elements
valign on col elements
width on col elements
align on div elements
compact on dl elements
align on hr elements
noshade on hr elements
size on hr elements
width on hr elements
align on h1—h6 elements
align on iframe elements
frameborder on iframe elements
marginheight on iframe elements
marginwidth on iframe elements
scrolling on iframe elements
align on input elements
align on img elements
border on img elements (except as noted in the previous section)
hspace on img elements
vspace on img elements
align on legend elements
type on li elements
compact on menu elements

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 895 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 895 from 931

align on object elements
border on object elements
hspace on object elements
vspace on object elements
compact on ol elements
type on ol elements
align on p elements
width on pre elements
align on table elements
bgcolor on table elements
border on table elements
cellpadding on table elements
cellspacing on table elements
frame on table elements
rules on table elements
width on table elements
align on tbody, thead, and tfoot elements
char on tbody, thead, and tfoot elements
charoff on tbody, thead, and tfoot elements
valign on tbody, thead, and tfoot elements
align on td and th elements
bgcolor on td and th elements
char on td and th elements
charoff on td and th elements
height on td and th elements
nowrap on td and th elements
valign on td and th elements
width on td and th elements
align on tr elements
bgcolor on tr elements
char on tr elements
charoff on tr elements
valign on tr elements
compact on ul elements
type on ul elements

Use CSS instead.

12.3 Requirements for implementations

12.3.1 The applet element

Status: First draft

The applet element is a Java-specific variant of the embed element. The applet element is
now obsoleted so that all extension frameworks (Java, .NET, Flash, etc) are handled in a
consistent manner.

When the sandboxed plugins browsing context flag is set on the browsing context for
which the applet element's document is the active document, and when the element has
an ancestor media element, and when the element has an ancestor object element that is
not showing its fallback content, the element must be ignored (it represents nothing).

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 896 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 896 from 931

Otherwise, define how the element works, if supported .

The applet element must implement the HTMLAppletElement interface.

interface HTMLAppletElement : HTMLElement {
 attribute DOMString align;
 attribute DOMString alt;
 attribute DOMString archive;
 attribute DOMString code;
 attribute DOMString codeBase;
 attribute DOMString height;
 attribute unsigned long hspace;
 attribute DOMString name;
 attribute DOMString _object; // the underscore is not part of the
identifier
 attribute unsigned long vspace;
 attribute DOMString width;
};

The align, alt, archive, code, height, hspace, name, object, vspace, and width DOM
attributes must reflect the respective content attributes of the same name.

The codeBase DOM attribute must reflect the codebase content attribute.

12.3.2 The marquee element

The marquee element is a presentational element that animates content. CSS transitions
and animations are a more appropriate mechanism.

The task source for tasks mentioned in this section is the DOM manipulation task source.

The marquee element must implement the HTMLMarqueeElement interface.

interface HTMLMarqueeElement : HTMLElement {
 attribute DOMString behavior;
 attribute DOMString bgColor;
 attribute DOMString direction;
 attribute DOMString height;
 attribute unsigned long hspace;
 attribute long loop;
 attribute unsigned long scrollAmount;
 attribute unsigned long scrollDelay;
 attribute DOMString trueSpeed;
 attribute unsigned long vspace;
 attribute DOMString width;

 attribute Function onbounce;
 attribute Function onfinish;
 attribute Function onstart;

 void start();
 void stop();
};

A marquee element can be turned on or turned off. When it is created, it is turned on.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 897 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 897 from 931

When the start() method is called, the marquee element must be turned on.

When the stop() method is called, the marquee element must be turned off.

When a marquee element is created, the user agent must queue a task to fire a simple
event called start at the element.

The behavior content attribute on marquee elements is an enumerated attribute with the
following keywords (all non-conforming):

Keyword State
scroll scroll
slide slide
alternate alternate

The missing value default is the scroll state.

The direction content attribute on marquee elements is an enumerated attribute with the
following keywords (all non-conforming):

Keyword State
left left
right right
up up
down down

The missing value default is the left state.

The truespeed content attribute on marquee elements is an enumerated attribute with the
following keywords (all non-conforming):

Keyword State
true true
false false

The missing value default is the false state.

A marquee element has a marquee scroll interval, which is obtained as follows:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 898 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 898 from 931

1. If the element has a scrolldelay attribute, and parsing its value using the rules for
parsing non-negative integers does not return an error, then let delay be the parsed
value. Otherwise, let delay be 85.

2. If the element does not have a truespeed attribute, or if it does but that attribute is
in the false state, and the delay value is less than 60, then let delay be 60 instead.

3. The marquee scroll interval is delay, interpreted in milliseconds.

A marquee element has a marquee scroll distance, which, if the element has a
scrollamount attribute, and parsing its value using the rules for parsing non-negative
integers does not return an error, is the parsed value interpreted in CSS pixels, and
otherwise is 6 CSS pixels.

A marquee element has a marquee loop count, which, if the element has a loop attribute,
and parsing its value using the rules for parsing integers does not return an error or a
number less than 1, is the parsed value, and otherwise is −1.

The loop DOM attribute, on getting, must return the element's marquee loop count; and on
setting, if the new value is different than the element's marquee loop count and either
greater than zero or equal to −1, must set the element's loop content attribute (adding it if
necessary) to the valid integer that represents the new value. (Other values are ignored.)

A marquee element also has a marquee current loop index, which is zero when the
element is created.

The rendering layer will occasionally increment the marquee current loop index, which
must cause the following steps to be run:

1. If the marquee loop count is −1, then abort these steps.

2. Increment the marquee current loop index by one.

3. If the marquee current loop index is now equal to or greater than the element's
marquee loop count, turn off the marquee element and queue a task to fire a simple
event called finish at the marquee element.

Otherwise, if the behavior attribute is in the alternate state, then queue a task to
fire a simple event called bounce at the marquee element.

Otherwise, queue a task to fire a simple event called start at the marquee element.

The following are the event handler attributes (and their corresponding event handler
event types) that must be supported, as content and DOM attributes, by marquee
elements:

event handler attribute Event handler event type

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 899 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 899 from 931

event handler attribute Event handler event type
onbounce bounce
onfinish finish
onstart start

The behavior, direction, height, hspace, vspace, and width DOM attributes must reflect
the respective content attributes of the same name.

The bgColor DOM attribute must reflect the bgcolor content attribute.

The scrollAmount DOM attribute must reflect the scrollamount content attribute. The
default value is 6.

The scrollDelay DOM attribute must reflect the scrolldelay content attribute. The default
value is 85.

The trueSpeed DOM attribute must reflect the truespeed content attribute.

12.3.3 Frames

The frameset element acts as the body element in documents that use frames.

The frameset element must implement the HTMLFrameSetElement interface.

interface HTMLFrameSetElement : HTMLElement {
 attribute DOMString cols;
 attribute DOMString rows;
 attribute Function onafterprint;
 attribute Function onbeforeprint;
 attribute Function onbeforeunload;
 attribute Function onblur;
 attribute Function onerror;
 attribute Function onfocus;
 attribute Function onhashchange;
 attribute Function onload;
 attribute Function onmessage;
 attribute Function onoffline;
 attribute Function ononline;
 attribute Function onpopstate;
 attribute Function onredo;
 attribute Function onresize;
 attribute Function onstorage;
 attribute Function onundo;
 attribute Function onunload;
};

The cols and rows DOM attributes of the frameset element must reflect the respective
content attributes of the same name.

