
http://www.w3.org/TR/html5/video.html#video

HTML 5

A vocabulary and associated APIs for HTML and XHTML
← 4.6 Text-level semantics – Table of contents – 4.8.11 The canvas element →

4.8.7 The video element

Status: Last call for comments. ISSUE-7 (video-codecs), ISSUE-9 (video-synchronization)
and ISSUE-10 (video-smil) block progress to Last Call

Categories
Flow content.
Phrasing content.
Embedded content.
If the element has a controls attribute: Interactive content.

Contexts in which this element may be used:
Where embedded content is expected.

Content model:
If the element has a src attribute: transparent, but with no media element
descendants.
If the element does not have a src attribute: one or more source elements, then,
transparent, but with no media element descendants.

Content attributes:
Global attributes
src
poster
autobuffer
autoplay
loop
controls
width
height

DOM interface:
interface HTMLVideoElement : HTMLMediaElement {

 attribute DOMString width;

 attribute DOMString height;

 readonly attribute unsigned long videoWidth;

 readonly attribute unsigned long videoHeight;

 attribute DOMString poster;

};

A video element represents a video or movie.

Content may be provided inside the video element. User agents should not show this
content to the user; it is intended for older Web browsers which do not support video, so

that legacy video plugins can be tried, or to show text to the users of these older browsers
informing them of how to access the video contents.

In particular, this content is not fallback content intended to address accessibility
concerns. To make video content accessible to the blind, deaf, and those with other
physical or cognitive disabilities, authors are expected to provide alternative media
streams and/or to embed accessibility aids (such as caption or subtitle tracks) into
their media streams.

The video element is a media element whose media data is ostensibly video data,
possibly with associated audio data.

The src, autobuffer, autoplay, loop, and controls attributes are the attributes common
to all media elements.

The poster attribute gives the address of an image file that the user agent can show while
no video data is available. The attribute, if present, must contain a valid URL. If the
specified resource is to be used, then, when the element is created or when the poster
attribute is set, its value must be resolved relative to the element, and if that is successful,
the resulting absolute URL must be fetched; this must delay the load event of the
element's document. The poster frame is then the image obtained from that resource, if
any.

The image given by the poster attribute, the poster frame, is intended to be a
representative frame of the video (typically one of the first non-blank frames) that
gives the user an idea of what the video is like.

The poster DOM attribute must reflect the poster content attribute.

When no video data is available (the element's readyState attribute is either
HAVE_NOTHING, or HAVE_METADATA but no video data has yet been obtained at all), the video
element represents either the poster frame, or nothing.

When a video element is paused and the current playback position is the first frame of
video, the element represents either the frame of video corresponding to the current
playback position or the poster frame, at the discretion of the user agent.

Notwithstanding the above, the poster frame should be preferred over nothing, but the
poster frame should not be shown again after a frame of video has been shown.

When a video element is paused at any other position, the element represents the frame
of video corresponding to the current playback position, or, if that is not yet available (e.g.
because the video is seeking or buffering), the last frame of the video to have been
rendered.

When a video element is potentially playing, it represents the frame of video at the
continuously increasing "current" position. When the current playback position changes
such that the last frame rendered is no longer the frame corresponding to the current
playback position in the video, the new frame must be rendered. Similarly, any audio

associated with the video must, if played, be played synchronized with the current
playback position, at the specified volume with the specified mute state.

When a video element is neither potentially playing nor paused (e.g. when seeking or
stalled), the element represents the last frame of the video to have been rendered.

Which frame in a video stream corresponds to a particular playback position is
defined by the video stream's format.

In addition to the above, the user agent may provide messages to the user (such as
"buffering", "no video loaded", "error", or more detailed information) by overlaying text or
icons on the video or other areas of the element's playback area, or in another appropriate
manner.

User agents that cannot render the video may instead make the element represent a link
to an external video playback utility or to the video data itself.

video . videoWidth
video . videoHeight

These attributes return the intrinsic dimensions of the video, or zero if the
dimensions are not known.

The intrinsic width and intrinsic height of the media resource are the dimensions of the
resource in CSS pixels after taking into account the resource's dimensions, aspect ratio,
clean aperture, resolution, and so forth, as defined for the format used by the resource.

The videoWidth DOM attribute must return the intrinsic width of the video in CSS pixels.
The videoHeight DOM attribute must return the intrinsic height of the video in CSS pixels.
If the element's readyState attribute is HAVE_NOTHING, then the attributes must return 0.

The video element supports dimension attributes.

Video content should be rendered inside the element's playback area such that the video
content is shown centered in the playback area at the largest possible size that fits
completely within it, with the video content's aspect ratio being preserved. Thus, if the
aspect ratio of the playback area does not match the aspect ratio of the video, the video
will be shown letterboxed or pillarboxed. Areas of the element's playback area that do not
contain the video represent nothing.

The intrinsic width of a video element's playback area is the intrinsic width of the video
resource, if that is available; otherwise it is the intrinsic width of the poster frame, if that is
available; otherwise it is 300 CSS pixels.

The intrinsic height of a video element's playback area is the intrinsic height of the video
resource, if that is available; otherwise it is the intrinsic height of the poster frame, if that is
available; otherwise it is 150 CSS pixels.

User agents should provide controls to enable or disable the display of closed captions
associated with the video stream, though such features should, again, not interfere with
the page's normal rendering.

User agents may allow users to view the video content in manners more suitable to the
user (e.g. full-screen or in an independent resizable window). As for the other user
interface features, controls to enable this should not interfere with the page's normal
rendering unless the user agent is exposing a user interface. In such an independent
context, however, user agents may make full user interfaces visible, with, e.g., play,
pause, seeking, and volume controls, even if the controls attribute is absent.

User agents may allow video playback to affect system features that could interfere with
the user's experience; for example, user agents could disable screensavers while video
playback is in progress.

User agents should not provide a public API to cause videos to be shown full-
screen. A script, combined with a carefully crafted video file, could trick the user
into thinking a system-modal dialog had been shown, and prompt the user for a
password. There is also the danger of "mere" annoyance, with pages launching full-
screen videos when links are clicked or pages navigated. Instead, user-agent
specific interface features may be provided to easily allow the user to obtain a full-
screen playback mode.

4.8.8 The audio element

Status: Last call for comments

Categories
Flow content.
Phrasing content.
Embedded content.
If the element has a controls attribute: Interactive content.

Contexts in which this element may be used:
Where embedded content is expected.

Content model:
If the element has a src attribute: transparent, but with no media element
descendants.
If the element does not have a src attribute: one or more source elements, then,
transparent, but with no media element descendants.

Content attributes:
Global attributes
src
autobuffer
autoplay
loop
controls

DOM interface:
[NamedConstructor=Audio(),

 NamedConstructor=Audio(in DOMString src)]

interface HTMLAudioElement : HTMLMediaElement {};

An audio element represents a sound or audio stream.

Content may be provided inside the audio element. User agents should not show this
content to the user; it is intended for older Web browsers which do not support audio, so
that legacy audio plugins can be tried, or to show text to the users of these older browsers
informing them of how to access the audio contents.

In particular, this content is not fallback content intended to address accessibility
concerns. To make audio content accessible to the deaf or to those with other
physical or cognitive disabilities, authors are expected to provide alternative media
streams and/or to embed accessibility aids (such as transcriptions) into their media
streams.

The audio element is a media element whose media data is ostensibly audio data.

The src, autobuffer, autoplay, loop, and controls attributes are the attributes common
to all media elements.

When an audio element is potentially playing, it must have its audio data played
synchronized with the current playback position, at the specified volume with the specified
mute state.

When an audio element is not potentially playing, audio must not play for the element.

audio = new Audio([url])
Returns a new audio element, with the src attribute set to the value passed in the
argument, if applicable.

Two constructors are provided for creating HTMLAudioElement objects (in addition to the
factory methods from DOM Core such as createElement()): Audio() and Audio(src).
When invoked as constructors, these must return a new HTMLAudioElement object (a new
audio element). The element must have its autobuffer attribute set to the literal value
"autobuffer". If the src argument is present, the object created must have its src content
attribute set to the provided value, and the user agent must invoke the object's resource
selection algorithm before returning.

4.8.9 The source element

Status: Last call for comments

Categories
None.

Contexts in which this element may be used:
As a child of a media element, before any flow content.

Content model:
Empty.

Content attributes:
Global attributes

src
type
media

DOM interface:
interface HTMLSourceElement : HTMLElement {

 attribute DOMString src;

 attribute DOMString type;

 attribute DOMString media;

};

The source element allows authors to specify multiple media resources for media
elements. It does not represent anything on its own.

The src attribute gives the address of the media resource. The value must be a valid URL.
This attribute must be present.

The type attribute gives the type of the media resource, to help the user agent determine
if it can play this media resource before fetching it. If specified, its value must be a valid
MIME type. The codecs parameter may be specified and might be necessary to specify
exactly how the resource is encoded. [RFC4281]

The following list shows some examples of how to use the codecs= MIME parameter in the
type attribute.

H.264 Simple baseline profile video (main and extended video compatible) level 3
and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.42E01E,
mp4a.40.2"'>

H.264 Extended profile video (baseline-compatible) level 3 and Low-Complexity
AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.58A01E,
mp4a.40.2"'>

H.264 Main profile video level 3 and Low-Complexity AAC audio in MP4 container
<source src='video.mp4' type='video/mp4; codecs="avc1.4D401E,
mp4a.40.2"'>

H.264 'High' profile video (incompatible with main, baseline, or extended profiles)
level 3 and Low-Complexity AAC audio in MP4 container

<source src='video.mp4' type='video/mp4; codecs="avc1.64001E,
mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and Low-Complexity AAC audio in MP4
container

<source src='video.mp4' type='video/mp4; codecs="mp4v.20.8,
mp4a.40.2"'>

MPEG-4 Advanced Simple Profile Level 0 video and Low-Complexity AAC audio in
MP4 container

<source src='video.mp4' type='video/mp4; codecs="mp4v.20.240,
mp4a.40.2"'>

MPEG-4 Visual Simple Profile Level 0 video and AMR audio in 3GPP container
<source src='video.3gp' type='video/3gpp; codecs="mp4v.20.8,
samr"'>

Theora video and Vorbis audio in Ogg container

<source src='video.ogv' type='video/ogg; codecs="theora, vorbis"'>

Theora video and Speex audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="theora, speex"'>

Vorbis audio alone in Ogg container
<source src='audio.ogg' type='audio/ogg; codecs=vorbis'>

Speex audio alone in Ogg container
<source src='audio.spx' type='audio/ogg; codecs=speex'>

FLAC audio alone in Ogg container
<source src='audio.oga' type='audio/ogg; codecs=flac'>

Dirac video and Vorbis audio in Ogg container
<source src='video.ogv' type='video/ogg; codecs="dirac, vorbis"'>

Theora video and Vorbis audio in Matroska container
<source src='video.mkv' type='video/x-matroska; codecs="theora,
vorbis"'>

The media attribute gives the intended media type of the media resource, to help the user
agent determine if this media resource is useful to the user before fetching it. Its value
must be a valid media query. [MQ]

If a source element is inserted as a child of a media element that is in a Document and
whose networkState has the value NETWORK_EMPTY, the user agent must invoke the media
element's resource selection algorithm.

The DOM attributes src, type, and media must reflect the respective content attributes of
the same name.

4.8.10 Media elements

Status: Last call for comments

Media elements implement the following interface:

interface HTMLMediaElement : HTMLElement {

 // error state
 readonly attribute MediaError error;

 // network state
 attribute DOMString src;
 readonly attribute DOMString currentSrc;
 const unsigned short NETWORK_EMPTY = 0;
 const unsigned short NETWORK_IDLE = 1;
 const unsigned short NETWORK_LOADING = 2;
 const unsigned short NETWORK_LOADED = 3;
 const unsigned short NETWORK_NO_SOURCE = 4;
 readonly attribute unsigned short networkState;
 attribute boolean autobuffer;
 readonly attribute TimeRanges buffered;
 void load();
 DOMString canPlayType(in DOMString type);

 // ready state
 const unsigned short HAVE_NOTHING = 0;
 const unsigned short HAVE_METADATA = 1;
 const unsigned short HAVE_CURRENT_DATA = 2;

 const unsigned short HAVE_FUTURE_DATA = 3;

 const unsigned short HAVE_ENOUGH_DATA = 4;

 readonly attribute unsigned short readyState;
 readonly attribute boolean seeking;

 // playback state
 attribute float currentTime;
 readonly attribute float startTime;
 readonly attribute float duration;
 readonly attribute boolean paused;
 attribute float defaultPlaybackRate;
 attribute float playbackRate;
 readonly attribute TimeRanges played;
 readonly attribute TimeRanges seekable;
 readonly attribute boolean ended;
 attribute boolean autoplay;
 attribute boolean loop;
 void play();
 void pause();

 // controls
 attribute boolean controls;
 attribute float volume;
 attribute boolean muted;
};

The media element attributes, src, autobuffer, autoplay, loop, and controls, apply to
all media elements. They are defined in this section.

Media elements are used to present audio data, or video and audio data, to the user. This
is referred to as media data in this section, since this section applies equally to media
elements for audio or for video. The term media resource is used to refer to the complete
set of media data, e.g. the complete video file, or complete audio file.

Unless otherwise specified, the task source for all the tasks queued in this section and its
subsections is the media element event task source.

4.8.10.1 Error codes

media . error
Returns a MediaError object representing the current error state of the element.
Returns null if there is no error.

All media elements have an associated error status, which records the last error the
element encountered since its resource selection algorithm was last invoked. The error
attribute, on getting, must return the MediaError object created for this last error, or null if
there has not been an error.

interface MediaError {
 const unsigned short MEDIA_ERR_ABORTED = 1;
 const unsigned short MEDIA_ERR_NETWORK = 2;

 const unsigned short MEDIA_ERR_DECODE = 3;
 const unsigned short MEDIA_ERR_SRC_NOT_SUPPORTED = 4;

 readonly attribute unsigned short code;

};

media . error . code
Returns the current error's error code, from the list below.

The code attribute of a MediaError object must return the code for the error, which must be
one of the following:

MEDIA_ERR_ABORTED (numeric value 1)
The fetching process for the media resource was aborted by the user agent at the
user's request.

MEDIA_ERR_NETWORK (numeric value 2)
A network error of some description caused the user agent to stop fetching the
media resource, after the resource was established to be usable.

MEDIA_ERR_DECODE (numeric value 3)
An error of some description occurred while decoding the media resource, after the
resource was established to be usable.

MEDIA_ERR_SRC_NOT_SUPPORTED (numeric value 4)
The media resource indicated by the src attribute was not suitable.

4.8.10.2 Location of the media resource

The src content attribute on media elements gives the address of the media resource
(video, audio) to show. The attribute, if present, must contain a valid URL.

If a src attribute of a media element that is in a Document and whose networkState has the
value NETWORK_EMPTY is set or changed, the user agent must invoke the media element's
resource selection algorithm.

The src DOM attribute on media elements must reflect the respective content attribute of
the same name.

media . currentSrc
Returns the address of the current media resource.
Returns the empty string when there is no media resource.

The currentSrc DOM attribute is initially the empty string. Its value is changed by the
resource selection algorithm defined below.

There are two ways to specify a media resource, the src attribute, or source
elements. The attribute overrides the elements.

4.8.10.3 MIME types

A media resource can be described in terms of its type, specifically a MIME type,
optionally with a codecs parameter. [RFC4281].

Types are usually somewhat incomplete descriptions; for example "video/mpeg" doesn't
say anything except what the container type is, and even a type like "video/mp4;
codecs="avc1.42E01E, mp4a.40.2"" doesn't include information like the actual bitrate (only
the maximum bitrate). Thus, given a type, a user agent can often only know whether it
might be able to play media of that type (with varying levels of confidence), or whether it
definitely cannot play media of that type.

A type that the user agent knows it cannot render is one that describes a resource that
the user agent definitely does not support, for example because it doesn't recognize the
container type, or it doesn't support the listed codecs.