The frameset element must support the following event handler content attributes
exposing the event handler attributes of the Window object:

• onafterprint
• onbeforeprint

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 900 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 900 from 931

• onbeforeunload
• onblur
• onerror
• onfocus
• onhashchange
• onload
• onmessage
• onoffline
• ononline
• onpopstate
• onredo
• onresize
• onstorage
• onundo
• onunload

The DOM interface also exposes event handler DOM attributes that mirror those on the
Window element.

The onblur, onerror, onfocus, and onload event handler attributes of the Window object,
exposed on the frameset element, shadow the generic event handler attributes with the
same names normally supported by HTML elements.

The frame element defines a nested browsing context similar to the iframe element, but
rendered within a frameset element.

When the browsing context is created, if a src attribute is present, the user agent must
resolve the value of that attribute, relative to the element, and if that is successful, must
then navigate the element's browsing context to the resulting absolute URL, with
replacement enabled, and with the frame element's document's browsing context as the
source browsing context.

Whenever the src attribute is set, the user agent must resolve the value of that attribute,
relative to the element, and if that is successful, the nested browsing context must be
navigated to the resulting absolute URL, with the frame element's document's browsing
context as the source browsing context.

When the browsing context is created, if a name attribute is present, the browsing context
name must be set to the value of this attribute; otherwise, the browsing context name
must be set to the empty string.

Whenever the name attribute is set, the nested browsing context's name must be changed
to the new value. If the attribute is removed, the browsing context name must be set to the
empty string.

When content loads in a frame, after any load events are fired within the content itself, the
user agent must fire a simple event called load at the frame element. When content fails
to load (e.g. due to a network error), then the user agent must fire a simple event called
error at the element instead.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 901 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 901 from 931

When there is an active parser in the frame, and when anything in the frame is delaying
the load event of the frame's browsing context's active document, the frame must delay
the load event of its document.

The frame element must implement the HTMLFrameElement interface.

interface HTMLFrameElement : HTMLElement {
 attribute DOMString frameBorder;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString name;
 attribute boolean noResize;
 attribute DOMString scrolling;
 attribute DOMString src;
 readonly attribute Document contentDocument;
};

The name, scrolling, and src DOM attributes of the frame element must reflect the
respective content attributes of the same name.

The frameBorder DOM attribute of the frame element must reflect the element's
frameborder content attribute.

The longDesc DOM attribute of the frame element must reflect the element's longdesc
content attribute.

The marginHeight DOM attribute of the frame element must reflect the element's
marginheight content attribute.

The marginWidth DOM attribute of the frame element must reflect the element's
marginwidth content attribute.

The noResize DOM attribute of the frame element must reflect the element's noresize
content attribute.

The contentDocument DOM attribute of the frame element must return the Document object
of the active document of the frame element's nested browsing context.

12.3.4 Other elements, attributes and APIs

User agents must treat acronym elements in a manner equivalent to abbr elements.

[Supplemental]
interface HTMLAnchorElement {
 attribute DOMString coords;
 attribute DOMString charset;
 attribute DOMString rev;
 attribute DOMString shape;
};

The coords, charset, rev, and shape DOM attributes of the a element must reflect the
respective content attributes of the same name.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 902 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 902 from 931

[Supplemental]
interface HTMLAreaElement {
 attribute boolean noHref;
};

The noHref DOM attribute of the area element must reflect the element's nohref content
attribute.

The basefont element must implement the HTMLBaseFontElement interface.

interface HTMLBaseFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute long size;
};

The color, face, and size DOM attributes of the basefont element must reflect the
respective content attributes of the same name.

[Supplemental]
interface HTMLBodyElement {
 attribute DOMString text;
 attribute DOMString bgColor;
 attribute DOMString background;
 attribute DOMString link;
 attribute DOMString vLink;
 attribute DOMString aLink;
};

The text DOM attribute of the body element must reflect the element's text content
attribute.

The bgColor DOM attribute of the body element must reflect the element's bgcolor content
attribute.

The background DOM attribute of the body element must reflect the element's background
content attribute. (The background content is not defined to contain a URL, despite rules
regarding its handling in the rendering section above.)

The link DOM attribute of the body element must reflect the element's link content
attribute.

The aLink DOM attribute of the body element must reflect the element's alink content
attribute.

The vLink DOM attribute of the body element must reflect the element's vlink content
attribute.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 903 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 903 from 931

[Supplemental]
interface HTMLBRElement {
 attribute DOMString clear;
};

The clear DOM attribute of the br element must reflect the content attribute of the same
name.

[Supplemental]
interface HTMLTableCaptionElement {
 attribute DOMString align;
};

The align DOM attribute of the caption element must reflect the content attribute of the
same name.

[Supplemental]
interface HTMLTableColElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
 attribute DOMString width;
};

The align and width DOM attributes of the col element must reflect the respective
content attributes of the same name.

The ch DOM attribute of the col element must reflect the element's char content attribute.

The chOff DOM attribute of the col element must reflect the element's charoff content
attribute.

The vAlign DOM attribute of the col element must reflect the element's valign content
attribute.

User agents must treat dir elements in a manner equivalent to ul elements.

The dir element must implement the HTMLDirectoryElement interface.

interface HTMLDirectoryElement : HTMLElement {
 attribute DOMString compact;
};

The compact DOM attribute of the dir element must reflect the content attribute of the
same name.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 904 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 904 from 931

[Supplemental]
interface HTMLDivElement {
 attribute DOMString align;
};

The align DOM attribute of the div element must reflect the content attribute of the same
name.

[Supplemental]
interface HTMLDListElement {
 attribute DOMString compact;
};

The compact DOM attribute of the dl element must reflect the content attribute of the same
name.

The font element must implement the HTMLFontElement interface.

interface HTMLFontElement : HTMLElement {
 attribute DOMString color;
 attribute DOMString face;
 attribute DOMString size;
};

The color, face, and size DOM attributes of the font element must reflect the respective
content attributes of the same name.

[Supplemental]
interface HTMLHeadingElement {
 attribute DOMString align;
};

The align DOM attribute of the h1–h6 elements must reflect the content attribute of the
same name.

[Supplemental]
interface HTMLHeadElement {
 attribute DOMString profile;
};

The profile DOM attribute of the head element must reflect the content attribute of the
same name.

[Supplemental]
interface HTMLHRElement {
 attribute DOMString align;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 905 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 905 from 931

 attribute boolean noShade;
 attribute DOMString size;
 attribute DOMString width;
};

The align, size, and width DOM attributes of the hr element must reflect the respective
content attributes of the same name.

The noShade DOM attribute of the hr element must reflect the element's noshade content
attribute.

[Supplemental]
interface HTMLHtmlElement {
 attribute DOMString version;
};

The version DOM attribute of the html element must reflect the content attribute of the
same name.

[Supplemental]
interface HTMLIFrameElement {
 attribute DOMString align;
 attribute DOMString frameBorder;
 attribute DOMString longDesc;
 attribute DOMString marginHeight;
 attribute DOMString marginWidth;
 attribute DOMString scrolling;
};

The name and scrolling DOM attributes of the iframe element must reflect the respective
content attributes of the same name.

The frameBorder DOM attribute of the iframe element must reflect the element's
iframeborder content attribute.

The longDesc DOM attribute of the iframe element must reflect the element's longdesc
content attribute.

The marginHeight DOM attribute of the iframe element must reflect the element's
marginheight content attribute.

The marginWidth DOM attribute of the iframe element must reflect the element's
marginwidth content attribute.

[Supplemental]
interface HTMLImageElement {
 attribute DOMString name;
 attribute DOMString align;
 attribute DOMString border;
 attribute unsigned long hspace;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 906 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 906 from 931

 attribute DOMString longDesc;
 attribute unsigned long vspace;
};

The name, align, border, hspace, and vspace DOM attributes of the img element must
reflect the respective content attributes of the same name.

The longDesc DOM attribute of the img element must reflect the element's longdesc
content attribute.

[Supplemental]
interface HTMLInputElement {
 attribute DOMString align;
 attribute DOMString useMap;
};

The align DOM attribute of the input element must reflect the content attribute of the
same name.

The useMap DOM attribute of the input element must reflect the element's usemap content
attribute.

[Supplemental]
interface HTMLLegendElement {
 attribute DOMString align;
};

The align DOM attribute of the legend element must reflect the content attribute of the
same name.

[Supplemental]
interface HTMLLIElement {
 attribute DOMString type;
};

The type DOM attribute of the li element must reflect the content attribute of the same
name.

[Supplemental]
interface HTMLLinkElement {
 attribute DOMString charset;
 attribute DOMString rev;
 attribute DOMString target;
};

The charset, rev, and target DOM attributes of the link element must reflect the
respective content attributes of the same name.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 907 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 907 from 931

User agents must treat listing elements in a manner equivalent to pre elements.

[Supplemental]
interface HTMLMenuElement {
 attribute DOMString compact;
};

The compact DOM attribute of the menu element must reflect the content attribute of the
same name.

[Supplemental]
interface HTMLMetaElement {
 attribute DOMString scheme;
};

The scheme DOM attribute of the meta element must reflect the content attribute of the
same name.

[Supplemental]
interface HTMLObjectElement {
 attribute DOMString align;
 attribute DOMString archive;
 attribute DOMString border;
 attribute DOMString code;
 attribute DOMString codeBase;
 attribute DOMString codeType;
 attribute boolean declare;
 attribute unsigned long hspace;
 attribute DOMString standby;
 attribute unsigned long vspace;
};

The align, archive, border, code, declare, hspace, standby, and vspace DOM attributes of
the object element must reflect the respective content attributes of the same name.

The codeBase DOM attribute of the object element must reflect the element's codebase
content attribute.

The codeType DOM attribute of the object element must reflect the element's codetype
content attribute.

[Supplemental]
interface HTMLOListElement {
 attribute DOMString compact;
 attribute DOMString type;
};

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 908 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 908 from 931

The compact and type DOM attributes of the ol element must reflect the respective
content attributes of the same name.

[Supplemental]
interface HTMLParagraphElement {
 attribute DOMString align;
};

The align DOM attribute of the p element must reflect the content attribute of the same
name.

[Supplemental]
interface HTMLParamElement {
 attribute DOMString type;
 attribute DOMString valueType;
};

The type DOM attribute of the param element must reflect the content attribute of the same
name.

The valueType DOM attribute of the param element must reflect the element's valuetype
content attribute.

User agents must treat plaintext elements in a manner equivalent to pre elements.

[Supplemental]
interface HTMLPreElement {
 attribute unsigned long width;
};

The width DOM attribute of the pre element must reflect the content attribute of the same
name.

[Supplemental]
interface HTMLScriptElement {
 attribute DOMString event;
 attribute DOMString htmlFor;
};

The event and htmlFor DOM attributes of the script element must return the empty string
on getting, and do nothing on setting.

[Supplemental]
interface HTMLTableElement {
 attribute DOMString align;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 909 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 909 from 931

 attribute DOMString bgColor;
 attribute DOMString border;
 attribute DOMString cellPadding;
 attribute DOMString cellSpacing;
 attribute DOMString frame;
 attribute DOMString rules;
 attribute DOMString summary;
 attribute DOMString width;
};

The align, border, frame, rules, summary, and width, DOM attributes of the table element
must reflect the respective content attributes of the same name.

The bgColor DOM attribute of the table element must reflect the element's bgcolor
content attribute.

The cellPadding DOM attribute of the table element must reflect the element's
cellpadding content attribute.

The cellSpacing DOM attribute of the table element must reflect the element's
cellspacing content attribute.

[Supplemental]
interface HTMLTableSectionElement {
 attribute DOMString align;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
};

The align DOM attribute of the tbody, thead, and tfoot elements must reflect the content
attribute of the same name.

The ch DOM attribute of the tbody, thead, and tfoot elements must reflect the elements'
char content attributes.

The chOff DOM attribute of the tbody, thead, and tfoot elements must reflect the
elements' charoff content attributes.

The vAlign DOM attribute of the tbody, thead, and tfoot element must reflect the
elements' valign content attributes.

[Supplemental]
interface HTMLTableCellElement {
 attribute DOMString abbr;
 attribute DOMString align;
 attribute DOMString axis;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString height;
 attribute boolean noWrap;
 attribute DOMString vAlign;

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 910 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 910 from 931

 attribute DOMString width;
};

The abbr, align, axis, height, and width DOM attributes of the td and th elements must
reflect the respective content attributes of the same name.

The bgColor DOM attribute of the td and th elements must reflect the elements' bgcolor
content attributes.

The ch DOM attribute of the td and th elements must reflect the elements' char content
attributes.

The chOff DOM attribute of the td and th elements must reflect the elements' charoff
content attributes.

The noWrap DOM attribute of the td and th elements must reflect the elements' nowrap
content attributes.

The vAlign DOM attribute of the td and th element must reflect the elements' valign
content attributes.

[Supplemental]
interface HTMLTableRowElement {
 attribute DOMString align;
 attribute DOMString bgColor;
 attribute DOMString ch;
 attribute DOMString chOff;
 attribute DOMString vAlign;
};

The align DOM attribute of the tr element must reflect the content attribute of the same
name.

The bgColor DOM attribute of the tr element must reflect the element's bgcolor content
attribute.

The ch DOM attribute of the tr element must reflect the element's char content attribute.

The chOff DOM attribute of the tr element must reflect the element's charoff content
attribute.

The vAlign DOM attribute of the tr element must reflect the element's valign content
attribute.

[Supplemental]
interface HTMLUListElement {
 attribute DOMString compact;
 attribute DOMString type;
};

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 911 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 911 from 931

The compact and type DOM attributes of the ul element must reflect the respective
content attributes of the same name.

User agents must treat xmp elements in a manner equivalent to pre elements.

[Supplemental]
interface HTMLDocument {
 attribute DOMString fgColor;
 attribute DOMString bgColor;
 attribute DOMString linkColor;
 attribute DOMString vlinkColor;
 attribute DOMString alinkColor;

 readonly attribute HTMLCollection anchors;
 readonly attribute HTMLCollection applets;

 readonly attribute HTMLAllCollection all;
};

The attributes of the Document object listed in the first column of the following table must
reflect the content attribute on the body element with the name given in the corresponding
cell in the second column on the same row, if the body element is a body element (as
opposed to a frameset element). When there is no body element or if it is a frameset
element, the attributes must instead return the empty string on getting and do nothing on
setting.