The MIME type "application/octet-stream" is never a type that the user agent knows it
cannot render. User agents must treat that type as equivalent to the lack of any explicit
Content-Type metadata when it is used to label a potential media resource.

media . canPlayType(type)
Returns the empty string (a negative response), "maybe", or "probably" based on
how confident the user agent is that it can play media resources of the given type.

The canPlayType(type) method must return the empty string if type is a type that the user
agent knows it cannot render; it must return "probably" if the user agent is confident that
the type represents a media resource that it can render if used in with this audio or video
element; and it must return "maybe" otherwise. Implementors are encouraged to return
"maybe" unless the type can be confidently established as being supported or not.
Generally, a user agent should never return "probably" if the type doesn't have a codecs
parameter.

This script tests to see if the user agent supports a (fictional) new format to dynamically
decide whether to use a video element or a plugin:

<section id="video">
 <p>Download video</p>
</section>
<script>
 var videoSection = document.getElementById('video');
 var videoElement = document.createElement('video');
 var support = videoElement.canPlayType('video/x-new-fictional-
format;codecs="kittens,bunnies"');
 if (support != "probably" && "New Fictional Video Plug-in" in
navigator.plugins) {
 // not confident of browser support
 // but we have a plugin
 // so use plugin instead
 videoElement = document.createElement("embed");
 } else if (support == "") {
 // no support from browser and no plugin
 // do nothing
 videoElement = null;
 }
 if (videoElement) {

 while (videoSection.hasChildNodes())
 videoSection.removeChild(videoSection.firstChild);
 videoElement.setAttribute("src", "playing-cats.nfv");
 videoSection.appendChild(videoElement);
 }
</script>

The type attribute of the source element allows the user agent to avoid downloading
resources that use formats it cannot render.

4.8.10.4 Network states

media . networkState
Returns the current state of network activity for the element, from the codes in the
list below.

As media elements interact with the network, their current network activity is represented
by the networkState attribute. On getting, it must return the current network state of the
element, which must be one of the following values:

NETWORK_EMPTY (numeric value 0)
The element has not yet been initialized. All attributes are in their initial states.

NETWORK_IDLE (numeric value 1)
The element's resource selection algorithm is active and has selected a resource,
but it is not actually using the network at this time.

NETWORK_LOADING (numeric value 2)
The user agent is actively trying to download data.

NETWORK_LOADED (numeric value 3)
The entire media resource has been obtained and is available to the user agent
locally. Network connectivity could be lost without affecting the media playback.

NETWORK_NO_SOURCE (numeric value 4)
The element's resource selection algorithm is active, but it has failed to find a
resource to use.

The resource selection algorithm defined below describes exactly when the networkState
attribute changes value and what events fire to indicate changes in this state.

Some resources, e.g. streaming Web radio, can never reach the NETWORK_LOADED
state.

4.8.10.5 Loading the media resource

media . load()
Causes the element to reset and start selecting and loading a new media resource
from scratch.

All media elements have an autoplaying flag, which must begin in the true state, and a
delaying-the-load-event flag, which must begin in the false state. While the delaying-the-
load-event flag is true, the element must delay the load event of its document.

When the load() method on a media element is invoked, the user agent must run the
following steps. Note that this algorithm might get aborted, e.g. if the load() method itself
is invoked again.

1. If the load() method for this element is already being invoked, then abort these
steps.

2. Abort any already-running instance of the resource selection algorithm for this
element.

3. If there are any tasks from the media element's media element event task source in
one of the task queues, then remove those tasks.

Basically, pending events and callbacks for the media element are discarded
when the media element starts loading a new resource.

4. If the media element's networkState is set to NETWORK_LOADING or NETWORK_IDLE, set
the error attribute to a new MediaError object whose code attribute is set to
MEDIA_ERR_ABORTED, fire a progress event called abort at the media element, in the
context of the fetching process that is in progress for the element, and fire a
progress event called loadend at the media element, in the context of the same
fetching process.

5. Set the error attribute to null and the autoplaying flag to true.

6. Set the playbackRate attribute to the value of the defaultPlaybackRate attribute.

7. If the media element's networkState is not set to NETWORK_EMPTY, then run these
substeps:

1. If a fetching process is in progress for the media element, the user agent
should stop it.

2. Set the networkState attribute to NETWORK_EMPTY.
3. If readyState is not set to HAVE_NOTHING, then set it to that state.
4. If the paused attribute is false, then set to true.
5. If seeking is true, set it to false.
6. Set the current playback position to 0.
7. Fire a simple event called emptied at the media element.

8. Invoke the media element's resource selection algorithm.

9. Playback of any previously playing media resource for this element stops.

The resource selection algorithm for a media element is as follows. This algorithm is
always invoked synchronously, but one of the first steps in the algorithm is to return and
continue running the remaining steps asynchronously, meaning that it runs in the
background with scripts and other tasks running in parallel.

1. Set the networkState to NETWORK_NO_SOURCE.

2. Asynchronously await a stable state, allowing the task that invoked this algorithm to
continue. The synchronous section consists of all the remaining steps of this

algorithm until the algorithm says the synchronous section has ended. (Steps in
synchronous sections are marked with �.)

3. � If the media element has a src attribute, then let mode be attribute.

� Otherwise, if the media element does not have a src attribute but has a source
element child, then let mode be children and let candidate be the first such source
element child in tree order.

� Otherwise the media element has neither a src attribute nor a source element
child: set the networkState to NETWORK_EMPTY, and abort these steps; the
synchronous section ends.

4. � Set the media element's delaying-the-load-event flag to true (this delays the load
event), and set its networkState to NETWORK_LOADING.

5. � Queue a task to fire a progress event called loadstart at the media element,
with no relevant fetching process.

6. If mode is attribute, then run these substeps:

1. � Let absolute URL be the absolute URL that would have resulted from
resolving the URL specified by the src attribute's value relative to the media
element when the src attribute was last changed.

2. End the synchronous section, continuing the remaining steps
asynchronously.

3. If absolute URL was obtained successfully, run the resource fetch algorithm
with absolute URL. If that algorithm returns without aborting this one, then
the load failed.

4. Reaching this step indicates that the media resource failed to load or that the
given URL could not be resolved. Set the error attribute to a new
MediaError object whose code attribute is set to
MEDIA_ERR_SRC_NOT_SUPPORTED.

5. Set the element's networkState attribute to the NETWORK_NO_SOURCE
value.

6. Queue a task to fire a progress event called error at the media element, in
the context of the fetching process that was used to try to obtain the media
resource in the resource fetch algorithm.

7. Queue a task to fire a progress event called loadend at the media element,
in the context of the fetching process that was used to try to obtain the
media resource in the resource fetch algorithm.

8. Set the element's delaying-the-load-event flag to false. This stops delaying
the load event.

9. Abort these steps. Until the load() method is invoked, the element won't
attempt to load another resource.

Otherwise, the source elements will be used; run these substeps:

10. � Let pointer be a position defined by two adjacent nodes in the media
element's child list, treating the start of the list (before the first child in the list,
if any) and end of the list (after the last child in the list, if any) as nodes in
their own right. One node is the node before pointer, and the other node is
the node after pointer. Initially, let pointer be the position between the
candidate node and the next node, if there are any, or the end of the list, if it
is the last node.

As elements are inserted and removed into the media element, pointer must
be updated as follows:

If a new element is inserted between the two nodes that define pointer
Let pointer be the point between the node before pointer and the new node. In
other words, insertions at pointer go after pointer.

If the node before pointer is removed
Let pointer be the point between the node after pointer and the node before the
node after pointer. In other words, pointer doesn't move relative to the remaining
nodes.

If the node after pointer is removed
Let pointer be the point between the node before pointer and the node after the
node before pointer. Just as with the previous case, pointer doesn't move relative to
the remaining nodes.

Other changes don't affect pointer.

11. � Process candidate: If candidate does not have a src attribute, then end
the synchronous section, and jump down to the failed step below.

12. � Let absolute URL be the absolute URL that would have resulted from
resolving the URL specified by candidate's src attribute's value relative to
the candidate when the src attribute was last changed.