DOM attribute Content attribute
fgColor text
bgColor bgcolor
linkColor link
vLinkColor vlink
aLinkColor alink

The anchors attribute must return an HTMLCollection rooted at the Document node, whose
filter matches only a elements with name attributes.

The applets attribute must return an HTMLCollection rooted at the Document node, whose
filter matches only applet elements.

The all attribute must return an HTMLAllCollection rooted at the Document node, whose
filter matches all elements.

The object returned for all has several unusual behaviors:

• The user agent must act as if the ToBoolean() operator in JavaScript converts the
object returned for all to the false value.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 912 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 912 from 931

• The user agent must act as if, for the purposes of the == and != operators in
JavaScript, the object returned for all is equal to the undefined value.

• The user agent must act such that the typeof operator in JavaScript returns the
string undefined when applied to the object returned for all.

These requirements are a willful violation of the JavaScript specification current at
the time of writing (ECMAScript edition 3). The JavaScript specification requires
that the ToBoolean() operator convert all objects to the true value, and does not
have provisions for objects acting as if they were undefined for the purposes of
certain operators. This violation is motivated by a desire for compatibility with two
classes of legacy content: one that uses the presence of document.all as a way to
detect legacy user agents, and one that only supports those legacy user agents and
uses the document.all object without testing for its presence first. [ECMA262]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 913 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 913 from 931

13 Things that you can't do with this specification because they are better handled
using other technologies that are further described herein

This section is non-normative.

There are certain features that are not handled by this specification because a client side
markup language is not the right level for them, or because the features exist in other
languages that can be integrated into this one. This section covers some of the more
common requests.

13.1 Localization

If you wish to create localized versions of an HTML application, the best solution is to
preprocess the files on the server, and then use HTTP content negotiation to serve the
appropriate language.

13.2 Declarative 3D scenes

Embedding 3D imagery into XHTML documents is the domain of X3D, or technologies
based on X3D that are namespace-aware.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 914 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 914 from 931

14 IANA considerations

Status: First draft

This registration is for community review and will be submitted to the IESG for review,
approval, and registration with IANA.

14.1 text/html
Type name:

text
Subtype name:

html
Required parameters:

No required parameters
Optional parameters:

charset
The charset parameter may be provided to definitively specify the document's
character encoding, overriding any character encoding declarations in the
document. The parameter's value must be the name of the character encoding
used to serialize the file, must be a valid character encoding name, and must be
the preferred name for that encoding. [IANACHARSET]

Encoding considerations:
See the section on character encoding declarations.

Security considerations:
Entire novels have been written about the security considerations that apply to
HTML documents. Many are listed in this document, to which the reader is referred
for more details. Some general concerns bear mentioning here, however:

HTML is scripted language, and has a large number of APIs (some of which are
described in this document). Script can expose the user to potential risks of
information leakage, credential leakage, cross-site scripting attacks, cross-site
request forgeries, and a host of other problems. While the designs in this
specification are intended to be safe if implemented correctly, a full implementation
is a massive undertaking and, as with any software, user agents are likely to have
security bugs.

Even without scripting, there are specific features in HTML which, for historical
reasons, are required for broad compatibility with legacy content but that expose
the user to unfortunate security problems. In particular, the img element can be
used in conjunction with some other features as a way to effect a port scan from
the user's location on the Internet. This can expose local network topologies that
the attacker would otherwise not be able to determine.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in
this specification.

Published specification:
This document is the relevant specification. Labeling a resource with the text/html
type asserts that the resource is an HTML document using the HTML syntax.

Applications that use this media type:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 915 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 915 from 931

Web browsers, tools for processing Web content, HTML authoring tools, search
engines, validators.

Additional information:
Magic number(s):
No sequence of bytes can uniquely identify an HTML document. More information
on detecting HTML documents is available in the Content-Type Processing Model
specification. [MIMESNIFF]
File extension(s):
"html" and "htm" are commonly, but certainly not exclusively, used as the extension
for HTML documents.
Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C and WHATWG

Fragment identifiers used with text/html resources refer to the indicated part of the
document.

14.2 application/xhtml+xml
Type name:

application
Subtype name:

xhtml+xml
Required parameters:

Same as for application/xml [RFC3023]
Optional parameters:

Same as for application/xml [RFC3023]
Encoding considerations:

Same as for application/xml [RFC3023]
Security considerations:

Same as for application/xml [RFC3023]
Interoperability considerations:

Same as for application/xml [RFC3023]
Published specification:

Labeling a resource with the application/xhtml+xml type asserts that the resource
is an XML document that likely has a root element from the HTML namespace. As
such, the relevant specifications are the XML specification, the Namespaces in
XML specification, and this specification. [XML] [XMLNS]

Applications that use this media type:
Same as for application/xml [RFC3023]

Additional information:
Magic number(s):

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 916 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 916 from 931

Same as for application/xml [RFC3023]
File extension(s):
"xhtml" and "xht" are sometimes used as extensions for XML resources that have a
root element from the HTML namespace.
Macintosh file type code(s):
TEXT

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C and WHATWG

Fragment identifiers used with application/xhtml+xml resources have the same
semantics as with any XML MIME type. [RFC3023]

14.3 text/cache-manifest
Type name:

text
Subtype name:

cache-manifest
Required parameters:

No parameters
Optional parameters:

No parameters
Encoding considerations:

Always UTF-8.
Security considerations:

Cache manifests themselves pose no immediate risk unless sensitive information is
included within the manifest. Implementations, however, are required to follow
specific rules when populating a cache based on a cache manifest, to ensure that
certain origin-based restrictions are honored. Failure to correctly implement these
rules can result in information leakage, cross-site scripting attacks, and the like.

Interoperability considerations:
Rules for processing both conforming and non-conforming content are defined in
this specification.

Published specification:
This document is the relevant specification.

Applications that use this media type:
Web browsers.

Additional information:
Magic number(s):
Cache manifests begin with the string "CACHE MANIFEST", followed by either a
U+0020 SPACE character, a U+0009 CHARACTER TABULATION (tab) character,
a U+000A LINE FEED (LF) character, or a U+000D CARRIAGE RETURN (CR)
character.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 917 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 917 from 931

File extension(s):
"manifest"
Macintosh file type code(s):
No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C and WHATWG

Fragment identifiers have no meaning with text/cache-manifest resources.

14.4 text/ping
Type name:

text
Subtype name:

ping
Required parameters:

No parameters
Optional parameters:

No parameters
Encoding considerations:

Not applicable.
Security considerations:

If used exclusively in the fashion described in the context of hyperlink auditing, this
type introduces no new security concerns.

Interoperability considerations:
Rules applicable to this type are defined in this specification.

Published specification:
This document is the relevant specification.

Applications that use this media type:
Web browsers.

Additional information:
Magic number(s):
text/ping resources always consist of the four bytes 0x50 0x49 0x4E 0x47 (ASCII
"PING").
File extension(s):
No specific file extension is recommended for this type.
Macintosh file type code(s):
No specific Macintosh file type codes are recommended for this type.

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 918 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 918 from 931

Restrictions on usage:
Only intended for use with HTTP POST requests generated as part of a Web
browser's processing of the ping attribute.