13. � If absolute URL was not obtained successfully, then end the synchronous
section, and jump down to the failed step below.

14. � If candidate has a type attribute whose value, when parsed as a MIME
type (including any codecs described by the codec parameter), represents a
type that the user agent knows it cannot render, then end the synchronous
section, and jump down to the failed step below.

15. � If candidate has a media attribute whose value, when processed according
to the rules for media queries, does not match the current environment, then
end the synchronous section, and jump down to the failed step below. [MQ]

16. End the synchronous section, continuing the remaining steps
asynchronously.

17. Run the resource fetch algorithm with absolute URL. If that algorithm returns
without aborting this one, then the load failed.

18. Failed: Queue a task to fire a simple event called error at the candidate
element, in the context of the fetching process that was used to try to obtain
candidate's corresponding media resource in the resource fetch algorithm.

19. Asynchronously await a stable state. The synchronous section consists of all
the remaining steps of this algorithm until the algorithm says the
synchronous section has ended. (Steps in synchronous sections are marked
with �.)

20. � Find next candidate: Let candidate be null.

21. � Search loop: If the node after pointer is the end of the list, then jump to the
waiting step below.

22. � If the node after pointer is a source element, let candidate be that element.

23. � Advance pointer so that the node before pointer is now the node that was
after pointer, and the node after pointer is the node after the node that used
to be after pointer, if any.

24. � If candidate is null, jump back to the search loop step. Otherwise, jump
back to the process candidate step.

25. � Waiting: Set the element's networkState attribute to the
NETWORK_NO_SOURCE value.

26. � Set the element's delaying-the-load-event flag to false. This stops delaying
the load event.

27. End the synchronous section, continuing the remaining steps
asynchronously.

28. Wait until the node after pointer is a node other than the end of the list. (This
step might wait forever.)

29. Asynchronously await a stable state. The synchronous section consists of all
the remaining steps of this algorithm until the algorithm says the
synchronous section has ended. (Steps in synchronous sections are marked
with �.)

30. � Set the element's delaying-the-load-event flag back to true (this delays the
load event again, in case it hasn't been fired yet).

31. � Set the networkState back to NETWORK_LOADING.

32. � Jump back to the find next candidate step above.

The resource fetch algorithm for a media element and a given absolute URL is as
follows:

1. Let the current media resource be the resource given by the absolute URL passed
to this algorithm. This is now the element's media resource.

2. Set the currentSrc attribute to the absolute URL of the current media resource.

3. Begin to fetch the current media resource.

Every 350ms (±200ms) or for every byte received, whichever is least frequent,
queue a task to fire a progress event called progress at the element, in the context
of the fetching process started by this instance of this algorithm.

If at any point the user agent has received no data for more than about three
seconds, then queue a task to fire a progress event called stalled at the element,
in the context of the fetching process started by this instance of this algorithm.

User agents may allow users to selectively block or slow media data downloads.
When a media element's download has been blocked altogether, the user agent
must act as if it was stalled (as opposed to acting as if the connection was closed).
The rate of the download may also be throttled automatically by the user agent, e.g.
to balance the download with other connections sharing the same bandwidth.

User agents may decide to not download more content at any time, e.g. after
buffering five minutes of a one hour media resource, while waiting for the user to
decide whether to play the resource or not, or while waiting for user input in an
interactive resource. When a media element's download has been suspended, the
user agent must set the networkState to NETWORK_IDLE and queue a task to fire a
progress event called suspend at the element, in the context of the fetching process
started by this instance of this algorithm. If and when downloading of the resource
resumes, the user agent must set the networkState to NETWORK_LOADING.

The autobuffer attribute provides a hint that the author expects that downloading
the entire resource optimistically will be worth it, even in the absence of the
autoplay attribute. In the absence of either attribute, the user agent is likely to find
that waiting until the user starts playback before downloading any further content
leads to a more efficient use of the network resources.

When a user agent decides to completely stall a download, e.g. if it is waiting until
the user starts playback before downloading any further content, the element's
delaying-the-load-event flag must be set to false. This stops delaying the load
event.

The user agent may use whatever means necessary to fetch the resource (within
the constraints put forward by this and other specifications); for example,
reconnecting to the server in the face of network errors, using HTTP partial range
requests, or switching to a streaming protocol. The user agent must consider a
resource erroneous only if it has given up trying to fetch it.

The networking task source tasks to process the data as it is being fetched must,
when appropriate, include the relevant substeps from the following list:

If the media data cannot be fetched at all, due to network errors, causing the
user agent to give up trying to fetch the resource
If the media resource is found to have Content-Type metadata that, when
parsed as a MIME type (including any codecs described by the codec

parameter), represents a type that the user agent knows it cannot render
(even if the actual media data is in a supported format)
If the media data can be fetched but is found by inspection to be in an
unsupported format, or can otherwise not be rendered at all
DNS errors, HTTP 4xx and 5xx errors (and equivalents in other protocols), and
other fatal network errors that occur before the user agent has established whether
the current media resource is usable, as well as the file using an unsupported
container format, or using unsupported codecs for all the data, must cause the user
agent to execute the following steps:

1. The user agent should cancel the fetching process.

2. Abort this subalgorithm, returning to the resource selection algorithm.

Once enough of the media data has been fetched to determine the duration of
the media resource, its dimensions, and other metadata
This indicates that the resource is usable. The user agent must follow these
substeps:

3. Set the current playback position to the earliest possible position.

4. Set the readyState attribute to HAVE_METADATA.

5. For video elements, set the videoWidth and videoHeight attributes.

6. Set the duration attribute to the duration of the resource.

The user agent will queue a task to fire a simple event called
durationchange at the element at this point.

7. Queue a task to fire a simple event called loadedmetadata at the element.

Before this task is run, sa part of the event loop mechanism, the
rendering will have been updated to resize the video element if
appropriate.

8. If either the media resource or the address of the current media resource
indicate a particular start time, then seek to that time. Ignore any resulting
exceptions (if the position is out of range, it is effectively ignored).

For example, a fragment identifier could be used to indicate a start
position.

9. Once the readyState attribute reaches HAVE_CURRENT_DATA, after the
loadeddata event has been fired, set the element's delaying-the-load-event
flag to false. This stops delaying the load event.

A user agent that is attempting to reduce network usage while still
fetching the metadata for each media resource would also stop
buffering at this point, causing the networkState attribute to switch to
the NETWORK_IDLE value, if the media element did not have an autobuffer
or autoplay attribute.

The user agent is required to determine the duration of the media resource
and go through this step before playing.

Once the entire media resource has been fetched (but potentially before any
of it has been decoded)
Queue a task to fire a progress event called progress at the media element, in the
context of the fetching process started by this instance of this algorithm.

If the connection is interrupted, causing the user agent to give up trying to
fetch the resource
Fatal network errors that occur after the user agent has established whether the
current media resource is usable must cause the user agent to execute the
following steps:

10. The user agent should cancel the fetching process.

11. Set the error attribute to a new MediaError object whose code attribute is
set to MEDIA_ERR_NETWORK.

12. Queue a task to fire a progress event called error at the media element, in
the context of the fetching process started by this instance of this algorithm.

13. Queue a task to fire a progress event called loadend at the media element,
in the context of the fetching process started by this instance of this
algorithm.

14. Set the element's networkState attribute to the NETWORK_EMPTY value
and queue a task to fire a simple event called emptied at the element.

15. Set the element's delaying-the-load-event flag to false. This stops delaying
the load event.

16. Abort the overall resource selection algorithm.

If the media data is corrupted
Fatal errors in decoding the media data that occur after the user agent has
established whether the current media resource is usable must cause the user
agent to execute the following steps:

17. The user agent should cancel the fetching process.

18. Set the error attribute to a new MediaError object whose code attribute is
set to MEDIA_ERR_DECODE.

19. Queue a task to fire a progress event called error at the media element, in
the context of the fetching process started by this instance of this algorithm.

20. Queue a task to fire a progress event called loadend at the media element,
in the context of the fetching process started by this instance of this
algorithm.

21. Set the element's networkState attribute to the NETWORK_EMPTY value
and queue a task to fire a simple event called emptied at the element.

22. Set the element's delaying-the-load-event flag to false. This stops delaying
the load event.

23. Abort the overall resource selection algorithm.

If the media data fetching process is aborted by the user
The fetching process is aborted by the user, e.g. because the user navigated the
browsing context to another page, the user agent must execute the following steps.
These steps are not followed if the load() method itself is invoked while these
steps are running, as the steps above handle that particular kind of abort.

24. The user agent should cancel the fetching process.

25. Set the error attribute to a new MediaError object whose code attribute is
set to MEDIA_ERR_ABORT.

26. Queue a task to fire a progress event called abort at the media element, in
the context of the fetching process started by this instance of this algorithm.

27. Queue a task to fire a progress event called loadend at the media element,
in the context of the fetching process started by this instance of this
algorithm.

28. If the media element's readyState attribute has a value equal to
HAVE_NOTHING, set the element's networkState attribute to the
NETWORK_EMPTY value and queue a task to fire a simple event called
emptied at the element. Otherwise, set the element's networkState attribute
to the NETWORK_IDLE value.

29. Set the element's delaying-the-load-event flag to false. This stops delaying
the load event.

30. Abort the overall resource selection algorithm.

If the media data can be fetched but has non-fatal errors or uses, in part,
codecs that are unsupported, preventing the user agent from rendering the
content completely correctly but not preventing playback altogether
The server returning data that is partially usable but cannot be optimally rendered
must cause the user agent to render just the bits it can handle, and ignore the rest.

When the networking task source has queued the last task as part of fetching the
media resource (i.e. once the download has completed), if the fetching process
completes without errors, including decoding the media data, then, the user agent
must move on to the next step. This might never happen, e.g. when streaming an
infinite resource such as Web radio.

4. Set the networkState attribute to NETWORK_LOADED.

5. Queue a task to fire a progress event called load at the media element, in the
context of the fetching process started by this instance of this algorithm.

6. Queue a task to fire a progress event called loadend at the media element, in the
context of the fetching process started by this instance of this algorithm.

7. Finally, abort the overall resource selection algorithm.

If a media element whose networkState has the value NETWORK_EMPTY is inserted into a
document, the user agent must invoke the media element's resource selection algorithm.

The autobuffer attribute is a boolean attribute. Its presence hints to the user agent that
the author believes that the media element will likely be used, even though the element
does not have an autoplay attribute. (The attribute has no effect if used in conjunction
with the autoplay attribute, though including both is not an error.) This attribute may be
ignored altogether. The attribute must be ignored if the autoplay attribute is present.

The autobuffer DOM attribute must reflect the content attribute of the same name.

media . buffered
Returns a TimeRanges object that represents the ranges of the media resource that
the user agent has buffered.

The buffered attribute must return a new static normalized TimeRanges object that
represents the ranges of the media resource, if any, that the user agent has buffered, at
the time the attribute is evaluated. Users agents must accurately determine the ranges
available, even for media streams where this can only be determined by tedious
inspection.

Typically this will be a single range anchored at the zero point, but if, e.g. the user
agent uses HTTP range requests in response to seeking, then there could be
multiple ranges.

User agents may discard previously buffered data.

Thus, a time position included within a range of the objects return by the buffered
attribute at one time can end up being not included in the range(s) of objects
returned by the same attribute at later times.

4.8.10.6 Offsets into the media resource

Status: Being considered for removal

media . duration
Returns the length of the media resource, in seconds.
Returns NaN if the duration isn't available.
Returns Infinity for unbounded streams.

media . currentTime [= value]
Returns the current playback position, in seconds.
Can be set, to seek to the given time.

Will throw an INVALID_STATE_ERR exception if there is no selected media resource.
Will throw an INDEX_SIZE_ERR exception if the given time is not within the ranges to
which the user agent can seek.

media . startTime
Returns the earliest possible position, in seconds. This is the time for the start of
the current clip. It might not be zero if the clip's timeline is not zero-based, or if the
resource is a streaming resource (in which case it gives the earliest time that the
user agent is able to seek back to).

The duration attribute must return the length of the media resource, in seconds. If no
media data is available, then the attributes must return the Not-a-Number (NaN) value. If
the media resource is known to be unbounded (e.g. a streaming radio), then the attribute
must return the positive Infinity value.

The user agent must determine the duration of the media resource before playing any part
of the media data and before setting readyState to a value equal to or greater than
HAVE_METADATA, even if doing so requires seeking to multiple parts of the resource.

When the length of the media resource changes (e.g. from being unknown to known, or
from a previously established length to a new length) the user agent must queue a task to
fire a simple event called durationchange at the media element.

If an "infinite" stream ends for some reason, then the duration would change from
positive Infinity to the time of the last frame or sample in the stream, and the
durationchange event would be fired. Similarly, if the user agent initially estimated the
media resource's duration instead of determining it precisely, and later revises the
estimate based on new information, then the duration would change and the
durationchange event would be fired.

Media elements have a current playback position, which must initially be zero. The
current position is a time.

The currentTime attribute must, on getting, return the current playback position,
expressed in seconds. On setting, the user agent must seek to the new value (which
might raise an exception).

If the media resource is a streaming resource, then the user agent might be unable to
obtain certain parts of the resource after it has expired from its buffer. Similarly, some
media resources might have a timeline that doesn't start at zero. The earliest possible
position is the earliest position in the stream or resource that the user agent can ever
obtain again.

The startTime attribute must, on getting, return the earliest possible position, expressed
in seconds.

When the earliest possible position changes, then: if the current playback position is
before the earliest possible position, the user agent must seek to the earliest possible
position; otherwise, if the user agent has not fired a timeupdate event at the element in the
past 15 to 250ms, then the user agent must queue a task to fire a simple event called
timeupdate at the element.

User agents must act as if the timeline of the media resource increases linearly starting
from the earliest possible position, even if the underling media data has out-of-order or
even overlapping time codes.

For example, if two clips have been concatenated into one video file, but the video
format exposes the original times for the two clips, the video data might expose a
timeline that goes, say, 00:15..00:29 and then 00:05..00:38. However, the user agent
would not expose those times; it would instead expose the times as 00:15..00:29 and
00:29..01:02, as a single video.

The loop attribute is a boolean attribute that, if specified, indicates that the media element
is to seek back to the start of the media resource upon reaching the end.

The loop DOM attribute must reflect the content attribute of the same name.

4.8.10.7 The ready states

media . readyState
Returns a value that expresses the current state of the element with respect to
rendering the current playback position, from the codes in the list below.

Media elements have a ready state, which describes to what degree they are ready to be
rendered at the current playback position. The possible values are as follows; the ready
state of a media element at any particular time is the greatest value describing the state of
the element:

HAVE_NOTHING (numeric value 0)
No information regarding the media resource is available. No data for the current
playback position is available. Media elements whose networkState attribute is
NETWORK_EMPTY are always in the HAVE_NOTHING state.

HAVE_METADATA (numeric value 1)
Enough of the resource has been obtained that the duration of the resource is
available. In the case of a video element, the dimensions of the video are also
available. The API will no longer raise an exception when seeking. No media data
is available for the immediate current playback position.

HAVE_CURRENT_DATA (numeric value 2)
Data for the immediate current playback position is available, but either not enough
data is available that the user agent could successfully advance the current
playback position in the direction of playback at all without immediately reverting to
the HAVE_METADATA state, or there is no more data to obtain in the direction of
playback. For example, in video this corresponds to the user agent having data
from the current frame, but not the next frame; and to when playback has ended.

HAVE_FUTURE_DATA (numeric value 3)
Data for the immediate current playback position is available, as well as enough
data for the user agent to advance the current playback position in the direction of
playback at least a little without immediately reverting to the HAVE_METADATA state.
For example, in video this corresponds to the user agent having data for at least
the current frame and the next frame. The user agent cannot be in this state if
playback has ended, as the current playback position can never advanced in this
case.