Author:
Ian Hickson <ian@hixie.ch>

Change controller:
W3C and WHATWG

Fragment identifiers have no meaning with text/ping resources.

14.5 application/microdata+json
Type name:

application
Subtype name:

microdata+json
Required parameters:

Same as for application/json [JSON]
Optional parameters:

Same as for application/json [JSON]
Encoding considerations:

Always UTF-8.
Security considerations:

Same as for application/json [JSON]
Interoperability considerations:

Same as for application/json [JSON]
Published specification:

Labeling a resource with the application/microdata+json type asserts that the
resource is a JSON text that consists of an object with a single entry called "items"
consisting of an array of entries, each of which consists of an object with two
entries, one called "type" whose value is an array of strings, and one called
"properties" whose value is an object whose entries each have a value consisting
of an array of either objects or strings, the objects being of the same form as the
objects in the aforementioned "items" entry. As such, the relevant specifications are
the JSON specification and this specification. [JSON]

Applications that use this media type:
Same as for application/json [JSON]

Additional information:
Magic number(s):
Same as for application/json [JSON]
File extension(s):
Same as for application/json [JSON]
Macintosh file type code(s):
Same as for application/json [JSON]

Person & email address to contact for further information:
Ian Hickson <ian@hixie.ch>

Intended usage:
Common

Restrictions on usage:
No restrictions apply.

Author:

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 919 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 919 from 931

Ian Hickson <ian@hixie.ch>
Change controller:

W3C and WHATWG

Fragment identifiers used with application/microdata+json resources have the same
semantics as when used with application/json. [JSON]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 920 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 920 from 931

15 Index

Status: First draft

This section is non-normative.

List of elements
Element Categories Parents Children Attributes Interface

...

label flow; form-associated;
interactive; phrasing

phrasing phrasing* for; form HTMLLabelElement

...

An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated
in the table above.

List of attributes

Attribute Element(s) Value

...

form button; fieldset; input; keygen; label; object; output; select;
textarea

ID*

...

An asterisk (*) in a cell indicates that the actual rules are more complicated than indicated
in the table above.

List of reflecting DOM attributes

Interface Element(s) DOM attribute Reflects...

...

HTMLElement HTML elements contextMenu contextmenu

HTMLOptionElement option text textContent

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 921 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 921 from 931

List of reflecting DOM attributes
Interface Element(s) DOM attribute Reflects...

...

List of interfaces for elements

Element(s) Interface(s)

...

option HTMLOptionElement : HTMLElement

...

List of events

Event

...

load

...

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 922 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 922 from 931

16 References

Status: First draft

All references are normative unless marked "Non-normative".

[ABNF]
Augmented BNF for Syntax Specifications: ABNF, D. Crocker, P. Overell. IETF,
January 2008.

[ARIA]
Accessible Rich Internet Applications (WAI-ARIA), J. Craig, M. Cooper, L. Pappas,
R. Schwerdtfeger, L. Seeman. W3C, August 2009.

[ARIAIMPL]
WAI-ARIA 1.0 User Agent Implementation Guide, A. Snow-Weaver, M. Cooper.
W3C, August 2009.

[ATOM]
(Non-normative) The Atom Syndication Format, M. Nottingham, R. Sayre. IETF,
December 2005.

[BCP47]
Tags for Identifying Languages; Matching of Language Tags, A. Phillips, M. Davis.
IETF, September 2006.

[BECSS]
Behavioral Extensions to CSS, I. Hickson. W3C, October 2007.

[BEZIER]
Courbes à poles, P. de Casteljau. INPI, 1959.

[BIDI]
UAX #9: Unicode Bidirectional Algorithm, M. Davis. Unicode Consortium, March
2008.

[BIG5]
(Non-normative) Chinese Coded Character Set in Computer. Institute for
Information Industry, March 1984.

[BOCU1]
(Non-normative) UTN #6: BOCU-1: MIME-Compatible Unicode Compression, M.
Scherer, M. Davis. Unicode Consortium, February 2006.

[CESU8]
(Non-normative) UTR #26: Compatibility Encoding Scheme For UTF-16: 8-BIT
(CESU-8), T. Phipps. Unicode Consortium, April 2002.

[CHARMOD]
(Non-normative) Character Model for the World Wide Web 1.0: Fundamentals, M.
Dürst, F. Yergeau, R. Ishida, M. Wolf, T. Texin. W3C, February 2005.

[COMPUTABLE]
(Non-normative) On computable numbers, with an application to the
Entscheidungsproblem, A. Turing. In Proceedings of the London Mathematical
Society, series 2, volume 42, pages 230-265. London Mathematical Society, 1937.
Retrieved on 2007-03-03.

[COOKIES]
HTTP State Management Mechanism, A. Barth. IETF, August 2009.

[CORS]
Cross-Origin Resource Sharing, A. van Kesteren. W3C, June 2009.

[CSS]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 923 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 923 from 931

Cascading Style Sheets Level 2 Revision 1, B. Bos, T. Çelik, I. Hickson, H. Lie.
W3C, April 2009.

[CSSCOLOR]
CSS Color Module Level 3, T. Çelik, C. Lilley, L. Baron. W3C, August 2008.

[CSSFONTS]
CSS Fonts Module Level 3, J. Daggett. W3C, June 2009.

[CSSOM]
Cascading Style Sheets Object Model (CSSOM), A. van Kesteren. W3C, December
2007.

[CSSUI]
CSS3 Basic User Interface Module, T. Çelik. W3C, May 2004.

[DOM2HTML]
(Non-normative) Document Object Model (DOM) Level 2 HTML Specification, J.
Stenback, P. Le Hegaret, A. Le Hors. W3C, January 2003.

[DOMCORE]
Document Object Model (DOM) Level 3 Core Specification, A. Le Hors, P. Le
Hegaret, L. Wood, G. Nicol, J. Robie, M. Champion, S. Byrnes. W3C, April 2004.

[DOMEVENTS]
Document Object Model (DOM) Level 3 Events Specification, D. Schepers. W3C,
July 2009.

[DOMRANGE]
Document Object Model (DOM) Level 2 Traversal and Range Specification, J.
Kesselman, J. Robie, M. Champion, P. Sharpe, V. Apparao, L. Wood. W3C,
November 2000.

[DOMVIEWS]
Document Object Model (DOM) Level 2 Views Specification, A. Le Hors, L. Cable.
W3C, November 2000.

[E163]
Recommendation E.163 — Numbering Plan for The International Telephone
Service, CCITT Blue Book, Fascicle II.2, pp. 128-134, November 1988.

[ECMA262]
ECMAScript Language Specification. ECMA, December 1999.

[ECMA357]
(Non-normative) ECMAScript for XML (E4X) Specification. ECMA, December 2005.

[EUCKR]
Hangul Unix Environment. Korea Industrial Standards Association, 1992. Ref. No.
KS C 5861-1992.

[FILEAPI]
File API, A. Ranganathan. W3C, August 2009.

[GBK]
Chinese Internal Code Specification. Chinese IT Standardization Technical
Committee, December 1995.

[GRAPHICS]
(Non-normative) Computer Graphics: Principles and Practice in C, Second Edition,
J. Foley, A. van Dam, S. Feiner, J. Hughes. Addison-Wesley, July 1995. ISBN 0-
201-84840-6.

[GREGORIAN]
(Non-normative) Inter Gravissimas, A. Lilius, C. Clavius. Gregory XIII Papal Bulls,
February 1582.

[HTML4]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 924 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 924 from 931

(Non-normative) HTML 4.01 Specification, D. Raggett, A. Le Hors, I. Jacobs. W3C,
December 1999.

[HTMLDIFF]
(Non-normative) HTML 5 differences from HTML 4, A. van Kesteren. W3C, August
2009.

[HTTP]
Hypertext Transfer Protocol — HTTP/1.1, R. Fielding, J. Gettys, J. Mogul, H.
Frystyk, L. Masinter, P. Leach, T. Berners-Lee. IETF, June 1999.

[IANACHARSET]
Character Sets. IANA, May 2007.

[IEEE754]
IEEE Standard for Floating-Point Arithmetic (IEEE 754). IEEE, August 2008. ISBN
978-0-7381-5753-5.

[ISO8601]
ISO8601: Data elements and interchange formats — Information interchange —
Representation of dates and times. ISO, December 2004.

[ISO885911]
ISO-8859-11: Information technology — 8-bit single-byte coded graphic character
sets — Part 11: Latin/Thai alphabet. ISO, October 1999.

[JSON]
The application/json Media Type for JavaScript Object Notation (JSON), D.
Crockford. IETF, July 2006.

[JSURL]
The 'javascript' resource identifier scheme, B. Höhrmann. IETF, November 2006.

[MAILTO]
The mailto URL scheme, P. Hoffman, L. Masinter, J. Zawinski. IETF, July 1998.

[MATHML]
Mathematical Markup Language (MathML), D. Carlisle, P. Ion, R. Miner, N.
Poppelier. W3C, October 2003.

[MIMESNIFF]
Content-Type Processing Model, A. Barth, I. Hickson. IETF, May 2009.

[MQ]
Media Queries, H. Lie, T. Çelik, D. Glazman, A. van Kesteren. W3C, July 2009.

[NPAPI]
(Non-normative) Gecko Plugin API Reference. Mozilla, November 2008.

[OPENSEARCH]
Autodiscovery in HTML/XHTML. In OpenSearch 1.1 Draft 4, Section 4.6.2.
OpenSearch.org.

[PINGBACK]
Pingback 1.0, S. Langridge, I. Hickson. January 2007.

[PNG]
Portable Network Graphics (PNG) Specification, D. Duce. W3C, November 2003.

[PORTERDUFF]
Compositing Digital Images, T. Porter, T. Duff. In Computer graphics, volume 18,
number 3, pp. 253-259. ACM Press, July 1984.

[PROGRESS]
Progress Events, C. McCathieNevile. W3C, March 2009.

[PSL]
Public Suffix List. Mozilla Foundation.

[RFC1345]
Character Mnemonics and Character Sets, K. Simonsen. IETF, June 1992.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 925 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 925 from 931

[RFC1468]
Japanese Character Encoding for Internet Messages, J. Murai, M. Crispin, E. van
der Poel. IETF, June 1993.

[RFC1494]
(Non-normative) Equivalences between 1988 X.400 and RFC-822 Message
Bodies, H. Alvestrand, S. Thompson. IETF, August 1993.

[RFC1554]
ISO-2022-JP-2: Multilingual Extension of ISO-2022-JP, M. Ohta, K. Handa. IETF,
December 1993.

[RFC1557]
Korean Character Encoding for Internet Messages, U. Choi, K. Chon, H. Park.
IETF, December 1993.

[RFC1922]
Chinese Character Encoding for Internet Messages, HF. Zhu, DY. Hu, ZG. Wang,
TC. Kao, WCH. Chang, M. Crispin. IETF, March 1996.

[RFC2045]
Multipurpose Internet Mail Extensions (MIME) Part One: Format of Internet
Message Bodies, N. Freed, N. Borenstein. IETF, November 1996.

[RFC2046]
Multipurpose Internet Mail Extensions (MIME) Part Two: Media Types, N. Freed, N.
Borenstein. IETF, November 1996.

[RFC2109]
HTTP State Management Mechanism, D. Kristol, L. Montulli. IETF, February 1997.

[RFC2119]
Key words for use in RFCs to Indicate Requirement Levels, S. Bradner. IETF,
March 1997.

[RFC2237]
Japanese Character Encoding for Internet Messages, K. Tamaru. IETF, November
1997.

[RFC2318]
The text/css Media Type, H. Lie, B. Bos, C. Lilley. IETF, March 1998.

[RFC2388]
Returning Values from Forms: multipart/form-data, L. Masinter. IETF, August 1998.

[RFC2426]
vCard MIME Directory Profile, F. Dawson, T. Howes. IETF, September 1998.

[RFC2445]
Internet Calendaring and Scheduling Core Object Specification (iCalendar), F.
Dawson, D. Stenerson. IETF, November 1998.

[RFC2483]
URI Resolution Services Necessary for URN Resolution, M. Mealling, R. Daniel.
IETF, January 1999.

[RFC2646]
The Text/Plain Format Parameter, R. Gellens. IETF, August 1999.

[RFC2806]
(Non-normative) URLs for Telephone Calls, A. Vaha-Sipila. IETF, April 2000.

[RFC3023]
XML Media Types, M. Murata, S. St. Laurent, D. Kohn. IETF, January 2001.

[RFC3279]
Algorithms and Identifiers for the Internet X.509 Public Key Infrastructure Certificate
and Certificate Revocation List (CRL) Profile, W. Polk, R. Housley, L. Bassham.
IETF, April 2002.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 926 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 926 from 931

[RFC3490]
Internationalizing Domain Names in Applications (IDNA), P. Faltstrom, P. Hoffman,
A. Costello. IETF, March 2003.

[RFC3548]
The Base16, Base32, and Base64 Data Encodings, S. Josefsson. IETF, July 2003.

[RFC3986]
Uniform Resource Identifier (URI): Generic Syntax, T. Berners-Lee, R. Fielding, L.
Masinter. IETF, January 2005.

[RFC3987]
Internationalized Resource Identifiers (IRIs), M. Dürst, M. Suignard. IETF, January
2005.

[RFC4281]
The Codecs Parameter for "Bucket" Media Types, R. Gellens, D. Singer, P. Frojdh.
IETF, November 2005.

[RFC4329]
(Non-normative) Scripting Media Types, B. Höhrmann. IETF, April 2006.

[RFC4770]
vCard Extensions for Instant Messaging (IM), C. Jennings, J. Reschke. IETF,
January 2007.

[RFC5280]
Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List
(CRL) Profile, D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, W. Polk.
IETF, May 2008.

[RFC5322]
Internet Message Format, P. Resnick. IETF, October 2008.

[SCSU]
(Non-normative) UTR #6: A Standard Compression Scheme For Unicode, M. Wolf,
K. Whistler, C. Wicksteed, M. Davis, A. Freytag, M. Scherer. Unicode Consortium,
May 2005.

[SELECTORS]
Selectors, T. Çelik, E. Etemad, D. Glazman, I. Hickson, P. Linss, J. Williams. W3C,
March 2009.

[SHIFTJIS]
JIS X0208: 7-bit and 8-bit double byte coded KANJI sets for information
interchange. Japanese Standards Association, 1997.