HAVE_ENOUGH_DATA (numeric value 4)
All the conditions described for the HAVE_FUTURE_DATA state are met, and, in
addition, the user agent estimates that data is being fetched at a rate where the
current playback position, if it were to advance at the rate given by the

defaultPlaybackRate attribute, would not overtake the available data before
playback reaches the end of the media resource.

When the ready state of a media element whose networkState is not NETWORK_EMPTY
changes, the user agent must follow the steps given below:

If the previous ready state was HAVE_NOTHING, and the new ready state is
HAVE_METADATA

A loadedmetadata DOM event will be fired as part of the load() algorithm.

If the previous ready state was HAVE_METADATA and the new ready state is
HAVE_CURRENT_DATA or greater

If this is the first time this occurs for this media element since the load() algorithm
was last invoked, the user agent must queue a task to fire a simple event called
loadeddata at the element.

If the new ready state is HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA, then the relevant
steps below must then be run also.

If the previous ready state was HAVE_FUTURE_DATA or more, and the new ready state is
HAVE_CURRENT_DATA or less

A waiting DOM event can be fired, depending on the current state of
playback.

If the previous ready state was HAVE_CURRENT_DATA or less, and the new ready state is
HAVE_FUTURE_DATA

The user agent must queue a task to fire a simple event called canplay.

If the element is potentially playing, the user agent must queue a task to fire a
simple event called playing.

If the new ready state is HAVE_ENOUGH_DATA
If the previous ready state was HAVE_CURRENT_DATA or less, the user agent must
queue a task to fire a simple event called canplay, and, if the element is also
potentially playing, queue a task to fire a simple event called playing.

If the autoplaying flag is true, and the paused attribute is true, and the media
element has an autoplay attribute specified, then the user agent may also set the
paused attribute to false, queue a task to fire a simple event called play, and queue
a task to fire a simple event called playing.

User agents are not required to autoplay, and it is suggested that user agents
honor user preferences on the matter. Authors are urged to use the autoplay
attribute rather than using script to force the video to play, so as to allow the
user to override the behavior if so desired.

In any case, the user agent must finally queue a task to fire a simple event called
canplaythrough.

It is possible for the ready state of a media element to jump between these states
discontinuously. For example, the state of a media element can jump straight from

HAVE_METADATA to HAVE_ENOUGH_DATA without passing through the HAVE_CURRENT_DATA
and HAVE_FUTURE_DATA states.

The readyState DOM attribute must, on getting, return the value described above that
describes the current ready state of the media element.

The autoplay attribute is a boolean attribute. When present, the user agent (as described
in the algorithm described herein) will automatically begin playback of the media resource
as soon as it can do so without stopping.

Authors are urged to use the autoplay attribute rather than using script to trigger
automatic playback, as this allows the user to override the automatic playback
when it is not desired, e.g. when using a screen reader. Authors are also
encouraged to consider not using the automatic playback behavior at all, and
instead to let the user agent wait for the user to start playback explicitly.

The autoplay DOM attribute must reflect the content attribute of the same name.

4.8.10.8 Playing the media resource

media . paused
Returns true if playback is paused; false otherwise.

media . ended
Returns true if playback has reached the end of the media resource.

media . defaultPlaybackRate [= value]
Returns the default rate of playback, for when the user is not fast-forwarding or
reversing through the media resource.
Can be set, to change the default rate of playback.
The default rate has no direct effect on playback, but if the user switches to a fast-
forward mode, when they return to the normal playback mode, it is expected that
the rate of playback will be returned to the default rate of playback.

media . playbackRate [= value]
Returns the current rate playback, where 1.0 is normal speed.
Can be set, to change the rate of playback.

media . played
Returns a TimeRanges object that represents the ranges of the media resource that
the user agent has played.

media . play()
Sets the paused attribute to false, loading the media resource and beginning
playback if necessary. If the playback had ended, will restart it from the start.

media . pause()
Sets the paused attribute to true, loading the media resource if necessary.

The paused attribute represents whether the media element is paused or not. The attribute
must initially be true.

A media element is said to be potentially playing when its paused attribute is false, the
readyState attribute is either HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA, the element has not
ended playback, playback has not stopped due to errors, and the element has not paused
for user interaction.

A media element is said to have ended playback when the element's readyState attribute
is HAVE_METADATA or greater, and either the current playback position is the end of the
media resource and the direction of playback is forwards and the media element does not
have a loop attribute specified, or the current playback position is the earliest possible
position and the direction of playback is backwards.

The ended attribute must return true if the media element has ended playback and the
direction of playback is forwards, and false otherwise.

A media element is said to have stopped due to errors when the element's readyState
attribute is HAVE_METADATA or greater, and the user agent encounters a non-fatal error
during the processing of the media data, and due to that error, is not able to play the
content at the current playback position.

A media element is said to have paused for user interaction when its paused attribute is
false, the readyState attribute is either HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA and the
user agent has reached a point in the media resource where the user has to make a
selection for the resource to continue.

It is possible for a media element to have both ended playback and paused for user
interaction at the same time.

When a media element that is potentially playing stops playing because it has paused for
user interaction, the user agent must queue a task to fire a simple event called timeupdate
at the element.

When a media element that is potentially playing stops playing because its readyState
attribute changes to a value lower than HAVE_FUTURE_DATA, without the element having
ended playback, or playback having stopped due to errors, or playback having paused for
user interaction, or the seeking algorithm being invoked, the user agent must queue a task
to fire a simple event called timeupdate at the element, and queue a task to fire a simple
event called waiting at the element.

When the current playback position reaches the end of the media resource when the
direction of playback is forwards, then the user agent must follow these steps:

1. If the media element has a loop attribute specified, then seek to the earliest
possible position of the media resource and abort these steps.

2. Stop playback.

The ended attribute becomes true.

3. The user agent must queue a task to fire a simple event called timeupdate at the
element.

4. The user agent must queue a task to fire a simple event called ended at the
element.

When the current playback position reaches the earliest possible position of the media
resource when the direction of playback is backwards, then the user agent must follow
these steps:

1. Stop playback.

2. The user agent must queue a task to fire a simple event called timeupdate at the
element.

The defaultPlaybackRate attribute gives the desired speed at which the media resource
is to play, as a multiple of its intrinsic speed. The attribute is mutable: on getting it must
return the last value it was set to, or 1.0 if it hasn't yet been set; on setting the attribute
must be set to the new value.

The playbackRate attribute gives the speed at which the media resource plays, as a
multiple of its intrinsic speed. If it is not equal to the defaultPlaybackRate, then the
implication is that the user is using a feature such as fast forward or slow motion playback.
The attribute is mutable: on getting it must return the last value it was set to, or 1.0 if it
hasn't yet been set; on setting the attribute must be set to the new value, and the playback
must change speed (if the element is potentially playing).

If the playbackRate is positive or zero, then the direction of playback is forwards.
Otherwise, it is backwards.

The "play" function in a user agent's interface must set the playbackRate attribute to the
value of the defaultPlaybackRate attribute before invoking the play() method's steps.
Features such as fast-forward or rewind must be implemented by only changing the
playbackRate attribute.

When the defaultPlaybackRate or playbackRate attributes change value (either by being
set by script or by being changed directly by the user agent, e.g. in response to user
control) the user agent must queue a task to fire a simple event called ratechange at the
media element.

The played attribute must return a new static normalized TimeRanges object that
represents the ranges of the media resource, if any, that the user agent has so far
rendered, at the time the attribute is evaluated.

When the play() method on a media element is invoked, the user agent must run the
following steps.

1. If the media element's networkState attribute has the value NETWORK_EMPTY, then
the user agent must invoke the media element's resource selection algorithm.

2. If the playback has ended, then the user agent must seek to the earliest possible
position of the media resource.

This will cause the user agent to queue a task to fire a simple event called
timeupdate at the media element.

3. If the media element's paused attribute is true, it must be set to false.

If this changed the value of paused, the user agent must run the following substeps:

1. Queue a task to fire a simple event called play at the element.

2. If the media element's readyState attribute has the value HAVE_NOTHING,
HAVE_METADATA, or HAVE_CURRENT_DATA, queue a task to fire a simple event
called waiting at the element.

3. Otherwise, the media element's readyState attribute has the value
HAVE_FUTURE_DATA or HAVE_ENOUGH_DATA; queue a task to fire a simple event
called playing at the element.

4. The media element's autoplaying flag must be set to false.

5. The method must then return.

When the pause() method is invoked, the user agent must run the following steps:

1. If the media element's networkState attribute has the value NETWORK_EMPTY, then
the user agent must invoke the media element's resource selection algorithm.

2. If the media element's paused attribute is false, it must be set to true.

3. The media element's autoplaying flag must be set to false.

4. If the second step above changed the value of paused, then the user agent must
queue a task to fire a simple event called timeupdate at the element, and queue a
task to fire a simple event called pause at the element.

When a media element is potentially playing and its Document is an active document, its
current playback position must increase monotonically at playbackRate units of media
time per unit time of wall clock time.

This specification doesn't define how the user agent achieves the appropriate
playback rate — depending on the protocol and media available, it is plausible that
the user agent could negotiate with the server to have the server provide the media
data at the appropriate rate, so that (except for the period between when the rate is
changed and when the server updates the stream's playback rate) the client doesn't
actually have to drop or interpolate any frames.

When the playbackRate is negative (playback is backwards), any corresponding audio
must be muted. When the playbackRate is so low or so high that the user agent cannot
play audio usefully, the corresponding audio must also be muted. If the playbackRate is
not 1.0, the user agent may apply pitch adjustments to the audio as necessary to render it
faithfully.

The playbackRate can be 0.0, in which case the current playback position doesn't move,
despite playback not being paused (paused doesn't become true, and the pause event
doesn't fire).

Media elements that are potentially playing while not in a Document must not play any
video, but should play any audio component. Media elements must not stop playing just
because all references to them have been removed; only once a media element to which
no references exist has reached a point where no further audio remains to be played for
that element (e.g. because the element is paused, or because the end of the clip has been
reached, or because its playbackRate is 0.0) may the element be garbage collected.

When the current playback position of a media element changes (e.g. due to playback or
seeking), the user agent must run the following steps. If the current playback position
changes while the steps are running, then the user agent must wait for the steps to
complete, and then must immediately rerun the steps. (These steps are thus run as often
as possible or needed — if one iteration takes a long time, this can cause certain ranges
to be skipped over as the user agent rushes ahead to "catch up".)

1. If the time was reached through the usual monotonic increase of the current
playback position during normal playback, and if the user agent has not fired a
timeupdate event at the element in the past 15 to 250ms, then the user agent must
queue a task to fire a simple event called timeupdate at the element. (In the other
cases, such as explicit seeks, relevant events get fired as part of the overall
process of changing the current playback position.)

The event thus is not to be fired faster than about 66Hz or slower than 4Hz.
User agents are encouraged to vary the frequency of the event based on the
system load and the average cost of processing the event each time, so that
the UI updates are not any more frequent than the user agent can comfortably
handle while decoding the video.

When a media element is removed from a Document, if the media element's networkState
attribute has a value other than NETWORK_EMPTY then the user agent must act as if the
pause() method had been invoked.

If the media element's Document stops being a fully active document, then the
playback will stop until the document is active again.

4.8.10.9 Seeking

media . seeking
Returns true if the user agent is currently seeking.

media . seekable
Returns a TimeRanges object that represents the ranges of the media resource to
which it is possible for the user agent to seek.

The seeking attribute must initially have the value false.

When the user agent is required to seek to a particular new playback position in the media
resource, it means that the user agent must run the following steps:

1. If the media element's readyState is HAVE_NOTHING, then the user agent must raise
an INVALID_STATE_ERR exception (if the seek was in response to a DOM method
call or setting of a DOM attribute), and abort these steps.

2. If the new playback position is later than the end of the media resource, then let it
be the end of the media resource instead.

3. If the new playback position is less than the earliest possible position, let it be that
position instead.

4. If the (possibly now changed) new playback position is not in one of the ranges
given in the seekable attribute, then the user agent must raise an INDEX_SIZE_ERR
exception (if the seek was in response to a DOM method call or setting of a DOM
attribute), and abort these steps.

5. The current playback position must be set to the given new playback position.

6. The seeking DOM attribute must be set to true.

7. The user agent must queue a task to fire a simple event called timeupdate at the
element.

8. If the media element was potentially playing immediately before it started seeking,
but seeking caused its readyState attribute to change to a value lower than
HAVE_FUTURE_DATA, the user agent must queue a task to fire a simple event called
waiting at the element.

9. If, when it reaches this step, the user agent has still not established whether or not
the media data for the new playback position is available, and, if it is, decoded
enough data to play back that position, the user agent must queue a task to fire a
simple event called seeking at the element.

10. If the seek was in response to a DOM method call or setting of a DOM attribute,
then continue the script. The remainder of these steps must be run asynchronously.

11. The user agent must wait until it has established whether or not the media data for
the new playback position is available, and, if it is, until it has decoded enough data
to play back that position.

12. The seeking DOM attribute must be set to false.

13. The user agent must queue a task to fire a simple event called seeked at the
element.

The seekable attribute must return a new static normalized TimeRanges object that
represents the ranges of the media resource, if any, that the user agent is able to seek to,
at the time the attribute is evaluated.

If the user agent can seek to anywhere in the media resource, e.g. because it a
simple movie file and the user agent and the server support HTTP Range requests,
then the attribute would return an object with one range, whose start is the time of
the first frame (typically zero), and whose end is the same as the time of the first
frame plus the duration attribute's value (which would equal the time of the last
frame).

The range might be continuously changing, e.g. if the user agent is buffering a
sliding window on an infinite stream. This is the behavior seen with DVRs viewing
live TV, for instance.

Media resources might be internally scripted or interactive. Thus, a media element could
play in a non-linear fashion. If this happens, the user agent must act as if the algorithm for
seeking was used whenever the current playback position changes in a discontinuous
fashion (so that the relevant events fire).

4.8.10.10 User interface

The controls attribute is a boolean attribute. If present, it indicates that the author has not
provided a scripted controller and would like the user agent to provide its own set of
controls.

If the attribute is present, or if scripting is disabled for the media element, then the user
agent should expose a user interface to the user. This user interface should include
features to begin playback, pause playback, seek to an arbitrary position in the content (if
the content supports arbitrary seeking), change the volume, and show the media content
in manners more suitable to the user (e.g. full-screen video or in an independent resizable
window). Other controls may also be made available.

If the attribute is absent, then the user agent should avoid making a user interface
available that could conflict with an author-provided user interface. User agents may make
the following features available, however, even when the attribute is absent:

User agents may provide controls to affect playback of the media resource (e.g. play,
pause, seeking, and volume controls), but such features should not interfere with the
page's normal rendering. For example, such features could be exposed in the media
element's context menu.

Where possible (specifically, for starting, stopping, pausing, and unpausing playback, for
muting or changing the volume of the audio, and for seeking), user interface features
exposed by the user agent must be implemented in terms of the DOM API described
above, so that, e.g., all the same events fire.

The controls DOM attribute must reflect the content attribute of the same name.

media . volume [= value]

Returns the current playback volume, as a number in the range 0.0 to 1.0, where
0.0 is the quietest and 1.0 the loudest.
Can be set, to change the volume.

Throws an INDEX_SIZE_ERR if the new value is not in the range 0.0 .. 1.0.

media . muted [= value]
Returns true if audio is muted, overriding the volume attribute, and false if the
volume attribute is being honored.
Can be set, to change whether the audio is muted or not.

The volume attribute must return the playback volume of any audio portions of the media
element, in the range 0.0 (silent) to 1.0 (loudest). Initially, the volume must be 1.0, but
user agents may remember the last set value across sessions, on a per-site basis or
otherwise, so the volume may start at other values. On setting, if the new value is in the
range 0.0 to 1.0 inclusive, the attribute must be set to the new value and the playback
volume must be correspondingly adjusted as soon as possible after setting the attribute,
with 0.0 being silent, and 1.0 being the loudest setting, values in between increasing in
loudness. The range need not be linear. The loudest setting may be lower than the
system's loudest possible setting; for example the user could have set a maximum
volume. If the new value is outside the range 0.0 to 1.0 inclusive, then, on setting, an
INDEX_SIZE_ERR exception must be raised instead.