[SRGB]
IEC 61966-2-1: Multimedia systems and equipment — Colour measurement and
management — Part 2-1: Colour management — Default RGB colour space —
sRGB. IEC, October 1999.

[SVG]
Scalable Vector Graphics (SVG) Tiny 1.2 Specification, O. Andersson, R. Berjon, E.
Dahltröm, A. Emmons, J. Ferraiolo, A. Grasso, V. Hardy, S. Hayman, D. Jackson,
C. Lilley, C. McCormack, A. Neumann, C. Northway, A. Quint, N. Ramani, D.
Schepers, A. Shellshear. W3C, December 2008.

[TIS620]
UDC 681.3.04:003.62. Thai Industrial Standards Institute, Ministry of Industry,
Royal Thai Government, 1990. ISBN 974-606-153-4.

[UNICODE]
The Unicode Standard. Unicode Consortium, 2007.

[UNIVCHARDET]

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 927 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 927 from 931

(Non-normative) A composite approach to language/encoding detection. S. Li, K.
Momoi. Netscape, September 2001. In Proceedings of the 19th International
Unicode Conference.

[UTF7]
UTF-7: A Mail-Safe Transformation Format of Unicode, D. Goldsmith, M. Davis.
IETF, May 1997.

[UTS22]
Charset Alias Matching. In UTS #22: Character Mapping Markup Language
(CharMapML), M. Davis, M. Scherer. Unicode Consortium, June 2006.

[WEBADDRESSES]
Web addresses in HTML 5, D. Connolly, C. Sperberg-McQueen. March 2009.

[WEBIDL]
Web IDL, C. McCormack. W3C, July 2009.

[WEBLINK]
Web Linking, M. Nottingham. IETF, July 2009.

[WHATWGWIKI]
The WHATWG Wiki. WHATWG.

[WIN1252]
Windows 1252. Microsoft.

[WIN1254]
Windows 1254. Microsoft.

[WIN31J]
Windows Codepage 932. Microsoft.

[WIN874]
Windows 874. Microsoft.

[WIN949]
Windows Codepage 949. Microsoft.

[X121]
Recommendation X.121 — International Numbering Plan for Public Data Networks,
CCITT Blue Book, Fascicle VIII.3, pp. 317-332, November 1988.

[X690]
Recommendation X.690 — Information Technology — ASN.1 Encoding Rules —
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),
and Distinguished Encoding Rules (DER). International Telecommunication Union,
July 2002.

[XHR]
XMLHttpRequest, A. van Kesteren. W3C, June 2009.

[XHTML10]
XHTML(TM) 1.0 The Extensible HyperText Markup Language (Second Edition).
W3C, August 2002.

[XHTML11]
XHTML(TM) 1.1 - Module-based XHTML, M. Altheim, S. McCarron. W3C, May
2001.

[XHTMLMOD]
Modularization of XHTML(TM), M. Altheim, F. Boumphrey, S. Dooley, S. McCarron,
S. Schnitzenbaumer, T. Wugofski. W3C, April 2001.

[XML]
Extensible Markup Language, T. Bray, J. Paoli, C. Sperberg-McQueen, E. Maler, F.
Yergeau. W3C, November 2008.

[XMLBASE]
XML Base, J. Marsh, R. Tobin. W3C, January 2009.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 928 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 928 from 931

[XMLNS]
Namespaces in XML, T. Bray, D. Hollander, A. Layman, R. Tobin. W3C, August
2006.

[XPATH10]
XML Path Language (XPath) Version 1.0, J. Clark, S. DeRose. W3C, November
1999.

[XSLT10]
XSL Transformations (XSLT) Version 1.0, J. Clark. W3C, November 1999.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 929 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 929 from 931

17 Acknowledgements

Status: Being edited right now

Thanks to Aankhen, Aaron Boodman, Aaron Leventhal, Adam Barth, Adam Roben,
Addison Phillips, Adele Peterson, Adrian Bateman, Adrian Sutton, Agustín Fernández,
Ajai Tirumali, Alan Plum, Alastair Campbell, Alex Bishop, Alex Nicolaou, Alex Rousskov,
Alexander J. Vincent, Alexey Feldgendler, Алексей Проскуряков (Alexey Proskuryakov),
Alexis Deveria, Allan Clements, Anders Carlsson, Andreas, Andrei Popescu, André E.
Veltstra, Andrew Clover, Andrew Gove, Andrew Grieve, Andrew Oakley, Andrew Sidwell,
Andrew Smith, Andrew W. Hagen, Andy Heydon, Andy Palay, Anne van Kesteren,
Anthony Boyd, Anthony Bryan, Anthony Hickson, Anthony Ricaud, Antti Koivisto, Aron
Spohr, Arphen Lin, Aryeh Gregor, Asbjørn Ulsberg, Ashley Sheridan, Aurelien Levy, Ave
Wrigley, Ben Boyle, Ben Godfrey, Ben Leslie, Ben Meadowcroft, Ben Millard, Benjamin
Hawkes-Lewis, Bert Bos, Bijan Parsia, Bil Corry, Bill Mason, Bill McCoy, Billy Wong, Björn
Höhrmann, Blake Frantz, Boris Zbarsky, Brad Fults, Brad Neuberg, Brady Eidson,
Brendan Eich, Brenton Simpson, Brett Wilson, Brett Zamir, Brian Campbell, Brian Korver,
Brian Ryner, Brian Smith, Brian Wilson, Bruce D'Arcus, Bruce Lawson, Bruce Miller, C.
Williams, Cameron McCormack, Cao Yipeng, Carlos Perelló Marín, Chao Cai, ���
(Channy Yun), Charl van Niekerk, Charles Iliya Krempeaux, Charles McCathieNevile,
Chris Cressman, Chris Morris, Chris Pearce, Christian Biesinger, Christian Johansen,
Christian Schmidt, Christopher Aillon, Chriswa, Cole Robison, Colin Fine, Collin Jackson,
Corprew Reed, Craig Cockburn, Csaba Gabor, Daniel Barclay, Daniel Bratell, Daniel
Brooks, Daniel Brumbaugh Keeney, Daniel Davis, Daniel Glazman, Daniel Peng, Daniel
Schattenkirchner, Daniel Spång, Daniel Steinberg, Danny Sullivan, Darin Adler, Darin
Fisher, Darxus, Dave Camp, Dave Hodder, Dave Lampton, Dave Singer, Dave Townsend,
David Baron, David Bloom, David Carlisle, David E. Cleary, David Egan Evans, David
Flanagan, David Gerard, David Håsäther, David Hyatt, David I. Lehn, David Matja, David
Remahl, David Smith, David Woolley, DeWitt Clinton, Dean Edridge, Dean Edwards, Debi
Orton, Derek Featherstone, Dimitri Glazkov, Dimitry Golubovsky, dolphinling, Dominique
Hazaël-Massieux, Doron Rosenberg, Doug Kramer, Drew Wilson, Edmund Lai, Eduard
Pascual, Edward O'Connor, Edward Welbourne, Edward Z. Yang, Eira Monstad, Elliotte
Harold, Eric Carlson, Eric Law, Eric Rescorla, Erik Arvidsson, Evan Martin, Evan
Prodromou, fantasai, Felix Sasaki, Francesco Schwarz, Franck 'Shift' Quélain, Frank
Barchard, ���� (Fumitoshi Ukai), Garrett Smith, Geoffrey Garen, Geoffrey Sneddon,
George Lund, Giovanni Campagna, Greg Botten, Greg Houston, Gregg Tavares, Grey,
Gytis Jakutonis, Håkon Wium Lie, Hallvord Reiar Michaelsen Steen, Hans S. Tømmerhalt,
Henri Sivonen, Henrik Lied, Henry Mason, Hugh Winkler, Ian Bicking, Ian Davis, Ignacio
Javier, Ivan Enderlin, Ivo Emanuel Gonçalves, J. King, Jacques Distler, James Craig,
James Graham, James Justin Harrell, James M Snell, James Perrett, James Robinson,
Jan-Klaas Kollhof, Jason Kersey, Jason Lustig, Jason White, Jasper Bryant-Greene, Jed
Hartman, Jeff Balogh, Jeff Cutsinger, Jeff Schiller, Jeff Walden, ��� (Jennifer
Braithwaite), Jens Bannmann, Jens Fendler, Jens Lindström, Jens Meiert, Jeremy Orlow,
Jeroen van der Meer, Jian Li, Jim Jewett, Jim Ley, Jim Meehan, Jjgod Jiang, João Eiras,
Joe Clark, Joe Gregorio, Joel Spolsky, Johan Herland, John Boyer, John Bussjaeger,
John Carpenter, John Fallows, John Foliot, John Harding, John Keiser, John-Mark Bell,
Johnny Stenback, Jon Ferraiolo, Jon Gibbins, Jon Perlow, Jonas Sicking, Jonathan
Worent, Jonny Axelsson, Jorgen Horstink, Jorunn Danielsen Newth, Joseph Kesselman,
Josh Aas, Josh Levenberg, Joshua Randall, Jukka K. Korpela, Jules Clément-Ripoche,
Julian Reschke, Justin Sinclair, Kai Hendry, Kartikaya Gupta, Kelly Norton, Kevin Benson,
Kornél Pál, Kristof Zelechovski, ���� (KUROSAWA Takeshi), Kyle Hofmann, Léonard