The muted attribute must return true if the audio channels are muted and false otherwise.
Initially, the audio channels should not be muted (false), but user agents may remember
the last set value across sessions, on a per-site basis or otherwise, so the muted state
may start as muted (true). On setting, the attribute must be set to the new value; if the new
value is true, audio playback for this media resource must then be muted, and if false,
audio playback must then be enabled.

Whenever either the muted or volume attributes are changed, the user agent must queue a
task to fire a simple event called volumechange at the media element.

4.8.10.11 Time ranges

Objects implementing the TimeRanges interface represent a list of ranges (periods) of time.

interface TimeRanges {
 readonly attribute unsigned long length;
 float start(in unsigned long index);
 float end(in unsigned long index);
};

media . length
Returns the number of ranges in the object.

time = media . start(index)
Returns the time for the start of the range with the given index.

Throws an INDEX_SIZE_ERR if the index is out of range.

time = media . end(index)

Returns the time for the end of the range with the given index.

Throws an INDEX_SIZE_ERR if the index is out of range.

The length DOM attribute must return the number of ranges represented by the object.

The start(index) method must return the position of the start of the indexth range
represented by the object, in seconds measured from the start of the timeline that the
object covers.

The end(index) method must return the position of the end of the indexth range
represented by the object, in seconds measured from the start of the timeline that the
object covers.

These methods must raise INDEX_SIZE_ERR exceptions if called with an index argument
greater than or equal to the number of ranges represented by the object.

When a TimeRanges object is said to be a normalized TimeRanges object, the ranges it
represents must obey the following criteria:

• The start of a range must be greater than the end of all earlier ranges.
• The start of a range must be less than the end of that same range.

In other words, the ranges in such an object are ordered, don't overlap, aren't empty, and
don't touch (adjacent ranges are folded into one bigger range).

The timelines used by the objects returned by the buffered, seekable and played DOM
attributes of media elements must be the same as that element's media resource's
timeline.

4.8.10.12 Event summary

The following events fire on media elements as part of the processing model described
above:

Event name Interface Dispatched when... Preconditions
loadstart ProgressEvent

[PROGRESS]
The user agent begins
looking for media data, as
part of the resource selection
algorithm.

networkState equals
NETWORK_LOADING

progress ProgressEvent
[PROGRESS]

The user agent is fetching
media data.

networkState equals
NETWORK_LOADING

suspend ProgressEvent
[PROGRESS]

The user agent is
intentionally not currently
fetching media data, but
does not have the entire
media resource downloaded.

networkState equals
NETWORK_IDLE

load ProgressEvent
[PROGRESS]

The user agent finishes
fetching the entire media
resource.

networkState equals
NETWORK_LOADED

Event name Interface Dispatched when... Preconditions
abort ProgressEvent

[PROGRESS]
The user agent stops
fetching the media data
before it is completely
downloaded.

error is an object with the
code MEDIA_ERR_ABORTED.
networkState equals either
NETWORK_EMPTY or
NETWORK_LOADED,
depending on when the
download was aborted.

error ProgressEvent
[PROGRESS]

An error occurs while
fetching the media data.

error is an object with the
code MEDIA_ERR_NETWORK or
higher. networkState
equals either
NETWORK_EMPTY or
NETWORK_LOADED,
depending on when the
download was aborted.

loadend ProgressEvent
[PROGRESS]

The user agent stops
fetching the media data, for
whatever reason.

One of load, abort, or
error has just fired.

emptied Event A media element whose
networkState was previously
not in the NETWORK_EMPTY
state has just switched to
that state (either because of
a fatal error during load
that's about to be reported,
or because the load()
method was invoked while
the resource selection
algorithm was already
running, in which case it is
fired synchronously during
the load() method call).

networkState is
NETWORK_EMPTY; all the
DOM attributes are in their
initial states.

stalled ProgressEvent The user agent is trying to
fetch media data, but data is
unexpectedly not
forthcoming.

networkState is
NETWORK_LOADING.

play Event Playback has begun. Fired
after the play() method has
returned.

paused is newly false.

pause Event Playback has been paused.
Fired after the pause method
has returned.

paused is newly true.

loadedmetadata Event The user agent has just
determined the duration and
dimensions of the media
resource.

readyState is newly equal
to HAVE_METADATA or
greater for the first time.

Event name Interface Dispatched when... Preconditions
loadeddata Event The user agent can render

the media data at the current
playback position for the first
time.

readyState newly
increased to
HAVE_CURRENT_DATA or
greater for the first time.

waiting Event Playback has stopped
because the next frame is
not available, but the user
agent expects that frame to
become available in due
course.

readyState is newly equal
to or less than
HAVE_CURRENT_DATA, and
paused is false. Either
seeking is true, or the
current playback position is
not contained in any of the
ranges in buffered. It is
possible for playback to
stop for two other reasons
without paused being false,
but those two reasons do
not fire this event: maybe
playback ended, or
playback stopped due to
errors.

playing Event Playback has started. readyState is newly equal
to or greater than
HAVE_FUTURE_DATA, paused
is false, seeking is false, or
the current playback
position is contained in one
of the ranges in buffered.

canplay Event The user agent can resume
playback of the media data,
but estimates that if playback
were to be started now, the
media resource could not be
rendered at the current
playback rate up to its end
without having to stop for
further buffering of content.

readyState newly
increased to
HAVE_FUTURE_DATA or
greater.

canplaythrough Event The user agent estimates
that if playback were to be
started now, the media
resource could be rendered
at the current playback rate
all the way to its end without
having to stop for further
buffering.

readyState is newly equal
to HAVE_ENOUGH_DATA.

seeking Event The seeking DOM attribute
changed to true and the
seek operation is taking long

Event name Interface Dispatched when... Preconditions
enough that the user agent
has time to fire the event.

seeked Event The seeking DOM attribute
changed to false.

timeupdate Event The current playback
position changed as part of
normal playback or in an
especially interesting way,
for example discontinuously.

ended Event Playback has stopped
because the end of the
media resource was
reached.

currentTime equals the
end of the media resource;
ended is true.

ratechange Event Either the
defaultPlaybackRate or the
playbackRate attribute has
just been updated.

durationchange Event The duration attribute has
just been updated.

volumechange Event Either the volume attribute or
the muted attribute has
changed. Fired after the
relevant attribute's setter has
returned.

4.8.10.13 Security and privacy considerations

The main security and privacy implications of the video and audio elements come from
the ability to embed media cross-origin. There are two directions that threats can flow:
from hostile content to a victim page, and from a hostile page to victim content.

If a victim page embeds hostile content, the threat is that the content might contain
scripted code that attempts to interact with the Document that embeds the content. To
avoid this, user agents must ensure that there is no access from the content to the
embedding page. In the case of media content that uses DOM concepts, the embedded
content must be treated as if it was in its own unrelated top-level browsing context.

For instance, if an SVG animation was embedded in a video element, the user agent
would not give it access to the DOM of the outer page. From the perspective of
scripts in the SVG resource, the SVG file would appear to be in a lone top-level
browsing context with no parent.

If a hostile page embeds victim content, the threat is that the embedding page could
obtain information from the content that it would not otherwise have access to. The API
does expose some information: the existence of the media, its type, its duration, its size,
and the performance characteristics of its host. Such information is already potentially
problematic, but in practice the same information can more or less be obtained using the
img element, and so it has been deemed acceptable.

However, significantly more sensitive information could be obtained if the user agent
further exposes metadata within the content such as subtitles or chapter titles. This
version of the API does not expose such information. Future extensions to this API will
likely reuse a mechanism such as CORS to check that the embedded content's site has
opted in to exposing such information. [CORS]

An attacker could trick a user running within a corporate network into visiting a site
that attempts to load a video from a previously leaked location on the corporation's
intranet. If such a video included confidential plans for a new product, then being able
to read the subtitles would present a confidentiality breach.