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 930 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 930 from 931

Bouchet, Lachlan Hunt, Larry Masinter, Larry Page, Lars Gunther, Lars Solberg, Laura L.
Carlson, Laura Wisewell, Laurens Holst, Lee Kowalkowski, Leif Halvard Silli, Lenny
Domnitser, Leons Petrazickis, Logan, Loune, Luke Kenneth Casson Leighton, Maciej
Stachowiak, Magnus Kristiansen, Maik Merten, Malcolm Rowe, Mark Birbeck, Mark Miller,
Mark Nottingham, Mark Rowe, Mark Schenk, Mark Wilton-Jones, Martijn Wargers, Martin
Atkins, Martin Dürst, Martin Honnen, Martin Kutschker, Masataka Yakura, Mathieu Henri,
Matt Schmidt, Matt Wright, Matthew Gregan, Matthew Mastracci, Matthew Raymond,
Matthew Thomas, Mattias Waldau, Max Romantschuk, Menno van Slooten, Micah
Dubinko, Michael 'Ratt' Iannarelli, Michael A. Nachbaur, Michael A. Puls II, Michael Carter,
Michael Daskalov, Michael Enright, Michael Gratton, Michael Nordman, Michael Powers,
Michael(tm) Smith, Michel Fortin, Michelangelo De Simone, Michiel van der Blonk, Mihai
Şucan, Mike Brown, Mike Dierken, Mike Dixon, Mike Schinkel, Mike Shaver, Mikko
Rantalainen, Mohamed Zergaoui, Ms2ger, Neil Deakin, Neil Rashbrook, Neil Soiffer,
Nicholas Shanks, Nicolas Gallagher, Noah Mendelsohn, Noah Slater, Ojan Vafai, Olaf
Hoffmann, Olav Junker Kjær, Oldřich Vetešník, Oliver Hunt, Oliver Rigby, Olivier Gendrin,
Olli Pettay, Patrick H. Lauke, Paul Norman, Peter Karlsson, Peter Kasting, Peter Stark,
Peter-Paul Koch, Philip Jägenstedt, Philip Taylor, Philip TAYLOR, Prateek Rungta, Rachid
Finge, Rajas Moonka, Ralf Stoltze, Ralph Giles, Raphael Champeimont, Remco, Remy
Sharp, Rene Saarsoo, Rene Stach, Rich Doughty, Richard Ishida, Rigo Wenning, Rikkert
Koppes, Rimantas Liubertas, Robert Blaut, Robert Collins, Robert O'Callahan, Robert
Sayre, Robin Berjon, Roland Steiner, Roman Ivanov, Ryan King, S. Mike Dierken, Sam
Dutton, Sam Kuper, Sam Ruby, Sam Weinig, Sander van Lambalgen, Sarven Capadisli,
Scott Hess, Sean Fraser, Sean Hogan, Sean Knapp, Sebastian Markbåge, Sebastian
Schnitzenbaumer, Seth Call, Shanti Rao, Shaun Inman, Shiki Okasaka, Sierk Bornemann,
Sigbjørn Vik, Silvia Pfeiffer, Simon Montagu, Simon Pieters, Simon Spiegel, skeww,
Stefan Haustein, Stefan Santesson, Steffen Meschkat, Stephen Ma, Steve Faulkner,
Steve Runyon, Steven Bennett, Steven Garrity, Stewart Brodie, Stuart Ballard, Stuart
Parmenter, Subramanian Peruvemba, Sunava Dutta, Susan Borgrink, Susan Lesch,
Sylvain Pasche, Tantek Çelik, ���� (TAMURA Kent), Ted Mielczarek, Terrence Wood,
Thomas Broyer, Thomas O'Connor, Tim Altman, Tim Johansson, Toby Inkster, Todd
Moody, Tom Pike, Tommy Thorsen, Travis Leithead, Tyler Close, Vladimir Vukićević,
voracity, Wakaba, Wayne Pollock, Wellington Fernando de Macedo, Will Levine, William
Swanson, Wladimir Palant, Wojciech Mach, Wolfram Kriesing, Yi-An Huang, Yngve
Nysaeter Pettersen, Zhenbin Xu, and Øistein E. Andersen, for their useful comments, both
large and small, that have led to changes to this specification over the years.

Thanks also to everyone who has ever posted about HTML 5 to their blogs, public mailing
lists, or forums, including the W3C public-html list and the various WHATWG lists.

Special thanks to Richard Williamson for creating the first implementation of canvas in
Safari, from which the canvas feature was designed.

Special thanks also to the Microsoft employees who first implemented the event-based
drag-and-drop mechanism, contenteditable, and other features first widely deployed by
the Windows Internet Explorer browser.

Special thanks and $10,000 to David Hyatt who came up with a broken implementation of
the adoption agency algorithm that the editor had to reverse engineer and fix before using
it in the parsing section.

Thanks to the many sources that provided inspiration for the examples used in the
specification.

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 931 from 931

W3C_HTML 5_Reference_20090825.doc 2010 Mar page 931 from 931

Thanks also to the Microsoft blogging community for some ideas, to the attendees of the
W3C Workshop on Web Applications and Compound Documents for inspiration, to the
#mrt crew, the #mrt.no crew, and the #whatwg crew, and to Pillar and Hedral for their
ideas and support.

